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Abstract. In this paper we propose a simple and straightforward algorithm for neural

spike sorting. The algorithm is based on the observation that the distribution of a

neural signal largely deviates from the uniform distribution and is rather unimodal.

The detected spikes to be sorted are first processed with some feature extraction

technique, such as PCA, and then represented in a space with reduced dimension

by keeping only a few most important features. The resulting space is next filtered in

order to emphasis the differences between the centers and the borders of the clusters.

Using some prior knowledge on the lowest level activity of a neuron, as e.g. the minimal

firing rate, we find the number of clusters and the center of each cluster. The spikes

are then sorted using a simple greedy algorithm which grabs the nearest neighbors.

We have tested the proposed algorithm on real extracellular recordings and used the

simultaneous intracellular recordings to verify the results of the sorting. The results

suggest that the algorithm is robust and reliable and it compares favorably with the

state-of-the-art approaches. The proposed algorithm tends to be conservative, it is

simple to implement and is thus suitable for both research and clinical applications as

an interesting alternative to the more sophisticated approaches.
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1. Introduction

1.1. Importance of spike sorting

Recording the activity of neurons is typically done with electrodes placed in the

extracellular space. An extracellular electrode records a mixture of activities of a vast

number of neurons around. Separating the activity of individual neurons from the

mixture is the so called spike sorting problem.

All the neurons fire morphologically practically the same action potentials. Due to

the propagation and the velocity effects, the spikes recorded by extracellular electrodes

usually have different shapes and amplitudes if they are coming from different neurons

[1]. This fact is used as a base for the development of different spike sorting algorithms

(see [2] and [3] and the references therein for a tutorial presentation). In spike sorting

it is not necessary to recover the original waveforms of the action potentials, but only

to find which neuron fired which of the detected spikes.

1.2. Common approach

We consider to have only a single-channel recording, but the spike sorting algorithms

that are commonly applied on single channel recordings are applicable on multi-channel

recordings as well, usually as a combination with some Source Separation methods (for

examples see [4] and [5]). Say we have a single-channel extracellular neural recording

that consists of N samples and let each spike has a duration of M samples. A generic

spike sorting algorithm consists of several steps:

(i) Spike detection: The goal of spike detection is to extract from the recorded signal

all the spikes fired by the neurons close to the electrode. For recordings with good

Signal to Noise Ratio (SNR) this is usually achieved by a simple thresholding [6].

When the SNR is not good enough, different spike detection algorithms can be

applied, e.g : [7], [8] and [9]. The result of this step is a M ×K-matrix, where K is

the number of the detected spikes.

(ii) Feature extraction: Principal Component Analysis (PCA) [10], wavelet

decomposition [11], [12] or some other techniques (e.g. [13], [14] and [15]) are

commonly used to reduce the dimensionality of the M × K-matrix by extracting

the most important features of the detected spikes. The result is a new matrix of

reduced dimension, L ×K, where L < M is the number of extracted features per

spike.

(iii) Finding the number of clusters (the number of neurons close to the

electrode) i.e. model selection: K detected spikes could be fired by one

or more neurons. This step is very often done manually: after observing the

L × K matrix (often, L is equal to 1, 2 or 3 so the matrix can be visualized),

the user chooses the number of clusters. But some general purpose parametric

model selection algorithms [16] based on penalization such as Bayesian Information
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Criterion (BIC) are also proposed as more efficient (see examples in [17], [18]

and [6]). The result of this step is the estimated number of different neurons,

call it P , that fired the K detected spikes.

(iv) Sorting: Finally, the K detected spikes are sorted into P clusters. Again general

purpose techniques, such as K-means [4] or Expectation Maximization (EM) [19],

are usually applied [2].

Some other, very different approaches, also exist, (e.g. [20]), but they are mostly

applicable only in special cases when some specific prior knowledge (e.g. interspike

interval histogram) is available. Because such knowledge is available only for some

special types of neurons and particular tissues, we will not analyze those methods here,

since we aim to address the spike sorting problem in its general form.

1.3. Problems of spike sorting

Due to a typically unbalanced structure of the clusters, finding their number and sorting

the spikes into them (steps 3 and 4) are usually very difficult. The unbalanced structure

is mainly caused by two reasons: 1) The firing rates of different neurons are usually very

different (up to hundred times) 2) The distances between the centers of the clusters can

also be very different.

To illustrate the difficulty of model selection in neural recordings let us discuss

on the implementation of BIC. For each realistic number of clusters (for each different

model) we apply EM/k-means on the data and compute the likelihood of the model from

the output of EM/k-means. Since increasing the number of clusters naturally increases

the likelihood, it is necessary to penalize the increase of the number of clusters. Finding

a correct penalization is particularly difficult since it is usually chosen only once for one

type of recordings while the morphology of the feature space can vary significantly from

recording to recording.

On the other side the accuracy of manual determination of the number of clusters

is also not satisfying [21]. Moreover manual approach is very expensive and hard to

perform on large sets of data.

