
Representing Latent Dimensions Using Compressed
Number Lines

1st Sahaj Singh Maini
Dpt. of Computer Science

Indiana University
Bloomington, IN, USA

sahmaini@iu.edu

2nd James Mochizuki-Freeman
Dpt. of Computer Science

Indiana University
Bloomington, IN, USA

jmochizu@iu.edu

3rd Chirag Shankar Indi
Dpt. of Computer Science

Indiana University
Bloomington, IN, USA

chshan@iu.edu

4th Brandon G. Jacques
Dpt. of Psychology

University of Virginia
Charlottesville, VA, USA

bgj5hk@virginia.edu

5th Per B. Sederberg
Dpt. of Psychology

University of Virginia
Charlottesville, VA, USA

pbs5u@virginia.edu

6th Marc W. Howard
Dpt. of Psychological and Brain Sciences

Boston University
Boston, MA, USA
marc777@bu.edu

7th Zoran Tiganj
Dpt. of Computer Science

Indiana University
Bloomington, IN, USA

ztiganj@iu.edu

Abstract—Humans use log-compressed number lines to rep-

resent different quantities, including elapsed time, traveled dis-

tance, numerosity, sound frequency, etc. Inspired by recent cogni-

tive science and computational neuroscience work, we developed

a neural network that learns to construct log-compressed number

lines. The network computes a discrete approximation of a

real-domain Laplace transform using an RNN with analytically

derived weights giving rise to a log-compressed timeline of the

past. The network learns to extract latent variables from the

input and uses them for global modulation of the recurrent

weights turning a timeline into a number line over relevant

dimensions. The number line representation greatly simplifies

learning on a set of problems that require learning associations

in different spaces – problems that humans can typically solve

easily. This approach illustrates how combining deep learning

with cognitive models can result in systems that learn to represent

latent variables in a brain-like manner and exhibit human-like

behavior manifested through Weber-Fechner law.

Index Terms—Recurrent Neural Networks, Gating, Weber-

Fechner law, Laplace transform.

I. INTRODUCTION

The human ability to map sensory inputs onto number
lines is critical for rapid learning, reasoning, and generalizing.
Recordings of activity from individual neurons in mammalian
brains suggest a particular form of representation that could
give rise to mental number lines over different variables.
For instance, the presentation of a salient stimulus to an
animal triggers sequential activation of neurons called time
cells which are characterized by temporally tuned unimodal
basis functions [1, 2, 3]. Each time cell reaches its peak
activity at a particular time after the onset of some salient
stimulus. Together, a population of time cells constitutes a
temporal number line or a timeline of the stimulus history
[4, 5]. Similarly, as animals navigate spatial environments
neurons called place cells exhibit spatially tuned unimodal

Published at International Joint Conference on Neural Networks (IJCNN),
2023. ©2023 IEEE — DOI: 10.1109/IJCNN54540.2023.10190998.

basis functions [6]. A population of place cells constitutes a
spatial number line that can be used for navigation [7, 8]. The
same computational strategy seems to be used to represent
other variables as well, including numerosity [9], integrated
evidence [10], pitch of tones [11], and conjunctions of these
variables [12]. Critically, many of these “neural number lines”
appear to be log-compressed [9, 13], providing a natural
account of the Weber-Fechner law observed in psychophysics
[14, 15]. Here we present a method by which deep neural
networks can construct continuous, log-compressed number
lines of latent task-relevant dimensions.

Modern deep neural networks are excellent function ap-
proximators that learn in a distributed manner: weights are
adjusted individually for each neuron. Neural activity in the
brain suggests a representation where a population of neurons
together encodes a distribution over a latent variable in the
form of a number line. In other words, a latent variable is
not represented as a scalar (e.g., a count of objects could be
encoded with a single neuron with a firing rate proportional
to the count), but as a function supported by a population of
neurons, each tuned to a particular magnitude of the latent
variable. To build deep neural networks with this property,
we use global modulation such that recurrent weights of a
population of cells are adjusted simultaneously. We show that
this gives rise to the log-compressed number lines and can
greatly facilitate associative learning in the latent space.

Inspired by experiments on animals, we conduct experi-
ments where a neural network learns number lines for spa-
tial distance and count of objects appearing over time. We
designed an experimental setup where the network needs to
predict when a target event will happen. In our experiments,
time to the target event depends either on the elapsed time,
traveled spatial distance, or the count of how many times
some object appears in the input. Critically, just like in the
experiments with animals, these variables are not directly
observable from the inputs – they are hidden and have to be

learned from the spatiotemporal dynamics of the input. For
example, if the target event will happen after some object
appears a certain number of times, the network needs to
learn to identify the object and learn the correct number of
appearances (Experiment 3; see also an illustration in Fig. 7).
Similarly, people can estimate distance when riding a bicycle
using their motor outputs and sensory inputs – we can learn
a non-linear mapping of motor outputs and sensory inputs
onto velocity and integrate velocity to estimate distance (this
concept is an inspiration for Experiments 2a and 2b; see also
an illustration in Fig. 5).

