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Abstract

Hippocampal representations of space and time seem to share a common coding scheme
characterized by neurons with bell-shaped tuning curves called place and time cells. The
properties of the tuning curves are consistent with Weber’s law, such that, in the absence of
visual inputs, width scales with the peak time for time cells and with distance for place cells.
Building on earlier computational work, we examined how neurons with such properties can
emerge through self-supervised learning. We found that a network based on autoencoders
can, given a particular inputs and connectivity constraints, produce scale-invariant time
cells. When the animal’s velocity modulates the decay rate of the leaky integrators, the
same network gives rise to scale-invariant place cells. Importantly, this is not the case when
velocity is fed as a direct input to the leaky integrators, implying that weight modulation
by velocity might be critical for developing scale-invariant spatial receptive fields. Finally,
we demonstrated that after training, scale-invariant place cells emerge in environments
larger than those used during training. Taken together, these findings bring us closer to
understanding the emergence of neurons with bell-shaped tuning curves in the hippocampus
and highlight the critical role of velocity modulation in the formation of scale-invariant place
cells.
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1 Introduction

Hippocampal activity is characterized by neurons tuned to the magnitude of spatial, temporal, or other
task-relevant variables. For instance, place cells increase their firing rate when an animal is at a specific
location in the environment [O’Keefe, 1976]. Analogously, time cells increase their firing rate at a specific
temporal distance from a salient input [Pastalkova et al., 2008, MacDonald et al., 2011, Umbach et al.,
2020]. A similar coding scheme has been observed for sound frequency [Aronov et al., 2017] and amount
of accumulated evidence [Nieh et al., 2021, Morcos and Harvey, 2016] when those were relevant for
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animals to obtain a reward. Together, these neural representations form mental or cognitive maps
[O’Keefe and Nadal, 1978, Behrens et al., 2018].

The similarity of representations for different variables has led researchers to propose that they
rely on a common computational mechanism [Buzsáki and Tingley, 2018, Eichenbaum, 2013, 2017a,
Howard and Hasselmo, 2020]. This view aligns with empirical evidence showing substantial overlap
between place and time cells, with many hippocampal neurons modulated by both spatial and temporal
information [Kraus et al., 2013]. Furthermore, Weber’s law [Portugal and Svaiter, 2011] provides a
common denominator for representations of non-circular variables [Gibbon, 1977, Wilkes, 2015]. For
instance, the variance in distance estimation scales with the mean for both spatial [Lappe et al., 2007,
Yoshioka, 1929, Harris and Wolbers, 2012] and temporal distances [Buhusi and Meck, 2005, Gibbon,
1977, Buhusi et al., 2009, Balcı and Freestone, 2020]. This behavior can be explained if the magnitude
of the variable is represented internally on a logarithmic axis [Dehaene, 2003], which confers scale
invariance to the neural representation.

Scale invariance is a property where the structure or behavior of a system remains unchanged under
scaling transformations. Mathematically, a function f(x) exhibits scale invariance if scaling the input
x by a constant factor k results in a proportional scaling of the output: f(ax) = aγf(x), where γ is
a scaling exponent that characterizes the system’s response to scaling. This property implies that the
functional form of f(x) remains consistent across different scales of x, allowing the system to operate
uniformly regardless of the magnitude of the input. In the context of neural coding, representing
variables on a logarithmic scale ensures that multiplicative changes in input result in additive shifts in
the internal representation. Specifically, if a variable x is encoded as y = log(x), then scaling the input
by a factor a transforms the representation as follows: y′ = log(ax) = log(a) + log(x) = y + log(a).
This expression demonstrates that a multiplicative change in the input x by a factor k leads to an
additive shift of log(k) in the neural representation y. As a result, the relative differences between
inputs are preserved across scales, because the distance between any two points on the logarithmic scale

corresponds to the logarithm of their ratio: ∆y = log(x2)− log(x1) = log
(
x2
x1

)
. By preserving the ratios

of inputs rather than their absolute differences, the logarithmic representation aligns with Weber’s law,
where perceptual sensitivity is proportional to the relative change in stimulus rather than the absolute
change.

To construct a logarithmic representation, time and place cells should exhibit two specific proper-
ties. First, the width of the time (or place) fields, defined as the standard deviation of their Gaussian
activation profiles, should increase proportionally with the peak time latency (or distance), so they
appear equally wide when plotted against the logarithm of latency (or distance). Second, the distribu-
tion of peak latencies (or distances) should follow a power-law distribution, making the peak positions
equidistant on a logarithmic axis. Neural representations with these properties will exhibit a constant
coefficient of variation—the ratio of the standard deviation to the mean remains constant—reflecting
Weber’s law. This implies that the relative uncertainty in the representation scales with the magni-
tude of the variable, embodying a scale-invariant coding scheme that provides a unified framework for
representing different variables such as time and space [Howard et al., 2014, Tiganj et al., 2021, 2022,
Howard et al., 2015a].

