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Abstract. We propose a spike sorting method for multi-channel recordings. When

applied in neural recordings, the performance of the Independent Component Analysis

(ICA) algorithm is known to be limited, since the number of recording sites is much

lower than the number of neurons. The proposed method uses an iterative application

of ICA and a deflation technique in two nested loops. In each iteration of the external

loop, the spiking activity of one neuron is singled out and then deflated from the

recordings. The internal loop implements a sequence of ICA and sorting for removing

the noise and all the spikes that are not fired by the targeted neuron. Then a final step

is appended to the two nested loops in order to separate simultaneously fired spikes.

We solve this problem by taking all possible pairs of the sorted neurons and apply ICA

only on the segments of the signal during which at least one of the neurons in a given

pair was active. We validate the performance of the proposed method on simulated

recordings, but also on a specific type of real recordings: simultaneous extracellular-

intracellular. We quantify the sorting results on the extracellular recordings for the

spikes that come from the neurons recorded intracellularly. The results suggest that

the proposed solution significantly improves the performance of ICA in spike sorting.
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1. Introduction

Information between neurons is transmitted using electrochemical signaling, which

includes communication through action potentials (AP).

Multi-site electrodes with an increasing number of channel recordings are being

more and more used for accessing neural activity (see, e.g., [1] where 100-channels

recording system, described in [2], has been used). Each recording site will capture

a mixture of activities from a number of neurons around.

Finding the firing instants of individual neurons form extracellular recordings is a

very challenging problem in neuroscience, known as spike sorting (when recorded with

extracellular electrodes action potentials are usually called spikes). For reviews and

comparison of the existing spike sorting methods, we refer to [3], [4] and [5] to name a

few.

A preliminary step before actually sorting the spikes is to find and extract them

from the original noisy measurement. This is the spike detection problem. For recordings

with good Signal to Noise Ratio (SNR) spike detection can be solved by a simple

thresholding [6]. When the SNR is not good enough, different spike detection algorithms

can be applied, e.g.: [7], [8] and [9]. In general, only spikes with high enough amplitude

can be detected. These correspond to the activity of the neurons closest to the recording

sites. We mention however that, since the medium around the electrodes is not isotropic

in general, the term closest does not always translate in the sense of minimum distance.

So here and in all the remaining, closest neurons means neurons that are most visible

in terms of current flow at the recording points during APs. The cumulative activity

of all remote (in the sense above) neurons is considered as an undesired perturbation

in the recorded signal, forming the background noise. And even for the neurons close

to the electrodes, not all of their spikes are detected: some are inevitably lost due to

the background noise corruption. However, analyzing the performance in spike sorting,

we can say that missing some spikes (not detected spikes or spikes left unsorted) is less

problematic than assigning spikes into a wrong cluster. We refer to [10] for detailed

argumentation of this statement.

Commonly, spike sorting techniques use spike shape and amplitude as discriminative

factors: even though all the neurons fire almost the same action potential waveform,

due to the propagation and the velocity effects, spikes recorded with an extracellular

electrode have different shapes and amplitudes if they are coming from different neurons

[11]. Thus, after spike detection, feature extraction techniques such as Principal

Component Analysis (PCA) [12], wavelet based feature extraction [13], [14] or some

others [15], [16] are commonly applied on the detected spikes.

Spikes are then sorted into different clusters, depending on the extracted features.

A large number of clustering algorithms have been proposed for spike sorting. K-means

[17], EM [18], template matching [19], Bayesian clustering [20] and super-paramagnetic

clustering [13] are just some popular/recent examples. The number of clusters is often

determined manually. However, sometimes some unsupervised procedures are used. As
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examples we mention Basysian Information Criterion (BIC) (e.g. [21] and [22]) as well

as some simple ad-hoc procedures, such as finding the maximal density of the spikes in

the feature vector space [23]. The essential problem in spike sorting arises from the fact

that the activities of neurons close to the electrode are often significantly destroyed by

the background noise. Thus, very often different spikes fired by the same neuron appear

in a recording as very different waveforms and it is very hard to recognize that they

should be sorted into the same cluster.

In multi-channel (multi-site) recordings, the activity of each neuron in the

neighborhood is captured by several recording sites. The principle of many spike sorting

algorithms is to exploit such information redundancy. This is actually a Blind Source

Separation (BSS) problem which is commonly approached via Independent Component

Analysis (ICA). It allows one to find a new basis of data representation in which the

mutual information between the induced virtual recording sites is minimized [24], [25],

[17] and [26]. For further reading, we refer to [27] for a nice tutorial on ICA (see

also [28]). Unfortunately, the contribution of ICA is limited by several characteristics

of neural recordings. The foremost is that the number of electrodes is much smaller

than the number of neurons around. Also, the activities of different neurons are not

independent. Consequently, ICA alone can not fully separate neural activities, but it

can often transform the recorded signal so that the sorting is easier. Thus in general ICA

is followed by some classical spike sorting algorithm (such as those we have mentioned

in the previous paragraph).