Building on models from computational and cognitive
neuroscience [16, 17, 18], we propose a neural network
architecture that gives rise to a number line supported by
unimodal basis functions. The input is fed into a recurrent
layer with the weights analytically computed to approximate
the real-domain Laplace transform of the input. Critically,
we use properties of the Laplace domain and apply global
modulation to the recurrent weights to convert functions of
time into functions of other variables, such as distance or
count. The output of the Laplace layer is mapped through a
linear layer with analytically computed weights implementing
the inverse Laplace transform. The inverse gives rise to a
log-compressed number line supported with unimodal basis
functions. Depending on the modulatory signal, this population
can resemble, for instance, time cells, place cells or count cells.
The output is then mapped through a trainable dense layer
with a sigmoid activation function to the network’s output.
This approach augments the capabilities of cognitive models,
which typically rely on handcrafted features enabling them
to learn latent variables. At the same time, the structure and
properties of the cognitive model are preserved, allowing the
resulting system to have strong explanatory power of neural
activity in the brain and behavioral data.

The Laplace transform uses a diagonal weight matrix which
makes it robust to problems of exploding and vanishing
gradients related to backpropagation through time. These
problems have been somewhat reduced with gated networks,
such as Long Short-Term Memory (LSTM) [19, 20] and Gated
Recurrent Units (GRU) [21]. Recent approaches bounded the
gradients, such as Coupled Oscillatory RNN (coRNN) [22] or
used formalism that does not require learning of the recurrent
weights, such as Lagrange Memory Unit (LMU) [23]. Echo
state networks [24] used RNNs with non-trainable, fixed
recurrent weights but without global modulation. Similarly,
the multiscale temporal structure approach used fixed weights
with a spectrum of time constants [25].

II. METHODS

We first describe the construction of a log-compressed
timeline using an approximation of the real-domain Laplace
and the inverse Laplace transform. Then we describe how the
timeline can be turned into a more general number line via
global weight-modulation in the Laplace domain.

A. Continuous-time formulation of Laplace and inverse
Laplace transform

Given a one-dimensional input signal f(t), we define a
modified version of the Laplace transform F (s; t):

F (s; t) =

Z t

0
e�s(t�t0)f(t0)dt0. (1)

This modified version differs from the standard Laplace trans-
form only in variable s: instead of s being a complex value
composed of the real and imaginary part, we use real and
positive s. This modification simplifies the neural network
implementation while still giving us the computational benefits
of the standard Laplace transform, as we will illustrate below.
Note that F is also a function of time t. This implies that at
every moment we construct the Laplace transform of the input
function up to time t: f(0 t0 < t)

L�! F (s; t).
To construct the timeline we need to invert the Laplace

transform. The inverse which we denote as f̃(
⇤
⌧ ; t) can be

computed using Post inversion formula [26]:

f̃(
⇤
⌧ ; t) = L�1

k F (s; t) =
(�1)k

k!
sk+1 dk

dsk
F (s; t), (2)

where ⇤
⌧ := k/s and k !1.

B. Generalizing a timeline into a number line

We can use the Laplace domain to convert a timeline into
a number line if we learn a time derivative of a variable that
we want to represent using the number line. To achieve this,
instead of computing the Laplace transform for a function of
time f(t), we compute the transform for a function of some
variable f(x(t)).

We first rewrite Eq. 1 in a differential form:

dF (s; t)

dt
= �sF (s; t) + f(t). (3)

The impulse response (response to input f(t) = �(0)) of
F (s; t) decays exponentially as a function of time t with decay
rate s: e�st (Fig. 2a).

We define a time derivative of x(t) as ↵(t) = dx
dt and modify

Eq. (3) as follows:

dF (s; t)

dt
= �↵(t)sF (s; t) + f(t), (4)

such that ↵(t) modulates the decay rate s (Fig. 2b).
By reorganizing terms in Eq. (4) and applying the chain

rule we obtain the Laplace transform of f(x(t)):

dF (s;x)

dx
= �sF (s;x) + f(x). (5)

Note that Eq. (3) and Eq. (5) are the same, except that
t in Eq. (3) is x in Eq. (5). This allows us to use the
same calculation as in Eq. (2) to obtain the inverse Laplace
transform of f̃(⇤⌧ ;x).

a b c d

Fig. 1. Temporal relationships in the presence of modulatory inputs. Delta pulse in fa predicts a delta pulse in fb. a No temporal modulation (e.g., ↵ = 1).
b and c When the modulatory signal corresponds to velocity (Experiment 2), the network represents traveled distance as manifested by units that activate
sequentially as a function of distance (bottom row). d Temporal modulation with delta pulses (Experiment 3). The network represents the total count of
presented pulses.

C. Neural networks implementation of the Laplace and inverse
Laplace transform with global weight modulation

We implement an approximation of the modified Laplace
and inverse Laplace transform as a two-layer neural network
with analytically computed weights (Fig. 2c). The first layer
implements the modified Laplace transform through an RNN.
The second layer implements the inverse Laplace transform as
a dense layer with weights analytically computed to implement
k � th order derivative with respect to s.

While in the Laplace domain s is a continuous variable, here
we redefine s as N elements long vector. We can now write
a discrete-time approximation of Eq. (4) as an RNN with a
diagonal connectivity matrix and a linear activation function:

Fs;t = WLFs;t�1 + ft, (6)

where WL = e�↵(t)S�t. At every time step t, Fs;t is N
elements long vector. For brevity of the notations, we assume
that the duration of a discrete-time step �t = 1.