An example of bad results when general purpose clustering methods are applied

is shown on figure 1. We used artificial neural data to be able to verify the clustering

results. The dimensionality of the spikes is reduced to 2, using PCA. The first plot

on the figure 1 displays the original clusters, corresponding to three different neurons

(spikes coming from the same neuron are marked with the same shape and color). For

model selection we used BIC, as described above, which is known to often overestimate

the number of clusters, and obtained the result that the data contain 6 clusters. The

results of clustering in 6 clusters with k-means are shown on the second plot on figure

1 and with EM on the last, third plot.

Even if the number of clusters is determined correctly, sorting the spikes into the

corresponding clusters is another very difficult problem for neural data. The principal

reason for this is that neural data can not be accurately clustered based only on the
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Figure 1. Sorting example on simulated neural data with combination of BIC with

k-means and EM.

distance to the center of a cluster, now this is the most important parameter among the

parametric clustering methods. This is illustrated on figure 2 where the data consisting

of only three clusters were used. The correct number of clusters was given to both

k-means and EM methods, but still the sorting results are not as desired.
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Figure 2. Sorting example on simulated neural data with using k-means and EM

when the number of clusters is priori fixed to 3.

The results are very bad since both methods are not adapted for such data. Single

clusters are often divided into two or more. Elements that do not belong to any of the

three clusters are often assigned to one of them, instead of being sorted as separate

clusters that would later be neglected due to a too small number of members. Finally,

we note that although such approaches may be very efficient in general, their application

on neural data can lead to bad sorting results.

1.4. Brief description of the proposed method

In this paper we propose a new method for finding the number of neurons that fired

the detected spikes and for associating each of the spikes with a corresponding neuron

(steps 3 and 4 above). We do not address questions of e.g. spike detection or feature

extraction, but to demonstrate our results we will use techniques commonly applied for

these problems. The proposed method is non-parametric. It is designed especially for

neural recordings, with the aim of high robustness with respect to mis-classification.

The method is based on two assumptions on the recorded signal:

a) A lower bound on the number of spikes fired by a single neuron during the recording
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time is known. This is a very realistic assumption since neurons (especially those whose

activity we actually want to detect) fire usually at least once per second.

b) The recorded signal has a unimodal distribution. This is easy to verify experimentally,

but it can also be shown theoretically upon invoking the central limit theorem.

The basic idea behind the proposed method is that most of the spikes fired by the

same neuron, after projection on feature extraction vectors, will be concentrated around

the center of the corresponding cluster. As we go to the edges of each cluster the density

of spikes decreases. Smoothing the vector space that contains the K detected spikes

(represented in L-dimensions) with a moving average filter allows one to emphasis the

differences between clusters and leads to easy non-supervised identification of the centers

of the clusters. To assign the spikes to their corresponding clusters we use a simple

greedy approach: each cluster is initialized by its singleton center and the clustering is

performed by classifying one spike at a time, in such a way that if an element belongs

to a cluster then so is its nearest neighbor. This procedure leads to a robust solution,

which is not sensitive to unbalanced sizes of clusters.

The property of unimodal distribution of neural data is exploited in several neural

spike sorting algorithms. In [22] it has been used to find spike templates which are

then correlated with all the detected spikes in order to emphasis the differences between

clusters. Such template matching can be used as a pre-processing step of the method

proposed in this paper, since template matching can generally improve the results

obtained by feature extraction methods. Different peak-valley search algorithms, such

as histogram peak count, are also based on the distributional properties of neural data

(see e.g. [23] or the implementation in a commercial system described in [24]). Typically,

these algorithms sort all the spikes at once by estimating the morphology of the area with

lower spike density, giving the borders between clusters explicitly. The implementation

can thus be very complex, especially in higher dimensional space. Also, when more than

two clusters exist, the vector space becomes very difficult to analyze with such methods.

By clustering one spike at a time, where the borders are given implicitly, with only the

filter length and height to set, the proposed method provides a simple and yet robust

alternative.

1.5. Paper organization

A detailed description of the method is given in section 2. We apply the method on

extracellular recordings and use the simultaneous intracellular recordings to verify the

results of the sorting for the neuron recorded intracellularly. Such way of validation

represents another contribution of this paper, since spike sorting methods are typically

validated only on the simulated signal. In section 3 we describe the signal that we use

for the validation, which is available online [1], give all the simulation parameters and

the results of the comparison with the state-of-the-art approaches. Conclusions and

some future perspectives for development of this method are given in section 4.
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2. Methodology

In this section we will describe our method step-by-step. For the demonstration we

use a simulated signal for which the actual activity of each neuron is known. We can

therefore display the results of the proposed method. As we said in the previous section,

we assume to have an N -samples long single-channel extracellular neural recording. Our

goal is to sort the firing patterns of as many individual neurons as possible (for single-

channel recordings this usually means activities of two to three neurons closest to the

electrode). Example of simulated extracellular recording is displayed on figure 3. We

labeled the spikes that come from different neurons with different symbols.
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Figure 3. Simulated extracellular neural recording with marked spike locations from

three neurons closest to the virtual electrode.