In this paper we present a new algorithm for spike sorting from multi-channel

extracellular recordings. The algorithm is iterative and consists of two nested loops.

We use a deflation technique to improve the performance of ICA: after we separate

the firing instants of a single neuron (using ICA and some spike sorting method), we

remove them from the original recording and repeat the procedure until the algorithm

becomes unable to separate any more neurons or until a prescribed number of neurons

is obtained. Moreover, within each iteration we implement, in an internal loop, another

iterative algorithm for removing the noise and all the spikes that are not coming from

the neuron which is the closest to (the most visible by) the electrode. This neuron is

identified as the one whose activity has the largest projection on the recording sites.

More precisely, the iteration of the internal loop consists of a sequence of ICA, and

spike sorting. For the classical sorting algorithm we devised a simple greedy method,

described in [23]. The algorithm is based on the observation that the distribution

of a neural signal deviates significantly from the uniform distribution and is rather

unimodal. The detected spikes to be sorted are first processed with some feature

extraction technique and then represented in a space with reduced dimension by keeping

only a few most important features. The resulting space is next filtered in order to

emphasis the differences between the centers and the borders of the clusters. Using

some prior knowledge on the lowest level activity of a neuron, as, e.g., the minimal

firing rate, we find the number of clusters and the center of each cluster. The spikes are

then sorted using a simple greedy algorithm which grabs the nearest neighbors. This
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sorting method is selected for two reasons: 1) It does not require manual supervision,

which would not be suited for an iterative algorithm. 2) It gives a good measure of

distance between the clusters which, as we will see later, helps to determine which

spikes can be deflated.

At the end of the external loop, we sort the overlapped spikes. This is done by

taking all the possible pairs of the separated neurons and applying ICA only on the

segments of the signal during which at least one of the neurons in a given pair was

active.

The paper is organized as follows. In section 2 we describe two types of signal that

we use in the simulations to come: 1) An artificially created neural mixture, where we

simulate a four-channel extracellular recording in population of 1000 neurons distributed

around the electrode. 2) A real simultaneous intracellular-extracellular recording [11] -

we test the sorting algorithms on the extracellular recording and use the intracellular to

verify the results for the intracellularly recorded neuron. In section 3 we give a step-by-

step description of the proposed algorithm. In section 4 we give the complete results of

the simulations for each step of the proposed algorithm. Concluding discussion is given

in section 5.

2. Simulation settings

In this section we will describe the simulated and the real signal that we will use for the

demonstration of the proposed algorithm in section 3 and for quantifying the results in

section 4. With the simulated recordings we can validate the sorting accuracy for all

the separated neurons, while with the real recordings we can validate the accuracy only

for a single neuron - the one which was simultaneously recorded with the intracellular

electrode.

2.1. Simulated neural recordings

To describe the proposed algorithm in an illustrative way we will use the simulated

extracellular neural recording, in order to have the precise knowledge of which neuron

fired which spikes. In this way we are able to clearly demonstrate the performance of

the proposed algorithm. Also, using such signal, we are able to precisely measure the

sorting accuracy and the sorting detection and thus compare the proposed approach

with the other approaches.

To create the recording we first generate spatial positions for 1000 artificial neurons.

We distribute the neurons randomly in a 3D space, respecting some constraints about

their minimal and maximal mutual distances. We place an electrode with four virtual

recordings sites at four different locations around the middle of the space. Distance

between two neighboring sites is set to be equal to an average distance between two

neighboring neurons. To emulate the effect of extracellular medium on propagating

action potentials we simulate attenuation of the amplitude, but also a moderate
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waveform smoothing which arises from a lowpass filtering properties of the medium [29].

We consider the smoothing between the recording sites to be negligible and simulate

only the smoothing which happens during the action potential propagation between

neurons and the electrode. We assume that the action potentials fired by the same

neuron are always recorded as spikes of the same shape. Moreover, since the smoothing

is generally moderate, we assume that the 1000 simulated neurons exhibit only 32

different spike shapes.. The 32 shapes are in fact templates generated by averaging

spikes coming from 32 different neurons, recorded by real extracellular recordings (the

recordings will be described in the next subsection). The length of each template is 60

samples, corresponding to 4ms real time. For each neuron we first generate a random

firing rate between 5Hz and 10Hz and then generate Poisson distributed firing times.

To make the simulated signal more realistic, we have to simulate the sampling

effects. Indeed, in real recordings spikes coming from a particular neuron generally

look different, because they are sampled at different time instants with respect to the

beginning of each spike. We simulate this effect by upsampling the spike templates by

a factor of 100. Then we associate the spike templates with the corresponding time

locations in the signal. Finally we subsample back to the original recording rate.