Following Eq. (2), a discrete approximation of the inverse
Laplace transform, f̃⇤

⌧ ;t
, can be implemented as a dense layer

on top of Fs;t. The connectivity matrix of the dense layer is
L�1
k which according to 2 includes dk

dsk . To construct a discrete
approximation of dk

dsk we compute N by N linear operator D
which approximates the first order derivative: d

ds (Alg. 1) and
then raise D to power k to implement k-th order derivative:
Dk ⇡ dk

dsk .
To interpret f̃⇤

⌧ ;t
and to select values s in an informed way,

we compute the impulse response of f̃⇤
⌧ ;t

. For input f(t) =

Algorithm 1 Constructing N by N linear operator D which
approximates the first order discrete derivative.
D zeros(N,N)
for i 1 to N � 1 do

D[i, i� 1] � s[i+1]�s[i]
(s[i]�s[i�1])(s[i+1]�s[i�1])

D[i, i]
s[i+1]�s[i]
s[i]�s[i�1]�

s[i]�s[i�1]
s[i+1]�s[i]

s[i+1]�s[i�1]

D[i, i+ 1] s[i]�s[i�1]
(s[i+1]�s[i])(s[i+1]�s[i�1])

end for

�(0), the activity of f̃⇤
⌧ ;t

is:

f̃⇤
⌧ ;t

=
1

u(t)

kk+1

k!

✓
u(t)
⇤
⌧

◆k+1

e
�k u(t)

⇤
⌧ , (7)

where u(t = tn) =
Ptn

i=0 ↵(ti). If ↵(0 t < tn) = 1, then
u(t = tn) = tn. To investigate properties of this approxima-
tion and to motivate our choice for ⇤

⌧ and consequently s, we
analyze the case where ↵(0 t tn) = 1.

The impulse responses of units in f̃⇤
⌧ ;t

is a set of unimodal
basis functions (Fig. 2a and Fig. 1a). To better characterize
its properties we first find the peak time by taking a partial
derivative with respect to t, equate it with 0 and solve for t:
@f̃⇤

⌧ ;t
/@t = 0! t =

⇤
⌧ . Therefore each unit in f̃⇤

⌧ ;t
peaks at ⇤

⌧ .
Note that if we computed the exact continuous-time Laplace
and inverse Laplace transform (which would require infinitely
many neurons, since s and ⇤

⌧ would be continuous variables),
the impulse response would be a �(

⇤
⌧). This would provide

a perfect reconstruction of the input function f(0 < t0 < t)
rather than its approximation.

a b c

Fig. 2. The activity of neurons in CNL with and without modulatory input. a. Impulse response of the Laplace transform approximation decays exponentially
with decay rate s. The impulse response of the inverse Laplace transform approximation has a unimodal form such that each curve peaks at ⇤

⌧ . Note that if
time t was shown on the log-scale, the unimodal curves would be equally wide and equidistant. b. ↵ modulates the decay rate of Fs;t. When ↵ = 0, Fs;t is
constant since its time derivative is 0. When ↵ = 0.5 the decay of Fs;t is slowed down by a factor of 2. c. Schematic of the CNL network with input fa
and modulatory inputs. fa feeds into the recurrent layer that implements an approximation of the Laplace transform using analytically computed recurrent
weights. Modulatory inputs are passed through a trainable dense layer and modulate the recurrent weights. Approximation of the inverse Laplace transform
f̃⇤
⌧ ;s

is computed by applying a linear operator L�1
k on Fs;t. Afterward, f̃⇤

⌧ ;s
is fed into a trainable dense layer with sigmoid activation function. The network

has a single prediction output which is trained to predict the activity of target fb.

To further characterize our approximation, we express the
width of the unimodal basis functions of the impulse response
of f̃⇤

⌧ ;t
through the coefficient of variation c, which is a ratio

of standard deviation and mean. The mean of f̃ is:

µ =

Z 1

0
tf̃(s; t)dt

=

Z 1

0
t
1

t

kk+1

k!

✓
t
⇤
⌧

◆k+1

e
�k t

⇤
⌧ dt

=
kk+1

k!

Z 1

0

✓
t
⇤
⌧

◆k+1

e
�k t

⇤
⌧ dt

=
⇤
⌧
k + 1

k
.

The standard deviation of f̃ is:

� =

sZ 1

0
(t� µ)2f̃(s; t)dt

=

sZ 1

0
(t� µ)2

1

t

kk+1

k!

✓
t
⇤
⌧

◆k+1

e
�k t

⇤
⌧ dt

=
⇤
⌧

p
k + 1

k
.

Finally, the coefficient of variation is then:

c =
�

µ
=

1p
k + 1

.

Importantly, c does not depend on t and ⇤
⌧ , implying that the

width of the unimodal basis functions increases linearly with
their peak time. Therefore when observed as a function of
log(t), the width of the unimodal basis functions is constant.
Note that this property is critical for log-compression.

We choose values of ⇤
⌧ as log-spaced between some mini-

mum and maximum (see next section for the values used in
the experiments). Because of the log-spacing and because c
does not depend on t and ⇤

⌧ , when analyzed as a function
of log(t), the unimodal basis functions are equidistant and
equally wide, providing uniform support over log(t) axis. This
result is analogous to the scale-invariance observed in human
timing and perception, formalized as the Weber-Fechner law.
Intuitively, this is beneficial since the more recent past carries
more predictive power than the more distant past. Hence, our
approximation of function f(0 < t0 < t) will be better for
values closer to t than to 0. Note that fixing the values of ⇤

⌧
and choosing k also fixes values of s since s = k/

⇤
⌧ so s is

not a trainable parameter.
To convert a log-compressed timeline into a log-compressed

number line, we implemented global modulation of recurrent
weights as in Eq. (4). We assume that ↵ is not known and that
it needs to be learned from the input data. ↵(t) is computed
through a feedforward projection which receives a subset
of inputs designated as modulatory inputs (e.g., inputs from
which a latent variable, such as velocity or count, can be
computed). Details of the feedforward projection are stated
in the description of each experiment since they varied across
experiments due to variability in the input dimensionality. We
feed f̃⇤

⌧ ;t
into a trainable dense layer with a single output and

a sigmoid activation function. Due to its log-compression of
the input signal and gating of the recurrent weights, we call
our approach Compressed Number Line or CNL.