2.1. Preprocessing: Spike detection and feature extraction

The first preprocessing step is the spike detection. Depending on the SNR, setting a

threshold directly on the extracellular recording or applying some more advanced spike

detection technique can be considered.

Assume that we detected K spikes that come from a total of P neurons (for us

P is unknown). To each detected segment xk, k = 1, · · · , K, we associate one neuron,

say neuron #jk, 1 6 jk 6 P . This is, among all neurons which are active during

that segment, the closest one to the electrode. We can then write each segment as:

xk = wjk + nk, where wjk is the spike waveform coming from the associated neuron and

nk is the contribution of all remaining neurons that were active during the detected

segment xk. Figure 4 shows the first 5 segments xk extracted from the signal on figure

3 and displays them as a sum of wjk and nk.

Since each extracted segment has the same length of M samples, all the segments

can be given in M × K matrix. So now we have each detected spike described by M

samples (M is usually between 50 and 100, depending on the spike duration, which

is usually about 1ms, and the sampling period). But each spike can be described by

e.g. its amplitude, or its minimal and maximal value. Using only these information

it can be easier to find which spikes are fired by the same neuron than by observing

all the M samples. Generally speaking, we can try to extract some features that give

a compact description of the spikes. There are many techniques for feature extraction

that try to extract one or more of the most important features. In this paper we will
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Figure 4. First 5 spikes from figure 3 shown as a sum of original spike waveforms and

noise. Each spike is then projected on the first two principle components. The last

column shows the values of these projections in PC1 vs PC2 basis.

use probably the most popular one, PCA, but also some other techniques could be

used (good results are reported e.g. when wavelet decomposition is used [11] and new

techniques for feature extraction in neural recordings are under constant development see

e.g. [25]). The algorithm we propose in this paper is compatible with all of these feature

extraction methods. PCA takes the variability in the data as the most interesting feature

and projects the data in such a way that the first basis vector (principle component)

has the variance as high as possible. Each succeeding principle component in turn

has the highest variance under the constraint that it is orthogonal to the preceding

components. We project our M×K matrix on L principal components. This projection

results in new L×K matrix. For the simplicity of this description, we will assume the

choice of L = 2 (only two features are extracted from each detected segment) and

call the corresponding matrix D2×K . An example is shown on figure 4 where the last

column gives the projection of xk on the first two principle components. Notice that the

projections are similar for spikes coming from a same neuron. All the extracted spikes

projected on the first two principal components (all the elements of matrix D2×K) are

shown on the left plot on figure 5. Same as for figure 1, the projections of the spikes

that belong to different neurons are marked with different symbols and colors.

2.2. Unimodal distribution

Now having D2×K , we need to find out how many neurons fired the spikes we detected

and to associate each spike to one of the neurons.

To find the centers of the clusters we will first filter the 2D vector space. One key

point of the method is to assume that the maxima of the filter’s output correspond to

the centers of the clusters. Such assumption obviously implies that each cluster has a
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Figure 5. The left-hand side plot shows the initial data set (same as for figure 1). The

right-hand side plot shows sorting results with the proposed method. The elements of

each found cluster are labeled with symbols of the same shape/color.

unimodal shape (in L dimensional space) and also that the centers are far enough so

that the unimodal shape is not destroyed by an overlapping of clusters. If this is not

the case we would find multiple centers in a single cluster. We will now discuss whether

these properties are realistic for neural data.

The application of PCA on each detected segment xk can be written as a scalar

product between xk and, in our case, only the first two principal components (PC1 and

PC2):

〈xk, PCi〉 = 〈wjk , PCi〉+ 〈nk, PCi〉 = αjk,i + βk,i, i = 1, 2.

Each spike waveform wjk , for the same neuron j, will be transformed with PCA into

exactly the same point in the 2D vector space (αjk,i). As we have mentioned earlier,

we consider that these points will be mutually distant enough so that the dispersive

effect of the noise cannot induce any overlapping between clusters. So the success in

finding the centers of the clusters depends on the difference between the spikes from the

neurons we want to sort and the noise level. When performing a recording it is generally

possible to influence on both of these parameters by adjusting the electrode position.

Considering the noise part, nk is actually a weighted sum of activities from a very

large number of neurons. Even though the distribution of the activity of each individual

neuron is obviously not unimodal, the distribution of the sum of a large number of these

activities tends to be unimodal. This stems from the central limit theorem, assuming

that the spiking activity of each neuron is independent to the others. Recall that the

many spike sorting algorithms that we have mentioned in the introduction also assume

the unimodal property. Moreover, this property is simple to verify experimentally by

observing the cumulative distribution function (CDF) of a neural recording. We plot

the empirical CDF of a neural recording and a Gaussian CDF as a reference on figure

6. The neural recording has unimodal distribution which is in fact close to Gaussian

(notice that a proximity to the Gaussian distribution is not required by the proposed

algorithm).
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Figure 6. Gaussian CDF and empirical CDF of a neural recording.

Since PCA is a linear transformation βk,1 and βk,2 are just linear combinations of

the elements of nk, so the distribution of βk,1 and βk,2 is of the same type as that of nk.