Assuming an isotropic setting, the extracellular potential typically decays as 1/rk,

where r is the Euclidian distance between the firing neuron and the recording site.

Depending on the position and orientation, the power k can take the value 1 (monopole

model, near the soma), 2 or higher (dipole model or multipole model, far-field). For sake

of simplicity, we consider k = 1 in our simulation. The first column on figure 2 shows

an example of the simulated recording obtained in this way. We refer to [30] and [31]

for further discussions on the propagation of action potentials through the extracellular

medium.

2.2. Real neural recording

A drawback of the validation using the simulated signal lies in the complexity of a real

neural mixture, which is very hard to reproduce artificially. Real recordings, depending

on the tissue in which the recording is taken, consist of superposed activity of up to

millions of neurons. The neurons interact through the large number of dendrites and

axons, what makes the spatial configuration extremely complex. Thus, the simulated

signal is often not a truthful counterpart of the real signal.

Apart from the simulated signal we examine the proposed algorithm using the real

neural recordings. We use the simultaneous intracellular-extracellular recordings from

a rat hippocampal area CA1 done by Henze et al., and described in [11]. When the

extracellular electrode is close to the intracellular, the activity of the neuron recorded

intracellularly will be also visible in the extracellular recording. Of course, with the

extracellular electrode activities of a vast number of neurons are recorded, so to separate

the activity of individual neurons we have to do spike sorting. Figure 1 shows a part

of such simultaneous recording. The four top plots show the extracellular recording
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with tetrode and the bottom plot shows the corresponding intracellular recording. The

action potentials fired by the neuron recorded intracellularly are clearly visible on all

four extracellularly recorded channels. This indicates that the recording sites are located

very close to each other.
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Figure 1. Simultaneous extracellular–intracellular recording. The four recording

sites are very close, so the action potentials recorded with the intracellular electrode

are clearly visible on all four extracellularly recorded channels.

On the plots of the extracellular channels we can also see the activity of other

neurons that are around the extracellular electrode. Notice that many spikes from the

other neurons have amplitudes similar to those of the spikes that come from the neuron

recorded intracellularly. Thus, the task of spike sorting is obviously not trivial in this

case.

3. The algorithm description

In this section we describe the proposed algorithm for multi-channel spike sorting.

The algorithm iteractively removes the activities of distant neurons from the original

recording as well as the activities of the neurons close to the electrode, once they are

separated from the mixture. By doing so we reduce the number of sources, which brings

the application of ICA in a more comfortable setting.

Apart from the recorded signal, to use the algorithm we only need to provide a

lower bound for the firing rate, call it G, and the spike detection threshold level. This
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lower bound is usually easy to set since, generally, we are not interested in separating

the activities of neurons that fired only a few spikes. A more detailed discussion on

how to chose G is given in our previous paper on spike sorting [23]. The choice of the

threshold level, on the other side, is not very critical, since we will simply neglect all the

spikes that belong to the cluster which has the lowest average peak-to-peak amplitude of

the spikes. This will make the algorithm more reliable, since the spikes with the lowest

amplitudes usually come from many different neurons, whose activity is only partially

detected.

We assume that a four-channel recording is given, but the algorithm is the same

for any number of channels. The four recorded signals are labeled as E1, E2, E3 and

E4. An example of a part of the simulated four-channel recording is shown on figure

2 and of the four-channel real recording on figure 3. Spikes from the neuron recorded

intracellularly are marked with the red stars.

Figure 2. 5000 samples from the simulated four-channel extracellular recording (first

column). 2D feature vector space with the extracted spikes - positive peak amplitude

vs negative peak amplitude (second column). Results of sorting algorithm from [23]

are given in the third column (only one cluster was detected for each channel).

To demonstrate that spike sorting is very difficult for such recording we apply

directly the greedy based spike sorting method described in [23]. First, we detect the

spikes using the spike detection method described in [9] and [32]. We then project
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Figure 3. 5000 samples from the real four-channel extracellular recording (first

column). 2D feature vector space with the extracted spikes - positive peak amplitude vs

negative peak amplitude (second column). Spikes that come from the neuron recorded

intracellularly are labeled with the red stars, while the rest of the spikes are labeled

with the blue dots. Results of sorting algorithm from [23] are given in the third column,

where the black dots marks are the detected centers of the clusters.

the spikes in a 2D vector space by keeping only two features per spike: the positive

and the negative peak amplitudes. Notice that one could also use, e.g., the two first

principal components. In the particular case, better (generally more reliable) results

were obtained when the positive and the negative peak amplitude were used as the

features, instead of the commonly applied PCA. The plots of the features are shown

next to the corresponding signals, in the second column on figures 2 and 3. In the third

column on figures 2 and 3 we give the outputs of the algorithm from [23]. The spikes

that are left unsorted by the algorithm are automatically eliminated and not plotted.