III. RESULTS

We tested the proposed network on four event prediction
experiments inspired by psychophysics experiments in humans
and other animals. In our experiments, event a predicted event

b such that the time between them depends on either the actual
amount of elapsed time (Experiment 1), traveled distance with
velocity as a latent variable which can be learned as a non-
linear combination of the inputs (Experiments 2a and 2b) or
the number of occurrences of a specific pattern (Experiment 3).
Our goal was to demonstrate that the proposed network can
identify latent variables by learning an appropriate mapping
from inputs onto a global modulatory signal ↵. The network
then constructs a number line representation over an integral
of the latent variable (e.g., if velocity is a latent variable,
then traveled distance is its integral across time), making the
learning more accurate, faster, and more robust than with other
approaches.

CNL parameters were kept the same for all the experiments.
We set k = 8 and we used 64 neurons in F and 50 neurons in
f̃ with input fa. The number of neurons in f̃ was smaller than
in F in order to avoid edge effects when taking a derivative
with respect to s (the number of units in f̃ is 2k less than
the number of units in F . ⇤

⌧ was composed of 50 log-spaced
values between 5 and 20000. These lower and upper limits
were chosen to cover the entire range of temporal relationships
in the input signal. The output of f̃ layer was fed through
trainable weights into a single output neuron with a sigmoid
activation function.

To evaluate how commonly used RNNs perform on this
task we compared CNL with a simple RNN, GRU, LSTM,
LMU, and coRNN followed by a fully connected layer. For
LMU we experimented with hyperparameters and got the best
performance with: dt = 1, ✓ = 5000 and d = 128. For coRNN
we set the hyperparameters to the same values as in [22]: dt =
0.016, � = 94.5 and ✏ = 9.5. The hidden size was 64 in all
cases. As with CNL, the output layer had a single neuron with
a sigmoid activation function. While still relatively simple,
these networks had many more parameters than CNL (e.g.,
Table I) because most of the CNL parameters were computed
analytically.

The results were obtained as an average of three runs with
95% confidence intervals. Each of the networks was trained
for 1000 epochs using the learning rates 0.001, 0.01, 0.1, and
1.0 with ADAM optimization on an Nvidia Tesla P100 12GB
GPU. We used sample weighting to train the networks using
binary cross-entropy as supervising loss and report binary
cross-entropy as test loss. We also report the average distance
between the actual timestamp of the target event and the
timestamp that received the highest probability estimate by
a particular network.

A. Experiment 1: Predicting interval duration at a wide range
of temporal scales

To test the baseline performance of different approaches,
we start with a simple experiment with no latent variables. We
designed a setup with input fa(t) = �(x) and target (label)
fb(t) = �(x + x0) (Fig. 1a). We used three values for x0:
x0 2 [50, 500, 5000]. Length of fa(t) and fb(t) was 4x0, 200,
2000 and 20000. We created only 3 training examples and 12

validation and 35 test examples, every time with a random x
sampled uniformly from a range between 1 and 3x0.

Results are shown in Table I. At the shortest timescale with
x0 = 50 and medium timescale with x0 = 500, LMU did a
perfect job of predicting fb. At the largest time scale (x0 =
5000), CNL performed better than the other approaches, which
effectively failed to provide a useful prediction, likely due
to a large number of parameters and problems with gradient
backpropagation in long temporal sequences.

Results for average distances between the actual timestamp
of the target event and the timestamp that received the highest
probability estimate in Table I indicate that for CNL the error
in the distance grows roughly linearly with x0. This gradual
drop in performance is due to the log-spacing of the recurrent
weights.

To investigate the importance of the inverse Laplace trans-
form, we also compared CNL (which is composed of the
Laplace and inverse Laplace transform) with F (s) (only the
Laplace transform, without the inverse) combined with a
trainable dense layer of 50 neurons. We label the later model
as CNL-F. CNL performed better than CNL-F at all scales.
We attribute this to the fact that the inverse Laplace transform
constructs a timeline, which is a representation that makes
learning temporal associations particularly easy. Timeline rep-
resentation means that neurons activate sequentially following
event a. This means that some neurons are active only when
event b happens, making it easy for the network to learn
the temporal relationships. This is confirmed by observing
the learned weights of the dense layer in CNL (Fig. 3).
Since the Laplace transform is linear, the output weights are
interpretable. The weights are largest around ⇤

⌧ = x0 and have
a Mexican hat connectivity pattern which helps to sharpen the
prediction peak (Fig. 3).