Finally, depending on the conditions mentioned above, we can expect that the

density of (〈xk, PC1〉, 〈xk, PC2〉) will have a single maximum for a single cluster. Such

morphology suggests the idea of sorting all the spikes into their corresponding clusters

using a simple greedy algorithm which grabs the nearest neighbors: since the density

of spikes decreases as we go further from the maximum, gathering spikes to the same

cluster using the criteria of their proximity to nearest neighbor seems to be a simple

solution. This conclusion is on the basis of the proposed spike sorting algorithm.

2.3. Finding the centers of the clusters

In this subsection we will describe the algorithm for finding the centers of the clusters.

According to the previous subsection this amounts to find the areas of the highest density

of the points (〈xk, PC1〉, 〈xk, PC2〉).
For this, we first assume that each active neuron fires at least, say, G spikes during

the observation window. Most of the neurons fire at least once per second, so depending

on the duration of the recording we can easily calculate G. Now knowing G, we construct

a moving average filter that will smooth the obtained 2D K-elements space without

merging different clusters. We assume that the 2D space is normalized so that we

can consider a square domain for the filter’s support. The filter should emphasis the

differences between the centers and the border of each cluster. Its length (height), call

it R, should be adjusted in a way that the filter window does not contain more than

e.g. G/2 elements. In subsection 3.3 we will show that in practical situations R can be

taken from a large range of values without affecting the clustering results. The result of

filtering the data from figure 5 is shown on figure 7. Call the resulting matrix Dfilt
2×K . The

centers of the clusters in the data matrix Dfilt
2×K are easily found: any local maximum

1) which is centered in a domain at least larger than the filter window and 2) which is
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global in that domain, is a center of a cluster. In such way we are again sure that two

clusters will not be merged into one. The centers found in this way are labeled with

black dots on figure 7. The figure demonstrates that one center is found for each of

the three big clusters. Several centers are found in the area distant from the biggest

clusters, these actually represent the activities of neurons whose spikes are only partially

detected. As we will see in the next subsection, since only a small number of spikes will

be assigned to these clusters (less than G) they will be neglected and the spikes assigned

to them left unsorted.
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Figure 7. Filtered vector space from figure 5. Black dots denote clusters maxima.

2.4. Associating each spike with the corresponding center

After finding the centers of the clusters, we have to associate each of the spikes with

one of the centers.

To cluster the data we propose a greedy algorithm close in spirit to the

agglomerative hierarchical clustering [26]. In spike sorting the agglomerative hierarchical

clustering has already been considered in [27] where single spikes are first sorted into an

overly large number of clusters and after the clusters are progressively aggregated into

a minimal set of clusters. Our approach is close in spirit, but yet significantly different

from hierarchical clustering since we sort spikes one by one, instead of merging clusters.

Thus we avoid the difficulty of devising a merging criterion for the clusters. Hence, the

proposed approach is simpler and it can be implemented in an unsupervised way. We

will exploit the fact that we know the centers of the clusters and that they are actually

points of the highest density. Our basic statement is that if an element belongs to a

given cluster, then its nearest neighbor also belongs to the same cluster. Throughout,

we use the Euclidian distance.

Let x̃k be the projection of xk on the L feature extraction vectors: x̃k =

(〈xk, PC1〉, 〈xk, PC2〉) and call D the set of all x̃k. Let ci, i = 1, . . . , P denote the centers
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of the clusters, in an L dimensional space. The pseudocode 1 describes the algorithm

for the construction of the cluster Ci that corresponds with the center ci. Therein, we

use the notation dist for dist(x,C) = miny∈C ‖x − y‖2. For the initialization, we set

Ci = {ci} for all clusters.

Algorithm 1 Proposed method for associating spikes with corresponding centers

while D not empty do

for i = 1 to P do

x̃min
i = arg min

x̃∈D
dist(x̃,Ci) For each cluster Ci, find the closest element

x̃min
i of D

end for

j = arg min
16i6P

dist(x̃min
i ,Ci) Find which cluster Ci to update

Cj ← Cj

⋃
x̃min
j Add the spike to the corresponding cluster

D← D\x̃min
j Remove the sorted spike from the set D

end while

The right-hand side plot on figure 5 was obtained by applying this algorithm, using

the centers obtained in the previous step. Comparing with the left-hand side plot

on figure 5, we can conclude that the proposed algorithm resulted in a quite good

reconstruction of the three clusters. Several elements are misplaced but the result is

quite satisfactory, especially in comparison with the one presented on figures 1 and 2.

The spikes labeled as ”Others” are broken into few clusters any of which is not large

enough to exceed G, so they are all left unsorted. We consider this as a correct solution,

since we do not want results that would contain only partially detected activity of some

neurons.

In cases where we found only one cluster large enough to be kept, we can go back

to the spike detection step and lower down the threshold value aiming to detect more

spikes. If detecting much more spikes (extremely low threshold) does not result in

detection of more than one large cluster, then it is a good indication that the recorded

data are too noisy for such processing. In general, we can say that the cluster which

contains most of the spikes with lowest amplitudes should be neglected, especially when

high reliability of the results is needed.