Neural activity in the hippocampus is consistent with the two properties listed above: The width
of temporal fields increases with the peak latency, and the distribution of peak latencies is sublinear
[MacDonald et al., 2011, Cruzado et al., 2020, Tiganj et al., 2017, 2018, Cao et al., 2022]; Similarly,
in spatial navigation, when animals are believed to use path integration rather than visual inputs, the
width of the place fields increases with the distance from boundaries, and the distribution of peak
distances is sublinear [Sheehan et al., 2021, Kraus et al., 2013].

Several models have been developed to explain the activity of temporally and spatially modulated
cells in the hippocampus. Time cells that give rise to an internal logarithmic representation of time
emerge from recurrently connected populations of neurons with specific connectivity profiles [Tank and
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Hopfield, 1987, Grossberg and Schmajuk, 1989, Shankar and Howard, 2012, Voelker and Eliasmith,
2018]. Place cells are thought to emerge through the process of path integration, where an individual’s
velocity and head direction are used to continually update their current position relative to a starting
point. Path integration is widely believed to be a fundamental component of spatial navigation across
multiple animal species, including humans [Etienne, 1992, Mittelstaedt and Mittelstaedt, 1982]. For
example, when an animal navigates in the dark (in the absence of external cues), place cells typically
preserve the spatial tuning, suggesting they may be using path integration to keep track of the animal’s
position [Quirk et al., 1990, Zhang et al., 2014, Mcnaughton et al., 1989, Save et al., 1998]. While place
cell firing is also thought to be impacted by other sensory inputs that provide an estimate of position
relative to familiar landmarks [Jayakumar et al., 2019, Etienne et al., 1996, Chen et al., 2013], these
estimates are proposed to serve as a recalibration signal to compensate for errors in path integration
[Jayakumar et al., 2019, McNaughton et al., 1996]. Moreover, place cells can be observed as early as
the time of first exploration in rats (post-natal day 16) [Muessig et al., 2016], preceding the formation
of other specially tuned cells, such as grid cells [Bjerknes et al., 2018].

To describe path integration in place cells, computational models assume that animals have access
to a neural signal corresponding to speed and movement direction. Neurons with activity correlated
to the running speed were found in several areas, primarily in the medial entorhinal cortex [Sargolini
et al., 2006, Kropff et al., 2015, Hinman et al., 2016]. Neurons tuned to head direction were also
reported in several areas, including dorsal presubiculum [Taube et al., 1990] and the medial entorhinal
cortex [Sargolini et al., 2006] (note though that head direction does not necessarily correspond to the
movement direction, which was represented less strongly by the neurons in those regions [Raudies et al.,
2015, Alexander et al., 2020]).

Well-established path integration models are based on continuous attractor neural networks (CAN)
and describe the network activity as a ‘bump’ that moves continuously over a topological map of neurons.
In these models, each neuron is associated with a particular location, and it has excitatory connections
with nearby neurons (representing nearby locations) and inhibitory connections with distant neurons.
This configuration ensures that if a neuron fires, it stimulates nearby neurons to fire while suppressing
distant neurons, creating a localized ‘bump’ of activity that represents the current position of the animal.
As the animal moves, this bump of activity moves correspondingly across the network [Samsonovich and
McNaughton, 1997, Conklin and Eliasmith, 2005, Redish, 1999]. While successful in generating place
cells, this family of models does not give rise to place fields that obey Weber’s law, where the width of
the fields would increase linearly as a function of the distance from the spatial landmark.

Howard et al. [2014] proposed another approach in a spirit similar to the attractor models. That
model provides a spatial extension of an earlier model for hippocampal time cells [Shankar and Howard,
2012] that builds on top of a temporal context model [Howard and Kahana, 2002, Sederberg et al., 2008].
The key idea behind this approach was that the velocity signal modulates the rate of sequential activation
of time cells, therefore converting time cells into place cells while preserving the properties necessary
for Weber’s law. To implement this in the form of a neural network, [Howard et al., 2014] uses a two-
layer architecture, where the first layer is composed of a set of neurons that perform leaky integration
(characterized by exponentially decaying impulse responses), each with a different time constant. The
population of such neurons constitutes an approximation of a real-domain Laplace transform facilitating
the implementation of a variety of cognitive computations [Howard et al., 2015b]. One such computation
includes modulation of the decay rate of the leaky integrators by velocity, which turns exponential
functions of time into exponential functions of distance. Inverting the Laplace transform, which can
be approximated with matrix multiplication, gives rise to time and place cells that are consistent
with Weber’s law. While analytically tractable, this approach requires the setting of specific weights
to implement the inverse Laplace transforms. These weights need to implement high-order spatial
derivatives, which resemble lateral inhibition. While spatial derivatives have been observed in the
brain, for instance, in the retina [Kandel et al., 2000], it is not clear how such an operation could
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emerge in the hippocampus. Existing work does not provide a learning mechanism that gives rise to
time and place cells that obey Weber’s law.