B. Experiment 2a: Predicting distance in the presence of two
modulatory inputs

In this experiment input fa predicts input fb, but the time
between them was modulated by other inputs, fc and fd (see
Fig. 5 for an illustration of the experiment). This means that
the effective duration of each time step was a weighted sum
of fc and fd as described in Alg. 2. For the CNL network, this
meant that it had to learn that ↵ = w1fc + w2fd, where w1

and w2 were randomly generated weights between 0 and 1
and fc and fd had a magnitude ranging from 0 to 5. The
network only observed fc and fd and not the weights w1

and w2, so it had to learn the relationship between ↵ and
fc and fd. We can view this problem as one of learning
spatial distance between event a and event b such that velocity
(in this case ↵(t)) is not directly observable but has to be
learned from the modulatory inputs fc and fd. Therefore,
a does not predict b after a particular amount of time has
elapsed, but instead after traveling a particular distance at
a velocity that has to be learned from the network inputs.
Similar to Experiment 1, in the absence of modulatory inputs
fa(t) = �(x) and fb(t) = �(x+x0) with x0 2 [50, 500, 5000].
Modulatory inputs fc and fd were stepwise functions broken

a b c

Fig. 3. CNL weights for the output dense layer when x0 = 50 (a), x0 = 500 (b) and x0 = 5000 (c). Since the Laplace transform is linear, the output weights
are interpretable. The weights are largest around ⇤

⌧ = 50 (a), ⇤
⌧ = 500 (b) and ⇤

⌧ = 5000 (c) and have a Mexican hat connectivity pattern which helps to
sharpen the prediction.

TABLE I
EXPERIMENT 1: BINARY CROSS-ENTROPY LOSS ACROSS DIFFERENT SCALES AND THE AVERAGE DISTANCE BETWEEN THE ACTUAL TIMESTAMP OF THE

TARGET EVENT AND THE TIMESTAMP THAT RECEIVED THE HIGHEST PROBABILITY ESTIMATE.

x’=50 x’=500 x’=5000 Params
Loss Distance Loss Distance Loss Distance

CNL-F 0.399 ± 0.031 8.0 ± 0.0 0.433 ± 0.008 141.0 ± 0.0 0.639 ± 0.014 2658.6 ± 6.1 51

CNL 0.212 ± 0.003 2.0 ± 0.0 0.227 ± 0.004 19.0 ± 0.0 0.255 ± 0.004 249.3 ± 1.4 51

RNN 0.521 ± 0.317 83.1 ± 107.0 0.446 ± 0.281 641.4 ± 612.8 0.561 ± 0.184 7513.0 ± 10853.5 4353
LSTM 0.347 ± 0.500 11.1 ± 41.4 0.669 ± 0.077 763.5 ± 302.9 0.647 ± 0.000 12560.0 ± 0.0 17217
GRU 0.103 ± 0.111 0.8 ± 1.7 0.326 ± 0.559 102.8 ± 405.9 0.646 ± 0.001 12405.7 ± 154.8 12929

coRNN 0.264 ± 0.255 4.0 ± 3.7 0.408 ± 0.304 438.3 ± 594.5 0.647 ± 0.000 12539.0 ± 0 8385
LMU 0.005 ± 0.008 0.0 ± 0.0 0.208 ± 0.265 0.0 ± 0.0 0.732 ± 0.103 5001.3 ± 5724.4 12610

Fig. 4. Experiment 2a: Representative examples of prediction (orange lines) for different models for x0 = 50. Input fa is shown in blue and target fb is in
green.

into 15 pieces with amplitude of each piece between 0 and
10. The two modulatory inputs were passed through a set of
weights W↵ (one weight for each modulatory input), adding
two more parameters to CNL.

Algorithm 2 Generating an interval duration x0
m with mod-

ulatory inputs fc and fd. If fc and fd are equal to 1,
x0
m = x0 = 100.

i(0
x0 (0
while i x0

do

i = i+ 1
x0
m = x0

m + w1fc(x+ i) + w2fd(x+ i)
end while

We constructed 6 training, 22 validation, and 22 test exam-
ples. The error was again quantified as binary cross-entropy

loss in predicting fb(t). Results from Experiment 2 are given
in Table II. Despite having much fewer parameters, CNL
performed better than the other approaches at all timescales.
We attribute this to the ability of CNL to learn ↵ from the
inputs and cast the problem to be similar to Experiment 1
by constructing a number line and then simply learning which
component on the number line corresponds to the target, which
is a simple associative task. From observing plots in Fig. 4 we
see that other approaches failed to provide a useful prediction.

C. Experiment 2b: Predicting distance in the presence of fifty
modulatory inputs

This experiment is a more complex version of Experi-
ment 2a with fifty modulatory inputs instead of just two. In
this case ↵ =

P50
i=1 wifi, where fi were the modulatory inputs

and weights wi for 1 i 6 were chosen randomly between
0 and 1 and weights wi for 7 i 50 were 0. The range

a b

∫ "#$

∫ #$

∫ %!#$

∫ %"#$
∫ "#$

Fig. 5. Illustration of predicting distance by learning latent modulatory inputs, as highlighted in Experiment 2. a. Let us assume that we want to estimate
traveled distance from location A to location B. If we integrate time steps while traveling from A to B (x axis) then the estimate would not be accurate (broad
distribution shown in blue) since our velocity changes during the trip. However, if we integrate velocity (y axis) then the estimate would be more accurate
(narrow distribution shown in blue) and subject only to error in the velocity estimate itself. b. If velocity is not directly observable, it needs to be estimated as
a combination of observable inputs, fc and fd as in Example 2a (for example, perhaps we are riding a bicycle and only observe motor outputs and sensory
inputs - those would correspond to fc and fd here). If we use only fc or fd, our estimate of traveled distance will not be accurate (broad distributions shown
in blue). However, if we find a correct combination of fc and fd (in this simple illustration that is fc + fd) then the velocity estimate is more accurate
(narrow distribution shown in blue) and subject again only to error in the velocity estimate itself.