Note that the colors/symbols chosen for the representation of the clusters for the plots

in the second column are not related to the one in the third column. It is evident that

from such feature vector space it is not possible to do an accurate spike sorting.

We will now demonstrate the performance of the proposed algorithm using step-

by-step description. The flowchart that describes the proposed algorithm is shown on

figure 4.

• Step 1: ICA. We process the input signal with the FastICA algorithm described
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ICA

E1 E2 E3 E4

Remove everything but spikes

from E1, E2, E3 and E4. Set:

TrackOneNeuron=false.

IC1 IC2 IC3 IC4

ICA

E1∗ E2∗ E3∗ E4∗

Find which IC is the most suitable for the

further processing.

IC1∗ IC2∗ IC3∗ IC4∗

IC∗

The IC∗ contains

at least two

clusters?

Remove spikes from

the cluster which is

the furthest from

the cluster that con-

tains the spikes

with the largest

amplitudes; Track-

OneNeuron=true.

Yes

TrackOneNeuron = true?

No

Neuron(i)=IC∗;

Remove spikes fired

by ith neuron; Set:

i=i+1

Yes

Find overlapped spikes and update Neuron

No

Figure 4. Flowchart of the proposed multi-channel spike sorting algorithm.

in [28] (we used the default parameters given within the FastICA MATLAB package)

and obtain IC1, IC2, IC3 and IC4 as the outputs (figures 5 and 6). The second and

the third column on the both figures are again shown only to give an illustration of

what the results would be if the feature extraction based sorting method was directly

applied on the outputs of the ICA algorithm. The difference between the clusters is

more obvious than on figures 2 and 3.

• Step 2: Remove everything but spikes from E1, E2, E3 and E4. Set:

k=false. We first want to find which one of the four ICs contains the largest projection

of the spikes from neurons close to the electrode. The criterion we set to determine

this IC is spike dynamics. As a measure of the spike dynamics we use the average

difference between the positive and the negative peak. Since spikes naturally contain

a large peak, such difference should be a good measure of the dynamics. We first find
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Figure 5. Result of applying ICA on the recording shown on figure 2. The four

ICs are shown in the first column (5000 samples). 2D feature vector space with the

spikes extracted from the ICs are in the second column. The plots in the third column

display the results of applying the algorithm from [23] on the vector space from the

second column. The red rectangle marks the IC that has the largest spike dynamics.

all the spikes from all four IC using the method described in [9] and [32]. Then, we

calculate the corresponding spike dynamics for each IC and consider as actual spikes

only those detected from the IC with the largest spike dynamics. Next, from all the 4

input recordings we remove (set to zero) all but the actual spikes. We assume that the

removed parts of the signal correspond only to the noise and the cumulative activity of

the neurons that are distant from the electrode. The outputs are called E1∗, E2∗, E3∗

and E4∗.

• Step 3: ICA. We apply ICA on E1∗, E2∗, E3∗ and E4∗. The resulting ICs,

called IC1∗, IC2∗, IC3∗ and IC4∗, are shown on figure 7 for the simulated signal and

on figure 8 for the real signal. To demonstrate the results as before, we plot the spikes

in the feature vector space (second column) and output of the greedy sorting algorithm

from [23] (third column). As the number of the sources is now lower, the ICA algorithm

performed a little better and a little bigger difference between the clusters is visible, in

comparison with the results from figures 5 and 6.
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Figure 6. Result of applying ICA on the recording shown on figure 3. The four

ICs are shown in the first column (5000 samples). 2D feature vector space with the

spikes extracted from the ICs are in the second column. The plots in the third column

display the results of applying the algorithm from [23] on the vector space from the

second column. The red rectangle marks the IC that has the largest spike dynamics.

• Step 4: Find which IC is the most suitable for the further processing.

In the further steps we will need only one IC. Thus in this step we want to chose the

one which contains well preserved spike waveforms. It is likely that a good choice would

be the one for which the detected spikes have the largest dynamics. We calculate the

spike dynamics in the same way as in the step 2. For the further processing we chose

the IC which has the largest value of the dynamics and call it IC∗.

• Condition 1: The IC∗ contains at least two clusters?

• If Condition 1 is true: Remove spikes from the cluster which is the

furthest from the cluster that contains the spikes with the largest amplitudes;

TrackOneNeuron=true. In this step we have to apply the spike sorting algorithm

proposed in [23], this time it is not only for demonstration, but to find which spikes

we can remove from the signal. For each cluster we compute the spike dynamics as

the average of peak-to-peak amplitudes from the first G spikes. The spikes that have

been classified in the cluster furthest from the one with the largest spike dynamics are

now removed from E1∗, E2∗, E3∗ and E4∗. Next, the algorithm goes back to step
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Figure 7. Result of applying ICA on the simulated recording after all but spikes was

removed from the signal (set to zero) - 5000 samples are displayed. The four ICs are

shown in the first column. 2D feature vector spaces with the spikes extracted from

the ICs are in the second column. The plots in the third column display the results

of applying the algorithm from [23] on the vector space from the second column.