2.5. Possible situations

Depending on the measurement conditions, we can have in practice three possible

situations:

1) Spikes fired by two given neurons are significantly different. Consequently the

extracted features are significantly different too (example is the first plot on figure 8).

It is evident that the proposed approach will accurately find the centers and then sort

the spikes into their corresponding cluster.

2) Spikes fired by the two neurons do not differ significantly (the second plot on

figure 8). In this case the clusters are (slightly) overlapped: some spikes will be wrongly
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sorted, but we can expect that the majority will be sorted correctly. Since the density

of the projected spikes is higher in the cluster’s center than in the areas between the

clusters, the proposed method will accurately find the centers of the clusters.

3) Spikes fired by the two neurons are very similar (the third plot on figure 8). Now

finding the centers of the clusters is not possible with the proposed method. Even if the

centers were known, an accurate sorting would still not be possible with the proposed

greedy algorithm. This situation is typical for very noisy recordings. In such data, the

proposed algorithm will usually detect only one cluster. As we have mentioned before,

this can be used as an indicator that the recording is too noisy. A potential solution

could be to project the data on a different number of principle components, reduce the

noise sources, do reposition of the electrode or use multi-channel measurement system.
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Spikes from neuron 1
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Figure 8. Three generally possible situations considering mutual distance between

clusters of the neural data projected on the first two principle components.

It is important to mention that the results of the proposed method will be relatively

conservative. This conclusion comes from the way of finding the centers of the clusters.

Since, due to the small value of R, two clusters can hardly be merged into one, the

number of spikes wrongly associated to a particular cluster (false spikes) will be relatively

small. Since false spikes can be very confusing and misleading for different algorithms

that aim to decode the communication between neurons, in the trade-off between the

number of missed spikes and the number of false spikes it is highly preferable to have

more missed spikes. See [28] for detailed argumentation and proof of this statement.

3. Simulation and results

To analyze the performance of the proposed method we apply it on real extracellular

neural recordings. We validate the results using intracellular recordings made

simultaneously with the extracellular ones. These results are compared with the results

of the state-of-the-art approaches.
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3.1. Use of simultaneous intracellular and extracellular recordings for the validation

and comparison

We use recordings (available at http://crcns.org/data-sets/hc/hc-1) from rat

hippocampal area CA1 done by Henze et al., described in [1]. These data

are particularly interesting because they consist of simultaneous intracellular and

extracellular recordings.
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500
Extracellular recording
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s

Figure 9. Simultaneous extracellular and intracellular recording. The two electrodes

are very close so the action potentials recorded with the intracellular electrode are

clearly visible in the extracellular recording.

Single-channel extracellular spike sorting techniques usually result in sorting

activities of two to three neurons. When the extracellular and the intracellular electrode

are close enough, one of the neurons whose activity is sorted is probably the one

recorded intracellularly. Figure 9 shows such simultaneous recording. The top plot shows

the extracellular recording and the bottom plot shows the corresponding intracellular

recording. The action potentials fired by the neuron recorded intracellularly are clearly

visible on the extracellular recording. This indicates that the electrodes are located very

close to each other.

On the plot of the extracellular recording we can also see the activities of other

neurons around the extracellular electrode. Notice that many of these spikes have

similar amplitudes as the extracellularly recorded spikes that come from the neuron

recorded intracellularly. Thus, the task of spike sorting is obviously not trivial in this

case as we will have more than one cluster.

Finally, we see that once we apply the spike sorting techniques on the signal recorded

extracellularly we can validate the sorting results for one of the sorted neurons, the one

which is recorded intracellularly.

From the available database we selected 8 recordings that satisfy the condition

that the action potentials from the neuron recorded intracellularly are clearly visible

on the extracellular recording. Another criterion for the selection was that the visual

inspection of the feature vector space suggests that the sorting problem is not trivial

(clusters far from each other) or too challenging (clusters completely overlapped). The

http://crcns.org/data-sets/hc/hc-1
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Table 1. Variances of the data projected on the first three principle components.
Recording Variance of PC1 Variance of PC2 Variance of PC3
d533101 1 1.37 0.73 0.42
d533101 2 1.70 0.62 0.35
d533101 3 1.63 0.59 0.34
d533101 4 1.94 0.60 0.38

d12821001 3 5.51 1.88 1.34
d12821001 4 6.15 2.15 1.62
d1122109 4 0.99 0.30 0.24
d1122109 4 1.54 0.43 0.28

recordings we used here have from around 2.5 millions to around 10 millions of samples

with 287 to 1197 spikes from the intracellularly recorded neuron and from to 1409 to

4788 detected spikes in total. They are recorded with different types of electrodes and

sampling frequency either 10kHz or 20kHz, what gives an important diversity of the

data.

3.2. Preprocessing of the extracellular recordings

First we detect the spikes from the extracellular recordings. To emphasis the spikes

coming from neurons located close to the electrode we apply the spike detection

technique described in [9] and [29]. For each of the detected spikes we extract a

corresponding 50 samples long data vector.