TABLE II
EXPERIMENT 2A: BINARY CROSS-ENTROPY LOSS ACROSS DIFFERENT SCALES AND THE AVERAGE DISTANCE BETWEEN THE ACTUAL TIMESTAMP OF THE

TARGET EVENT AND THE TIMESTAMP THAT RECEIVED THE HIGHEST PROBABILITY ESTIMATE.

x’=50 x’=500 x’=5000 Params
Loss Distance Loss Distance Loss Distance

CNL-F 0.537 ± 0.171 29.7 ± 14.5 0.585 ± 0.006 354.0 ± 0.0 0.633 ± 0.047 8546.1 ± 9514.7 53

CNL 0.275 ± 0.007 2.4 ± 0.7 0.277 ± 0.004 35.2 ± 5.2 0.336 ± 0.018 433.4 ± 118.1 53

RNN 0.578 ± 0.489 57.7 ± 22.1 0.574 ± 0.316 735.2 ± 139.3 0.575 ± 0.157 6783.5 ± 3448.6 4481
LSTM 0.637 ± 0.349 55.9 ± 8.7 0.677 ± 0.179 607.1 ± 50.6 0.617 ± 0.179 8200.2 ± 3628.6 17729
GRU 0.653 ± 0.098 62.2 ± 13.7 0.659 ± 0.131 592.8 ± 90.9 0.594 ± 0.096 5293.3 ± 1597.3 13313

coRNN 0.611 ± 0.093 49.9 ± 10.7 0.593 ± 0.071 568.1 ± 57.4 0.509 ± 0.019 5553.4 ± 913.9 8513
LMU 0.645 ± 0.161 47.9 ± 31.4 0.592 ± 0.258 778.3 ± 128.8 0.521 ± 0.350 7884.5 ± 2141.8 12740

Fig. 6. Experiment 2b: Representative examples of prediction (orange lines) for different models for x0 = 50. Input fa is shown in blue and target fb is in
green.

of values for the magnitude of fi was between 0 and 5. Thus
the network had to learn to ignore 44 of the inputs (which
were effectively noise) and add together a weighted sum of
6 inputs. If the network correctly learns ↵, then the distance
between fa and fb becomes fixed on a number line. The fifty
modulatory inputs were passed through a set of weights W↵,
which was a two-layer feedforward network.

We constructed 60 training, 20 validation, and 20 test
examples. We conducted the experiment at two temporal scales

with x0 = 50 and x0 = 500. Since this experiment was more
demanding in terms of resources, we omitted the timescale
x0 = 5000. Results from Experiment 2b are shown in Table III.
CNL again performed better than the other approaches at all
timescales. Results shown in Fig. 6 suggest that CNL was
again the only approach that provided a useful estimate.

D. Experiment 3: Counting
In Experiment 3, the time between a and b was modulated

by the number of specific patterns presented as modulatory

TABLE III
EXPERIMENT 2B: BINARY CROSS-ENTROPY LOSS ACROSS DIFFERENT SCALES AND THE AVERAGE DISTANCE BETWEEN THE ACTUAL TIMESTAMP OF THE

TARGET EVENT AND THE TIMESTAMP THAT RECEIVED THE HIGHEST PROBABILITY ESTIMATE.

x’=50 x’=500 Params
Loss Distance Loss Distance

CNL-F 0.601 ± 0.220 17.4 ± 7.6 0.498 ± 0.004 229.7 ± 0.0 1352

CNL 0.2031 ± 0.019 7.4 ± 0.6 0.2601 ± 0.020 52.6 ± 8.8 1352

RNN 0.658 ± 0.162 70.4 ± 15.9 0.676 ± 0.229 746.6 ± 96.0 7553
LSTM 0.627 ± 0.064 67.3 ± 3.7 0.657 ± 0.170 675.4 ± 224.0 30017
GRU 0.578 ± 0.134 57.1 ± 16.6 0.640 ± 0.075 573.9 ± 22.2 22529

coRNN 0.627 ± 0.196 54.8 ± 21.9 0.627 ± 0.043 733.1 ± 112.4 11585
LMU 0.614 ± 0.062 104.3 ± 2.7 0.639 ± 0.120 561.3 ± 239.0 15860

TABLE IV
EXPERIMENT 3: BINARY CROSS-ENTROPY LOSS ACROSS DIFFERENT SCALES AND THE AVERAGE DISTANCE BETWEEN THE ACTUAL TIMESTAMP OF THE

TARGET EVENT AND THE TIMESTAMP THAT RECEIVED THE HIGHEST PROBABILITY ESTIMATE.

count=10 count=200 Params
Loss Distance Loss Distance

CNL-F 0.469 ± 0.249 24.2 ± 53.1 0.085 ± 0.001 1005.0 ± 0.0 196

CNL 0.201 ± 0.036 1.3 ± 0.4 0.077 ± 0.004 75.8 ± 21.5 196

RNN 0.323 ± 0.076 69.8 ± 24.5 0.108 ± 0.023 1365.1 ± 421.1 5377
LSTM 0.303 ± 0.140 62.0 ± 14.2 0.096 ± 0.010 1264.4 ± 941.1 21313
GRU 0.324 ± 0.119 28.8 ± 1.7 0.116 ± 0.072 629.0 ± 1006.0 16001

coRNN 0.636 ± 0.117 60.8 ± 25.3 0.093 ± 0.000 1619.3 ± 0.0 9409
LMU 0.402 ± 0.297 65.5 ± 87.8 0.146 ± 0.135 597.7 ± 781.4 13650

Fig. 7. Example output from the Counting dataset used in Experiment 3
(duration and size of the pattern are shortened for illustrative purposes). Input
Data columns represent modulatory inputs, and rows represent time steps. In
this example, the five rows highlighted in blue contain the target pattern, with
the red portions being the target pattern itself. The target number of pattern
occurrences is 3, corresponding to the number of patterns between the signal
to start counting ”S” (fed into the network as fa) and the hidden target ”T”.

inputs (Fig. 7). At each time step, a pattern composed of
16 elements with binary values was presented. One of the
patterns, which we refer to as the target pattern, was repeated
multiple times and the network had to learn that the time
between a and b depends on the number of target patterns.