IC that has been chosen for the further processing is marked with a red rectangle.

The black triangle, with the tip pointing up, marks the center of the cluster that

contains the spikes with the largest dynamics. Opposite, the black triangle with the

tip pointing down marks the center of the cluster that contains the spikes with the

smallest dynamics.

3. We show on figures 9 and 10 the outputs after applying ICA on the new E1∗, E2∗,

E3∗ and E4∗ for the simulated and the real recording respectively. From the simulated

recording (figure 9) we have detected only one cluster on each of four IC. We use the

same criterion as before to chose which IC we should keep. Since the condition 1 is

now false, the algorithm will continue to the condition 2. Notice that almost all the

remaining spikes are fired by the same neuron. From the real recording (figure 10) we

have detected more than one cluster on IC1∗ and IC2∗; for the further processing we

will use IC1∗. The cluster that will be removed is the one labeled with a black triangle

whose tip is pointing down. After that cluster is removed, spikes from the neuron

recorded intracellularly will be almost the only one remaining in the signal. Only a
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Figure 8. Result of applying ICA on the real recording after all but spikes was

removed from the signal (set to zero) - 5000 samples are displayed. The four ICs are

shown in the first column. 2D feature vector spaces with the spikes extracted from

the ICs are in the second column. The plots in the third column display the results

of applying the algorithm from [23] on the vector space from the second column. All

the labels are the same as for figure 7.

few spikes from the intracellularly recorded neuron were removed. We set in this step

the flag TrackOneNeuron, in order to track if the algorithm converged just after a

new neuron is separated, what would indicate generally that no more neurons can be

separated from the given recording.

• If Condition 1 is false: Condition 2: TrackOneNeuron = true?

• If Condition 2 is true: Neuron(i)=IC∗; Remove the spikes fired by

the ith neuron; Set: i = i+ 1. If TrackOneNeuron is true that means that we have

detected more than one cluster in the previous iteration so now, since only one cluster is

left (the condition 1 was false), we assume that the remaining spikes are coming from

the same neuron. This is the ith separated neuron. To continue our iterative algorithm

we set to zero all the samples from the recording (from E1, E2, E3 and E4) when any

of the already detected neurons (Neuron(1), Neuron(2),...,Neuron(i)) was active and

go back to step 1. By doing this we removed an important high amplitude sources.

• If Condition 2 is false: Find the overlapped spikes and update
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Figure 9. Result of applying ICA on the simulated recording, after removing (setting

to zero) of the low amplitude spikes (see figure 7) from E1∗, E2∗, E3∗ and E4∗ (5000

samples). The four ICs are shown in the first column. 2D feature vector spaces with

the spikes extracted from the ICs are in the second column. The plots in the third

column display the results of applying the algorithm from [23] on the vector spaces

from the second column. All the labels are the same as for figure 7.

Neuron. This is the last step of the proposed algorithm. We address now a very

important problem in spike sorting: simultaneous firing. The proposed deflation based

algorithm is obviously not able to detect simultaneous firing, since once a spike has been

sorted the corresponding part of the signal is set to zero for the following iterations.

Thus, if two or more neurons fired at approximately the same time, the spike will be

assigned only to one of these neurons. To find the simultaneously fired spikes we analyze

the activity of the sorted neurons two by two, for all possible pairs of the detected

neurons. When analyzing the activity of each pair, we keep in the recording only the

segments when one of the neurons in the pair fired a spike. Each such recording, call it
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Figure 10. Result of applying ICA on the real recording, after removing (setting to

zero) of the low amplitude spikes (see figure 8) from E1∗, E2∗, E3∗ and E4∗ (5000

samples). The four ICs are shown in the first column. 2D feature vector spaces with

the spikes extracted from the ICs are in the second column. The plots in the third

column display the results of applying the algorithm from [23] on the vector spaces

from the second column. All the labels are the same as for figure 7.

s̃i,j, where i = 1, ..., S − 1 and j = i+ 1, ..., S can be expressed‡ as:

s̃i,j = si + sj + (1− δ(|si|+ |sj|))
S∑

k=1,k 6=i,j

sk,

where S is the number of sorted neurons and where δ(u) takes the value 1 for u = 0

and 0 elsewhere. Notice that we use absolute values of si and sj to exclude the pairs i, j

such that si = −sj 6= 0. It is obvious that most of the energy in any s̃i,j comes

from si and sj. Thus, applying ICA on s̃i,j leads to the separation of si and sj:

one IC will represent mostly si, another one sj and the remaining ICs will represent

(1 − δ(|si| + |sj|))
∑S

k=1,k 6=i,j sk. Since the activity of si and sj will be separated, any

‡ For notational simplicity, we drop the time argument and write sk instead of sk(t) for the recorded

activity of neuron #k. Note that sk(t) is a sparse signal: We have sk(t) = 0 except for intervals