As the second step, we apply PCA for feature extraction. Figure 10 shows 8 plots,

each corresponding with one of the signals (we kept the original signal names as in [1]).

The plots show the projections on the first three principal components. The spikes that

are recognized as coming from the neuron recorded intracellularly are marked with red

stars. The rotation angle is adjusted for each plot to make the differences between the

clusters more obvious. We can see that the projections on the third principle component

do not contribute significantly to the separation of the spikes fired by the neuron recorded

intracellularly from the rest of the spikes. On the other side, the projections on the first

two principle components are much more informative and enable us to see differences

between clusters. This is also elaborated with table 1 which gives variances of the first

three principle components for each of the 8 signals. Thus, in the following, we keep

only the projections on the first two principle components, that is we set L = 2.

3.3. Clustering: applying the proposed algorithm

To ease the comparisons, we scale PC1 and PC2 in the range [0, 100].

We assume a minimal firing rate of 1 spike per second and use a 2D filter with size

(window width and length) corresponding to R = 8. For all the recordings this value

of R and this minimal firing rate meet the requirement of not merging two different

clusters.

The centers of the clusters are found as the maxima of the filtered data, with a

condition that two maxima are far enough from each other, as it is defined in subsection
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Figure 10. All the spike from all 8 recordings projected on the first three principle

components. Each plot is rotated in order to show differences between spikes from the

intracellularly recorded neuron and all other spikes.

2.3. All the spikes are finally clustered using the algorithm 1.
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Table 2. Comparison of spike sorting on 8 different recordings. C is the largest

number of spikes from the neuron recorded intracellularly that are sorted into the

same cluster (correct detections). F is the number of spikes from other neurons that

are wrongly placed into the same cluster for which C is calculated (false spikes). T is

the total number of spikes fired by an intracellularly recorded neuron. Sorting accuracy

(SA = 100 ∗C/(F + C)) is given in percentage (see e.g. [14] for details). We also give

the percentage of missed spikes as MS = 100 ∗ (T − C)/T

recording proposed k-means EM superparamag.
C F SA MS C F SA MS C F SA MS C F SA MS T

% % % % % % % %
d533101 1 240 64 80 16 237 61 80 17 234 62 79 18 287 1358 17 0 287
d533101 2 356 39 90 12 235 43 85 42 356 57 86 12 339 27 93 16 403
d533101 3 333 61 85 13 335 74 82 12 333 69 83 13 304 36 89 20 381
d533101 4 392 76 84 10 239 66 78 45 151 27 85 65 368 55 87 16 437

d12821001 3 714 69 91 5 724 97 88 4 600 43 93 20 599 28 96 20 753
d12821001 4 438 65 87 4 232 18 93 49 420 57 88 8 134 3 98 71 456
d1122109 4 1065 182 85 0 305 35 90 71 476 60 89 56 157 7 96 85 1070
d1122109 5 795 141 85 34 480 36 93 60 497 33 94 58 1197 3401 35 0 1197

3.4. Results

We compared the proposed non-parametric approach with a combination of BIC with k-

mean and EM algorithms and also with the super-paramagnetic clustering [11] which is

e.g. used in spike sorting software called Wave-clus. These stand as the state-of-the-art

approaches and are the most widely used among all spike sorting algorithms.

Figure 11 gives comparison of performance of the four algorithms on each of the

8 recordings. The spikes from the neuron which is recorded intracellularly are again

represented with red stars in the first column. To quantify the clustering performance

we observe how well the different algorithms managed to isolate that cluster. Since

we do not have any knowledge on the activities of the other neurons we can compare

the algorithms only in their ability to sort the spikes fired by the neurons recorded

intracellularly (one neuron for each recording).

By observing closely the fist column in figure 11 we see that, after PCA, several

spikes from the neuron recorded intracellularly are located far from the area that

obviously contains most of the spikes from that neuron. This is especially the case

for recordings d533101 1, d533101 2, d533101 3 and d533101 4. We can also notice

that several spikes that do not come from the neuron recorded intracellularly are in

the middle of the area that contains most of its spikes. The best example is recording

d1122109 4. Thus, we can not expect from any sorting algorithm to sort these spikes

correctly, since they are obviously misplaced by the feature extraction technique. The

results from figure 11 are also presented in table 2.

K-mean and EM based approach separate well spikes from the intracellularly

recorded neuron for recordings d533101 1, d533101 3 and d12821001 3. EM based

approach performs solid also on recordings d533101 2 and d12821001 4. For all the

other recordings these approaches tend to split a single cluster into two or more clusters

(e.g. the results for recording d1122109 4). Using k-means and EM, isolated elements

located far from the cluster are often wrongly associated with that cluster, e.g. for

k-means recording d12821001 3 and for EM d533101 2. Notice that we could actually



A non-parametric method for automatic neural spikes clustering 17

Figure 11. Comparison of performance of the four sorting algorithms on 8 recordings.