The patterns were generated randomly.
To solve this task, the network had to learn to recognize

the target pattern and count its repetitions. In this case, ↵ had
to be learned as a temporal derivative of the count. Whenever
the target pattern appears, the count changes by one, therefore
↵ = 1. Whenever the pattern was not the target pattern, the
counts stay the same and ↵ = 0. Fig. 1d shows an illustration
of this, assuming that the network has learned appropriate ↵.

We conducted the experiment at two different scales, one
with 10 target counts and one with 200 target counts. In the
first case, the input signal had 200 time steps, and in the
second case, it had 2000 time steps. The results are shown
in Table IV. At both scales, CNL performed better than the
other approaches demonstrating that it learned the temporal
derivative and constructed a number line representing the count
of the target pattern. Fig. 8 shows some of the prediction
examples.

IV. DISCUSSION

The mammalian brain seems to commit to representing
many physical and abstract dimensions as number lines. Com-
putational neuroscience and cognitive science work developed
a framework for the real-value Laplace transform and inverse
Laplace transform that gives rise to such representation. Our
approach uses that framework as a part of a deep neural
network that can extract relevant latent dimensions. Because
of commitment to the number line representation, the network
can learn various associative relationships with very few
training examples and a small number of weights. Existing
widely-used networks, such as LSTMs and GRUs fail at most
learning tasks used here. While, in principle, neural networks
with multiple layers, many training examples and long training

Fig. 8. Experiment 3: Representative examples of prediction (orange lines) for different models for fb = 1 (green lines) occurring 10 counts after fa = 1
(blue lines).

time could potentially perform well, the proposed approach
provides a much simpler alternative.

Cognitive models provide immense utility in understanding
neural computations in the brain, but they are usually limited
to handcrafted features and associative learning. Here we
have shown that incorporating cognitive models into neural
networks can expand the utility and explanatory power of these
models. CNL can take advantage of deep learning and learn
latent features while at the same time utilizing the benefits of
the cognitive model and structured representation of knowl-
edge which allows easy associative learning. The resulting
performance resembled human performance in psychophysics
tasks, commonly characterized by the Weber-Fechner law.
This is manifested by a roughly linear increase of error with
distance (Table I and Table II).

This work introduces a trainable neural network implemen-
tation of real-domain Laplace transform and inverse Laplace
transform. The Laplace domain enables access to a number
of useful operations. For instance, translation, convolution
and cross-correlation can be efficiently implemented in the
Laplace domain. In this work, the network constructs the
real-domain Laplace transform of the position of A as a
function of the latent dimension. In the experiments used
here, this is simply a delta function. Convolution of two delta
functions at two real numbers produces a delta function at
their sum �(x)⇤�(y) = �(x+y); cross-correlation is similarly
understandable as subtraction. In this way, abstract dimensions
could be used with sparse representations as part of a number
system for symbolic computation [4, 27]. Because the same
representational scheme can be generated for many differ-
ent latent dimensions, the same operations could be reused
for many different kinds of information. Together with the
manuscript, we will publish supplementary material containing
code and detailed instructions for reproducing the results and
integrating the Laplace and inverse Laplace transform into
deep neural networks.

Activity patterns of neurons in the proposed network re-
semble the activity of neurons recorded in mammalian brains.
Fig. 1 shows time cells, place cells (in 1D environment) and
cells tuned to a particular number of objects. Each of these cell
types has been recorded in mammalian brains [1, 7, 10]. The
experiments used here require the network to learn a variety

of complicated one-dimensional latent dimensions. Neurons
in the mammalian hippocampus and prefrontal cortex have
been shown to form conjunctive representations of multiple
variables [12, 28, 29]. We have yet to show that the proposed
approach can scale to multiple latent dimensions. Nonetheless,
the current results indicate that it is possible to automatically
learn continuous supported latent dimensions using standard
techniques for training artificial neural networks.

ACKNOWLEDGMENT

We gratefully acknowledge support from the Defense Ad-
vanced Research Projects Agency (DARPA) under project
Time-Aware Machine Intelligence (TAMI) and the National
Institutes of Health’s National Institute on Aging, grant
5R01AG076198-02. This content is solely the responsibility
of the authors and does not necessarily represent the official
views of DARPA or the National Institutes of Health’s Na-
tional Institute on Aging. This research was supported in part
by Lilly Endowment, Inc., through its support for the Indiana
University Pervasive Technology Institute.

REFERENCES

[1] C. J. MacDonald, K. Q. Lepage, U. T. Eden, and
H. Eichenbaum, “Hippocampal “time cells” bridge the
gap in memory for discontiguous events,” Neuron,
vol. 71, no. 4, pp. 737–749, 2011.

[2] Z. Tiganj, J. Kim, M. W. Jung, and M. W. Howard,
“Sequential firing codes for time in rodent mPFC,”
Cerebral Cortex, vol. 27, pp. 5663–5671, 2017.

[3] H. Eichenbaum, “Time cells in the hippocampus: a
new dimension for mapping memories,” Nature Reviews
Neuroscience, vol. 15, no. 11, pp. 732–44, 2014.

