module Surface2.Typing where
open import Data.Maybe
open import Data.List
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Syntax
open import Common.Utils
open import Common.Types
open import Surface2.Syntax
infix 4 _;_⊢ᴳ_⦂_
data _;_⊢ᴳ_⦂_ : Context → Label → Term → Type → Set where
⊢const : ∀ {Γ gc ι} {k : rep ι} {ℓ}
→ Γ ; gc ⊢ᴳ $ k of ℓ ⦂ ` ι of l ℓ
⊢var : ∀ {Γ gc A x}
→ Γ ∋ x ⦂ A
→ Γ ; gc ⊢ᴳ ` x ⦂ A
⊢lam : ∀ {Γ gc g A B N ℓ}
→ (A ∷ Γ) ; g ⊢ᴳ N ⦂ B
→ Γ ; gc ⊢ᴳ ƛ g , A ˙ N of ℓ ⦂ ⟦ g ⟧ A ⇒ B of l ℓ
⊢app : ∀ {Γ gc gc′ A A′ B L M g p}
→ Γ ; gc ⊢ᴳ L ⦂ ⟦ gc′ ⟧ A ⇒ B of g
→ Γ ; gc ⊢ᴳ M ⦂ A′
→ A′ ≲ A
→ g ≾ gc′
→ gc ≾ gc′
→ Γ ; gc ⊢ᴳ L · M at p ⦂ stamp B g
⊢if : ∀ {Γ gc A B C L M N g p}
→ Γ ; gc ⊢ᴳ L ⦂ ` Bool of g
→ Γ ; gc ⋎̃ g ⊢ᴳ M ⦂ A
→ Γ ; gc ⋎̃ g ⊢ᴳ N ⦂ B
→ A ∨̃ B ≡ just C
→ Γ ; gc ⊢ᴳ if L then M else N at p ⦂ stamp C g
⊢ann : ∀ {Γ gc M A A′ p}
→ Γ ; gc ⊢ᴳ M ⦂ A′
→ A′ ≲ A
→ Γ ; gc ⊢ᴳ M ∶ A at p ⦂ A
⊢let : ∀ {Γ gc A B M N}
→ Γ ; gc ⊢ᴳ M ⦂ A
→ A ∷ Γ ; gc ⊢ᴳ N ⦂ B
→ Γ ; gc ⊢ᴳ `let M `in N ⦂ B
⊢ref : ∀ {Γ gc M T g ℓ p}
→ Γ ; gc ⊢ᴳ M ⦂ T of g
→ T of g ≲ T of l ℓ
→ gc ≾ l ℓ
→ Γ ; gc ⊢ᴳ ref⟦ ℓ ⟧ M at p ⦂ Ref (T of l ℓ) of l low
⊢deref : ∀ {Γ gc M A g p}
→ Γ ; gc ⊢ᴳ M ⦂ (Ref A) of g
→ Γ ; gc ⊢ᴳ ! M at p ⦂ stamp A g
⊢assign : ∀ {Γ gc L M A T g ĝ p}
→ Γ ; gc ⊢ᴳ L ⦂ Ref (T of ĝ) of g
→ Γ ; gc ⊢ᴳ M ⦂ A
→ A ≲ T of ĝ
→ g ≾ ĝ
→ gc ≾ ĝ
→ Γ ; gc ⊢ᴳ L := M at p ⦂ ` Unit of l low