[τ, τ +T ] when an action potential is emitted from time τ . The length T of the interval corresponds to

the duration of an action potential.
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spikes fired simultaneously by these two neurons should be visible on both of the ICs

that represent the activity of these neurons. We demonstrate this by an example shown

in figure 11. In the first two rows we plot part of the activity of two simulated neurons

that fired three spikes simultaneously. The next four plots show four channels of the

simulated recording. The activity of the two neurons is visible, but hard to recognize,

especially to separate. We remove from the four channels everything but the segments

when any of the two neurons was active and apply ICA on such sparse signal. The

result of ICA is shown on four bottom plots on the same figure. Since this is the last

step of the proposed algorithm, we already have the estimation of the activity of all the

separated neurons. Thus, it is easy to find, from the result of ICA, that in this example

IC2 represents the activity of Neuron 1 and that IC3 represents the activity of Neuron

2. All the overlapped spikes are visible on both IC2 and IC3. They are now very easy

to localize and to update the detected activity of the separated neurons.

4. Results

We apply the algorithm described in the previous section on 5 real recordings and

on 10 simulated recordings. The results are given in tables 1 and 2. There are four

key-operations in the proposed algorithm: 1) removing of the noise (Noise rem.); 2)

removing of the spikes from the clusters far from the one that contains the spikes which

show the largest average peak-to-peak amplitude (Clus. rem.); 3) removing of the spikes

from already separated neurons (Sorted rem); 4) detection of the overlapped spikes

(Over. det.). We analyze contribution of each of these steps by simply comparing the

proposed algorithm to the algorithms which perform none, only one or more of these

steps. Namely, we compare the proposed algorithm with the following:

(i) Only the spike sorting algorithm, without performing ICA (Spike sor.).

(ii) ICA and spike sorting

(iii) ICA, spike sorting and removal of the spikes from already separated neurons.

(iv) As 3, but with removal of everything but spikes (step 2 of the algorithm).

(v) As 4, but with removal of clusters that generally contain spikes small in the

amplitude (clusters which are far from the one that contains the spikes which show

the largest average peak-to-peak amplitude).

The proposed algorithm is actually an extension of the algorithm (v), with a sequence

for the detection of the overlapped spikes.

We express the results through two parameters: 1) sorting accuracy (SA(%)) which

we define as ratio of accurately sorted spikes and total number of detected spikes and

2) sorting detection (SD(%)) which we define as ratio of accurately sorted spikes and

total number of spikes in the signal.
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Figure 11. The first two plots show part of the activity of the two simulated neurons.

The following four plots show the part of the four-channel simulated recording. The

four plots at the bottom show the results of applying ICA on the four channels. Before

applying ICA the recording was modified by setting to zero all but the segments

where one of the two neurons was active. It appears that the activity of Neuron 1

is represented by IC3 and the activity of Neuron 2 is represented by IC1. The three

arrows on the top of the figure point out the overlapped spikes from the two neurons.

All of the three overlapped spikes are successfully sorted.

4.1. Results of the spike sorting on the real signal

For the real recordings we can quantify the results only for one neuron per recording,

the one which was simultaneously recorded intracellularly. Thus SA and SD are very
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Table 1. Comparison of different spike sorting algorithms for 5 real recordings, in

terms of sorting accuracy (SA) and sorting detection (SD).

Spike sorting Spike sorting Spike sorting Spike sorting Spike sorting Spike sorting

ICA ICA ICA ICA ICA

Sorted rem. Sorted rem. Sorted rem. Sorted rem.

Noise rem. Noise rem. Noise rem.

Clus. rem. Clus. rem.

Recording Over. det.

SA SD SA SD SA SD SA SD SA SD SA SD

% % % % % % % % % % % %

d561102 79 64 83 93 83 93 90 92 93 92 93 92

d561103 32 97 48 95 52 85 83 83 89 80 89 86

d561104 21 98 33 96 49 88 75 87 83 84 84 89

d533101 73 33 64 74 64 74 78 72 80 73 80 73

d533102 64 48 80 87 80 87 88 85 92 82 92 83

simple to calculate: SA(%) = 100 ∗C/(F +C) and SD(%) = 100 ∗C/T . Here C is the

largest number of the spikes from the neuron recorded intracellularly, which are sorted

into the same cluster (correct detections). F is the number of spikes from other neurons

which are wrongly placed into the same cluster for which C is calculated (false spikes).

T is the total number of spikes fired by the intracellularly recorded neuron.

In table 1 and on figure 12 we give SA and SD for each of the real recordings.

Names of the recordings are kept from [11]. Durations of the recordings were from 60

to 120 seconds with the sampling frequency of 10kHz for some recordings and 20kHz

for others. The total number of the detected spikes per recording was from 800 to 2000,

while the number of the spikes fired by the intracellularly recorded neuron was from 200

to 500.