[4] M. W. Howard, K. H. Shankar, W. Aue, and A. H.
Criss, “A distributed representation of internal time,”
Psychological Review, vol. 122, no. 1, pp. 24–53, 2015.

[5] Z. Tiganj, J. A. Cromer, J. E. Roy, E. K. Miller, and
M. W. Howard, “Compressed timeline of recent expe-
rience in monkey lPFC,” Journal of Cognitive Neuro-
science, vol. 30, pp. 935–950, 2018.

[6] E. I. Moser, E. Kropff, and M.-B. Moser, “Place cells,
grid cells, and the brain’s spatial representation system,”
Annu. Rev. Neurosci., vol. 31, pp. 69–89, 2008.

[7] J. Bures, A. Fenton, Y. Kaminsky, and L. Zinyuk, “Place
cells and place navigation,” Proceedings of the National
Academy of Sciences, vol. 94, no. 1, pp. 343–350, 1997.

[8] A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap,
P. Mirowski, A. Pritzel, M. J. Chadwick, T. Degris,
J. Modayil et al., “Vector-based navigation using grid-
like representations in artificial agents,” Nature, vol. 557,
no. 7705, pp. 429–433, 2018.

[9] A. Nieder and E. K. Miller, “Coding of cognitive mag-
nitude: compressed scaling of numerical information in
the primate prefrontal cortex,” Neuron, vol. 37, no. 1, pp.
149–57, 2003.

[10] A. S. Morcos and C. D. Harvey, “History-dependent
variability in population dynamics during evidence accu-
mulation in cortex,” Nature Neuroscience, vol. 19, no. 12,
pp. 1672–1681, 2016.

[11] D. Aronov, R. Nevers, and D. W. Tank, “Mapping of
a non-spatial dimension by the hippocampal-entorhinal
circuit,” Nature, vol. 543, no. 7647, pp. 719–722, 2017.

[12] E. H. Nieh, M. Schottdorf, N. W. Freeman, R. J. Low,
S. Lewallen, S. A. Koay, L. Pinto, J. L. Gauthier, C. D.
Brody, and D. W. Tank, “Geometry of abstract learned
knowledge in the hippocampus,” Nature, pp. 1–5, 2021.

[13] R. Cao, J. H. Bladon, S. J. Charczynski, M. E. Hasselmo,
and M. W. Howard, “Internally generated time in the ro-
dent hippocampus is logarithmically compressed,” Elife,
vol. 11, p. e75353, 2022.

[14] N. Chater and G. D. A. Brown, “From universal laws
of cognition to specific cognitive models,” Cognitive
Science, vol. 32, no. 1, pp. 36–67, 2008.

[15] G. Fechner, Elements of Psychophysics. Vol. I. Houghton
Mifflin, 1860/1912.

[16] K. H. Shankar and M. W. Howard, “A scale-invariant
internal representation of time,” Neural Computation,
vol. 24, no. 1, pp. 134–193, 2012.

[17] M. W. Howard, C. J. MacDonald, Z. Tiganj, K. H.
Shankar, Q. Du, M. E. Hasselmo, and H. Eichenbaum, “A
unified mathematical framework for coding time, space,
and sequences in the hippocampal region,” Journal of
Neuroscience, vol. 34, no. 13, pp. 4692–707, 2014.

[18] M. W. Howard, A. Luzardo, and Z. Tiganj, “Evidence
accumulation in a laplace domain decision space,” Com-
putational brain & behavior, vol. 1, no. 3, pp. 237–251,
2018.

[19] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink,
and J. Schmidhuber, “Lstm: A search space odyssey,”
IEEE transactions on neural networks and learning
systems, vol. 28, no. 10, pp. 2222–2232, 2016.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[21] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Em-
pirical evaluation of gated recurrent neural networks
on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[22] T. K. Rusch and S. Mishra, “Coupled oscillatory recur-

rent neural network (cornn): An accurate and (gradient)
stable architecture for learning long time dependencies,”
arXiv preprint arXiv:2010.00951, 2020.

[23] A. Voelker, I. Kajić, and C. Eliasmith, “Legendre mem-
ory units: Continuous-time representation in recurrent
neural networks,” Advances in neural information pro-
cessing systems, vol. 32, 2019.

[24] H. Jaeger, “The “echo state” approach to analysing and
training recurrent neural networks-with an erratum note,”
Bonn, Germany: German National Research Center for
Information Technology GMD Technical Report, vol.
148, no. 34, p. 13, 2001.

[25] M. C. Mozer, “Induction of multiscale temporal struc-
ture,” in Advances in neural information processing sys-
tems, 1992, pp. 275–282.

[26] E. Post, “Generalized differentiation,” Transactions of the
American Mathematical Society, vol. 32, pp. 723–781,
1930.

[27] M. W. Howard and M. E. Hasselmo, “Cognitive compu-
tation using neural representations of time and space in
the laplace domain,” arXiv preprint arXiv:2003.11668,
2020.

[28] M. Rigotti, O. Barak, M. R. Warden, X.-J. Wang, N. D.
Daw, E. K. Miller, and S. Fusi, “The importance of mixed
selectivity in complex cognitive tasks,” Nature, vol. 497,
no. 7451, pp. 585–90, 2013.

[29] S. Fusi, E. K. Miller, and M. Rigotti, “Why neurons
mix: high dimensionality for higher cognition,” Current
opinion in neurobiology, vol. 37, pp. 66–74, 2016.