Rows on the figure show the results on different recordings. The first column displays

projection of each of the recordings on the first two principle components. Red stars

represent spikes that come from the neuron recorded intracellularly while cyan dots

represent all other spikes (from unknown number of neurons). The other columns

give the sorting results of four different algorithms. Different clusters are marked with

different symbols/color. For the proposed algorithm (second column) the black dots

mark centers of the detected clusters.

obtain better results if we just fixed the number of clusters to two. However, such results

would still be worse than the one of the proposed algorithm since there would be many

falsely clustered spikes: all the spikes which seem to naturally fall out of both clusters
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would be necessarily clustered in one of the two clusters. One possible solution to this

problem could be to increase the fixed number of clusters. However, the simulation on

figure 11 suggests that increasing the number of clusters rather results in splitting the

clusters through the areas of high spike density, than in affecting the spikes which are

far from these areas to the newly added clusters.

The results of the super-paramagnetic clustering are significantly different from the

one of k-means or EM based approaches. They are sometimes very good (d533101 2,

d533101 3, d533101 4) so for example the isolated spikes far from the cluster are left

outside the cluster. For recording d12821001 3 the results are still satisfactory, but for

recordings d533101 1, d12821001 4, d1122109 4 and d1122109 5 they are very bad,

since almost all the detected spikes are sorted into same clusters.

The proposed approach performed generally very well. Even though in few

situations several spikes that are located a bit far from the cluster are wrongly placed into

the cluster (e.g. d533101 3 and d1122109 5), the bulk of the spikes that corresponds

with the intracellularly recorded neurons are always recognized. Most of the isolated

spikes are assigned to their own clusters (notice the black dots that show the locations

of the centers of the clusters), which are after neglected since they contain less than G

spikes.

Finally, we can say that the proposed approach compares favorably with all the

three approaches. On these data the proposed approach always gave reasonably good

results, without big oscillations.

Of course, to obtain a single-channel data where such separation is generally

possible, the SNR has to be satisfactory and good performance of feature extraction

technique is necessary. These are requirements of all the four approaches.

To analyze the robustness of the proposed approach we change R, the filter width

and height, to see what are the limits for which the algorithm will still give satisfying

results. The comparisons are given on figure 12 and in table 3. Small R leads to more

conservative results, since most of the individual spikes, located a bit further from the

area of highest density, are detected as clusters. These clusters contain less then G

spikes so they are neglected. For large R, usually only the most important clusters

are detected. Therefore, the results are likely to contain more false alarms (lower SA).

Table 3 indicates that satisfying results can be obtained for a large range of G. On

vector space scaled on values from 0 to 100, choices of R = 7 and R = 8 lead to good

results in all examples even though the clusters have different morphologies. Choosing

too large value of R will usually result in detection of only one cluster what, as we said

in subsection 2.4 should indicate that the data are too noisy for the clustering. This

significantly increases the reliability of the algorithm, since it is usually preferable to

characterize the data as too noisy than to obtain results that merge several clusters into

one.
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Figure 12. Analysis of robustness of the proposed approach. The first column is the

same as on figure 11. The second column gives the sorting results for minimal R and

third column for maximal R which still led to satisfying results.

4. Discussion

In neural recordings the differences between some clusters may be very small.

Meanwhile, as the firing rate can vary significantly from one neuron to another, the

sizes of the clusters are usually strongly unbalanced. Also, in the spike detection phase,
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Table 3. Analysis of robustness of the proposed approach. Columns min R and

max R show the results obtained with the minimal and the maximal filter width and

height respectively, such that the results are still considered as satisfactory (relatively

well clustered activity of the intracellularly recorded neuron). G is the number of the

elements that contained the largest filter window for the given R and, as before, C is

the number of the correct detections, F the number of false alarms and T total number

of the spikes fired by the intracellularly recorded neuron.

recording min R max R
R G C F SA MS R G C F SA MS T

% % % %
d533101 1 4 158 237 43 85 17 14 959 240 61 80 16 287
d533101 2 4 132 351 37 90 13 22 1196 357 60 86 11 403
d533101 3 3 96 311 46 87 18 19 1143 334 80 81 12 381
d533101 4 6 211 390 74 84 11 23 1141 396 92 81 9 437

d12821001 3 7 132 714 49 91 5 22 668 714 100 88 5 753
d12821001 4 5 93 438 64 87 4 19 622 438 65 87 4 456
d1122109 4 5 77 1055 161 87 1 22 781 1065 182 85 0 1070
d1122109 5 5 373 790 111 88 34 8 808 795 141 85 34 1197

the firing activities of most of the remote neurons are very partially captured. Each of

those neurons is thus represented by so few spikes that they can not be considered as

separate clusters; they rather should be left unsorted. However, the classical solutions

for the spike sorting problem are mostly based on the application of a general purpose

model selection and sorting algorithms. Now, it is very unlikely that such a general

purpose algorithm could comply with all the above mentioned specificities of neural

recordings.

Deviating from these solutions, we proposed a non-parametric method that exploits

some common properties of the neural signal and thus is particularly adapted for neural

spike sorting. We assume that some minimal number of spikes per neuron is given as a

prior information (minimal firing rate). This is not a strong requirement since generally

we are not interested in isolating the activity of a neuron that fired only few spikes.

