{-# OPTIONS --cubical-compatible --safe #-}
module Data.Float.Properties where
open import Data.Bool.Base as Bool using (Bool)
open import Data.Float.Base
import Data.Maybe.Base as M
import Data.Maybe.Properties as Mₚ
import Data.Nat.Properties as Nₚ
import Data.Word.Base as Word
import Data.Word.Properties as Wₚ
open import Function using (_∘_)
open import Relation.Nullary.Decidable as RN using (map′)
open import Relation.Binary
import Relation.Binary.Construct.On as On
open import Relation.Binary.PropositionalEquality
open import Agda.Builtin.Float.Properties
renaming (primFloatToWord64Injective to toWord-injective)
public
≈⇒≡ : _≈_ ⇒ _≡_
≈⇒≡ eq = toWord-injective _ _ (Mₚ.map-injective Wₚ.≈⇒≡ eq)
≈-reflexive : _≡_ ⇒ _≈_
≈-reflexive eq = cong (M.map Word.toℕ ∘ toWord) eq
≈-refl : Reflexive _≈_
≈-refl = refl
≈-sym : Symmetric _≈_
≈-sym = sym
≈-trans : Transitive _≈_
≈-trans = trans
≈-subst : ∀ {ℓ} → Substitutive _≈_ ℓ
≈-subst P x≈y p = subst P (≈⇒≡ x≈y) p
infix 4 _≈?_
_≈?_ : Decidable _≈_
_≈?_ = On.decidable (M.map Word.toℕ ∘ toWord) _≡_ (Mₚ.≡-dec Nₚ._≟_)
≈-isEquivalence : IsEquivalence _≈_
≈-isEquivalence = record
{ refl = λ {i} → ≈-refl {i}
; sym = λ {i j} → ≈-sym {i} {j}
; trans = λ {i j k} → ≈-trans {i} {j} {k}
}
≈-setoid : Setoid _ _
≈-setoid = record
{ isEquivalence = ≈-isEquivalence
}
≈-isDecEquivalence : IsDecEquivalence _≈_
≈-isDecEquivalence = record
{ isEquivalence = ≈-isEquivalence
; _≟_ = _≈?_
}
≈-decSetoid : DecSetoid _ _
≈-decSetoid = record
{ isDecEquivalence = ≈-isDecEquivalence
}
infix 4 _≟_
_≟_ : DecidableEquality Float
x ≟ y = map′ ≈⇒≡ ≈-reflexive (x ≈? y)
≡-setoid : Setoid _ _
≡-setoid = setoid Float
≡-decSetoid : DecSetoid _ _
≡-decSetoid = decSetoid _≟_