The results suggest that the proposed approach improves significantly the sorting

results in comparison with the basic spike sorting algorithm and the ICA algorithm.

It generally decreases the number of falsely sorted spikes and increases the number of

spikes that are left unsorted (missed spikes). As we mentioned in the introduction, in

the trade-off between the number of missed spikes and the number of false spikes it is

generally highly preferable to have more missed spikes.

When the intracellularly recorded neuron is sorted first (recordings d561102,

d533101 and d533102) there is no benefit from the removal of the spikes from already

sorted neurons (results in the third and the fourth column of table 1 are the same in

such cases). Also, for those recordings contribution from detection of the overlapped

spikes is very small, since most of the overlapped spikes were initially correctly assigned

to the intracellularly recorded neuron (results in the last two columns of table 1 are the

same/similar in such cases).

4.2. Results of the spike sorting on the simulated signal

Using simulated recordings we can quantify the results for more than one neuron and

also we can easily perform several simulations and average their results. For each
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Figure 12. Comparison of different spike sorting algorithms for 5 real recordings, in

terms of sorting accuracy (SA) and sorting detection (SD).

simulated recording we set the maximum number of outer loops (sorted neurons) to

6. However, in some situations (especially for simpler methods like the basic spike

sorting and combination of the basic spike sorting with ICA) less than 6 neurons have

been found.

Here we do a computation of SA and SD in a slightly different way than for the

real signal. We compute the average S̄A and the average S̄D over 10 simulations for

each jth sorted neuron, where j goes from 1 to 6, which is the maximum number of the

sorted neurons:

S̄Aj =

∑Nj

i=1 SAi,j

Nj

, S̄Dj =

∑Nj

i=1 SDi,j

Nj

where Nj is the number of iterations in which at least j neurons were detected. We give

also a standard deviation (sd) of S̄A and S̄D in order to quantify the robustness of each

algorithm.

The results are given in table 2 and on figure 13. Even though the results vary

significantly from neuron to neuron (spikes from the neurons close to the electrode are,

as expected, sorted much more accurately that from the more distant ones), we can say

again that overall each step of the proposed algorithm leads to significant improvement

of the final results.

An important property of the proposed algorithm is that increasing SA is paid by

decreasing SD as well, as is even more evident than on the figure 12. However, the

last step (detection of overlapped spikes) increases SD, especially as j increases, since

for the larger j (more distant neurons) many spikes were not detected because they

overlapped spikes from the closer neurons (which correspond to the lower j).

The standard deviation is larger for the neurons further from the electrode and tends

to decrease as a more complex algorithm is used. The standard deviation illustrates the
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Table 2. Comparison of different spike sorting algorithms in terms of average sorting

accuracy (S̄A), average sorting detection (S̄D) and their standard deviations (sd) for

the first 6 sorted neurons.

Spike sorting Spike sorting Spike sorting Spike sorting Spike sorting Spike sorting

ICA ICA ICA ICA ICA

Sorted rem. Sorted rem. Sorted rem. Sorted rem.

Noise rem. Noise rem. Noise rem.

Clus. rem. Clus. rem.

j Over. det.

S̄Asd S̄Dsd N S̄Asd S̄Dsd N S̄Asd S̄Dsd N S̄Asd S̄Dsd N S̄Asd S̄Dsd N S̄Asd S̄Dsd N

% % % % % % % % % % % %

1 18 15 97 5 10 68 12 93 9 10 76 10 91 7 10 85 8 90 7 10 88 6 87 6 10 88 6 88 6 10

2 45 7 80 7 2 62 13 90 10 10 74 11 86 8 10 84 8 84 7 10 86 7 81 6 10 86 7 84 6 10

3 0 0 0 0 0 54 14 85 18 5 69 13 79 11 10 78 9 78 10 10 81 7 75 8 10 82 7 80 8 10

4 0 0 0 0 0 44 16 82 12 2 60 15 77 12 10 72 11 76 12 10 78 9 72 11 10 79 9 76 10 10

5 0 0 0 0 0 0 0 0 0 0 54 16 74 16 9 68 14 72 15 10 74 11 71 11 10 75 11 74 11 10

6 0 0 0 0 0 0 0 0 0 0 39 17 70 18 7 65 15 67 17 9 72 11 66 12 9 73 11 70 12 9

stability of the results, e.g., for distant neurons sometimes the sorting results are good,

but sometimes they are quite bad, indicated by larger standard deviation. On the other

hand results for neurons very close to the electrode are always relatively good, thus the

standard deviation of the results is lower.
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neuron  #1 neuron  #2 neuron  #3 neuron  #4 neuron  #5 neuron  #6

Figure 13. Comparison of different spike sorting algorithms in terms of average sorting

accuracy (S̄A) and average sorting detection (S̄D) for the first 6 sorted neurons. The

length of the perpendicular lines corresponds with the standard deviation of S̄A or S̄D

for the particular algorithm and the particular neuron. The neurons are labeled with

respect to their minimum distance to the electrodes.
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5. Discussion

In this paper we proposed a new algorithm for spike sorting from multi-channel

recordings. We use iterative application of ICA and deflation to sort the spikes. Activity

at the recording sites is mutually highly dependant, while the activity of single neurons

is mutually much less dependant. This naturally suggests application of ICA to separate

the neural mixture.