We also assume that the recorded signal projected on some principle components has a

unimodal distribution.

The method we devised has the common preprocessing part as most of spike sorting

methods (spike detection and feature extraction). Afterwards, we start with the non-

parametric approach by applying a moving average filter in the space projected by the

feature extraction vectors (in our simulations principle components). This enhances

the centers of the clusters which are then easy to find. We associate all the spikes

with their corresponding centers using a greedy sorting algorithm close in spirit to the

agglomerative hierarchical clustering and developed particularly for this application.

The method can perform with no supervision, using the values of the parameters as

given in this paper. However, to increase the accuracy, the user can optimize the filter

width and height to the structure of the actual vector space. This optimization can be

done for each recording or for a set of recordings when similar properties of the feature

vector spaces are expected. Moreover, the filter width and height can be adjusted to

obtain more or less conservative results.



A non-parametric method for automatic neural spikes clustering 21

We tested the proposed method on a specific type of neural recordings: simultaneous

extracellular and intracellular recordings. We applied the method on the extracellular

data and validated the results using the intracellular data. Comparing with the state-

of-the-art approaches our method leads to significantly better results and shows very

reliable performance.

The complexity of the proposed algorithm highly depends on the number of

extracted features per spike, since this number defines the dimensionality of the filter.

For feature extraction with PCA a good choice was to keep only the projections on

the first two principle components which means that we needed to apply a 2D spacial

filter. When other feature extraction techniques are used this number of features could

be insufficient, so to keep the processing fast an alternative to filtering that would still

enhance the centers of the clusters should be implemented. The complexity also highly

depends on the scale of the feature extraction space e.g. in the presented simulations

we scaled the space to values from 0 to 100. If we denote lower and upper bound of

nth scaled feature extraction dimension as ymin
n and ymax

n then the number of operations

NOfilt needed for the filtering can be expressed as NOfilt =
∏L

n=1(y
max
n − ymin

n ). The

same number of operations is needed for finding the maxima as we need to analyze

each element in the vector space. So the total number of operations is given by

NOtotal = 2
∏L

n=1(y
max
n − ymin

n ).

In this paper we addressed the question of spike sorting on single-channel recordings.

However, in [30] and in the upcoming journal paper we present an algorithm based on

an iterative application of ICA on multi-channel recordings. The algorithm uses the

method proposed here to cluster the data within each iteration. There, the property

of unsupervised clustering is particularly important, since in an iterative algorithm any

manual verification of the results within each iteration is not practical.

In its current form, the proposed method is obviously not implementable online.

However, we may point out some possible modifications that would allow an online

implementation. These concern essentially two points: 1) an initialization period, that

provides all the centers of the clusters; 2) an online feature extraction method. These

modifications will be investigated in detail in future work.

In order for the result to be reproducible all the Matlab code we used to present

the results is available upon request to the email of the corresponding author.
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separation as determined by simultaneous intracellular and extracellular measurements. Journal

of Neurophysiology, 84:401–414, Jul 2000.

[22] C. Vargas-Irwin and J. P. Donoghue. Automated spike sorting using density grid contour clustering

and subtractive waveform decomposition. Journal of neuroscience methods, 164(1):1–18, August

2007.

[23] D. J. Sebald and A. Branner. Automatic spike sorting for real-time applications. In 3rd Annual

International Conference of the IEEE Engineering in Neural Engineering, pages 670–674, 2007.

[24] Cerebus Data Acquisition System - users manual. Blackrock Microsystems, 2009.

[25] Y. Ghanbari, P. Papamichalis, and L. Spence. Graph-spectrum-based neural spike features for

stereotrodes and tetrodes. In ICASSP, pages 598–601, March 2010.

[26] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning. Springer,

2003.

[27] M. S. Fee, P. P. Mitra, and D. Kleinfeld. Automatic sorting of multiple unit neuronal signals

in the presence of anisotropic and non-Gaussian variability. Journal of Neuroscience Methods,

69(2):175–188, November 1996.

[28] N. G. Ilan and H. J. Don. Information theoretic bounds on neural prosthesis effectiveness: The

importance of spike sorting. In ICASSP, pages 5204–5207, 2008.

[29] M. Mboup. A volterra filter for neuronal spike detection. Research report, INRIA, http://hal

inria fr/inria-00347048/fr/, 2008.

[30] Z. Tiganj and M. Mboup. Deflation technique for neural spike sorting in multi-channel recordings.

IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2011.


	Introduction
	Importance of spike sorting
	Common approach
	Problems of spike sorting
	Brief description of the proposed method
	Paper organization

	Methodology
	Preprocessing: Spike detection and feature extraction
	Unimodal distribution
	Finding the centers of the clusters
	Associating each spike with the corresponding center
	Possible situations

	Simulation and results
	Use of simultaneous intracellular and extracellular recordings for the validation and comparison
	Preprocessing of the extracellular recordings
	Clustering: applying the proposed algorithm
	Results

	Discussion