A condition that the number of sensors should be equal or greater than the number

of sources appears as the major problem and limitation for application of ICA on neural

recordings. The proposed algorithm uses deflation to eliminate or at least to reduce the

contribution of different sources. In particular, we remove: 1) everything but spikes,

2) spikes which have already been sorted and 3) spikes which belong to the clusters far

from the one which contains the spikes of the largest average peak-to-peak amplitude.

Such deflation would result in inability of the algorithm to detect spikes fired by

different neurons at approximately the same time - simultaneous firing. Only one spike

per simultaneous firing could be detected. The solution to this problem is implemented

as the last step of the proposed algorithm. We take two of the separated neurons and

keep in the recording only the segments in which one of these two neurons was active.

Then we apply ICA on such sparse signal. Since we have only two high-energy sources

in the signal, ICA will, in most situations, be able to separate the activity of the two

neurons, including simultaneously fired spikes. We repeat this procedure for all the

possible pairs of the separated neurons.

The results given in tables 1 and 2 suggest that each step of the algorithm improves

the final sorting results. Overall, the algorithm significantly increases the number of

correctly sorted spikes while increasing the number of missed spikes by a relatively

small amount. ICA alone was not sufficient to obtain reliable results. It is important

to mention that if a recording is very noisy, the proposed algorithm will not be able to

detect any cluster.

In some particular cases, such as multi-electrode recordings from peripheral nerve

interfaces, the spike waveforms can arrive to the different recording sites with time delays

up to 0.1ms [33], [34]. FastICA algorithm is not adapted for such mixtures. In its present

form, the proposed algorithm is therefore not suitable for those cases. Nonetheless, the

proposed deflation methodology would still be useful if FastICA is replaced by some

convolutive version of ICA. In the convolutive case [35], [36], the recorded mixture is

described by an FIR filter model of the mixing process. Such model could be beneficial

in this particular case of spike sorting for two reasons: 1) Ability to account for different

delays of the source components; 2) Ability to account for echoes coming from different

parts of a nerve around the electrode.

As spike features we used simply positive and negative peak amplitude. However,

we could use practically any feature extraction method. Methods that can make the

difference between the spikes fired by different neurons more evident will of course lead

to better performance of the proposed algorithm, in terms of the number of sorted
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neurons and the sorting accuracy. Nevertheless, no matter how good the chosen feature

extraction technique is, the proposed algorithm should always improve the final sorting

results when they are compared to the results obtained with only ICA algorithm. Finally

we can say that the obtained results suggest that the proposed algorithm gives better

sorting results as compared to ICA.
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separation as determined by simultaneous intracellular and extracellular measurements. Journal

of Neurophysiology, 84:401–414, Jul 2000.

[31] Pettersen K.H., Linden H., Dale A.M., and Einevoll G.T. Extracellular spikes and current-source

density. in Handbook of Neural Activity Measurement, edited by R. Brette and A. Destexhe,

Cambridge, 2012.

[32] M. Mboup. A Volterra filter for neuronal spike detection. Research report, INRIA, http://hal

inria fr/inria-00347048/en/, 2008.

[33] L. Citi, J. Carpaneto, K. Yoshida, K.P. Hoffmann, K.P. Koch, P. Dario, and S. Micera.

Characterization of tflife neural response for the control of a cybernetic hand. In Biomedical

Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International

Conference on, pages 477 –482, 2006.



Neural spike sorting using iterative ICA and deflation based approach 24

[34] Citi L., Carpaneto J., Yoshida K., Hoffmann K.P., Koch K.P., Dario P., and Micera S. On the use

of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded

using intraneural electrodes. Journal of Neuroscience Methods, 172(2):294 – 302, 2008.

[35] J. Thomas, Y. Deville, and S. Hosseini. Time-domain fast fixed-point algorithms for convolutive

ICA. Signal Processing Letters, IEEE, 13(4):228 – 231, 2006.

[36] M. Dyrholm, S. Makeig, and L. K. Hansen. Model selection for convolutive ICA with an application

to spatio-temporal analysis of EEG. Neural Computation, 2006.


	Introduction
	Simulation settings
	Simulated neural recordings
	Real neural recording

	The algorithm description
	Results
	Results of the spike sorting on the real signal
	Results of the spike sorting on the simulated signal

	Discussion