Here, we sought to provide an unsupervised learning algorithm for the formation of time and place
cells consistent with Weber’s law by building on Howard et al. [2014] and previous deep-learning models.
Specifically, we trained autoencoder models with inputs that decayed exponentially with a spectrum of
time constants. We found that scale-invariant place and time cells emerge especially under the conditions
of local and shared connectivity. This finding was quite robust to hyperparameter settings. Moreover,
sharing connectivity weights allowed the model to generalize to differently-sized environments. We first
trained and evaluated the model on a linear track and then showed that it can be generalized to 2
dimensions, giving rise to log-polar place cells tuned to point landmarks.

2 Methods

2.1 Training data: linear track

To train the network, we generated a set of random trajectories along a 180 cm long track (following
the track length in Sheehan et al. [2021] and inspired by several other studies that examined neural
representations in a linear track [Gothard et al., 2001, Bjerknes et al., 2018]). We used 1mm spatial
resolution and sampled with replacement 1800 spatial locations along the track and computed velocity
between each two sampled locations. Subsequently, the obtained velocities were fed into the input layer
of the neural network, as described below. Note that since the network was trained to reconstruct the
current input, the temporal order of the samples did not impact the training. To construct the training
and testing data, we used 6000 trials, each comprising 1800 velocity samples.

Figure 1: Sparse autoencoder model proposed here builds upon a previous computational model
from Howard et al. [2014] and provides a learning mechanism for the formation of scale-invariant
time and place cells. The network on the left illustrates the three-layer autoencoder architecture,
where the last layer is trained to reconstruct the activity of the leaky first layer. Activity traces
for each layer are shown in the middle as a function of time and distance, showing exponential
decay and scale-invariant sequential activation. The activity traces were constructed using the
computational model with analytically derived weights from Howard et al. [2014]. We investigate
under what conditions a model trained using a reconstruction objective gives rise to a scale-
invariant sequential activation.
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2.2 Network architecture

Following the model described in Howard et al. [2014], we assume that hippocampal cells receive input
that decays exponentially as a function of traveled distance or elapsed time. We hypothesize that spatial
and temporal tuning of hippocampal cells emerges in an unsupervised manner through the reconstruc-
tion of the activity of exponentially decaying cells. To implement these operations, the proposed network
consists of three layers: leaky integrators, place cells, and reconstruction layer (Figure 1). Below, we
describe each of the layers in detail.

2.2.1 Layer 1: Leaky integrators

The first layer of the network is composed of a set of leaky integrators F (t) with a spectrum of time
constants 1/s, each modulated by velocity v:

dF (t)

dt
= v(t) (−sF (t) + f(t)) . (1)

For encoding time, we set v(t) = 1 and write the integral form of the above equation:

F (s; t) =

∫ t

0
e−s(t−t′)f(t′)dt′. (2)

As noted in Shankar and Howard [2012], F (s; t) is a real-value approximation of the Laplace transform
of f(t). It is a real-value transform since s is real, not complex. It is only an approximation since s is
discrete, not continuous. If s was continuous (which would require infinitely many neurons since each
value of s corresponds to one leaky integrator), at time t′, F (s; t = t′) would encode a perfect memory
of f(0 < t < t′). With discrete s, F (s; t = t′) encodes only an approximation of f(0 < t < t′).

To encode elapsed time since some salient transient stimulus and subsequently give rise to time
cells, we consider a simple case where f(t) is the stimulus onset. Without loss of generality, we assume
that stimulus onset is at time t = 0: f(t) = δ(t = 0). Therefore, following the stimulus onset, units in
F (t) will decay exponentially from 1 towards 0 as a function of time with a spectrum of decay rates s
(Figure 1):

F (t) = e−st. (3)

When encoding distance, velocity v can take any positive or negative value. For the moment,
we focus on representing distance in 1-D space (linear track) before extending it to 2-D. Modulating
the decay rate by velocity turns exponentially decaying functions of time into exponentially decaying
functions of distance. To show that analytically, we write velocity as a time derivative of distance
v = dx

dt :
dF (t)

dt
=

dx

dt
(−sF (t) + f(t)) . (4)

Multiplying the above equation by dt/dx gives:

dF (x(t))

dx
= −sF (x(t)) + f(x(t)). (5)

Now the units in F decay exponentially as a function of distance x from the start point such that
f(x(t)) = δ(x = 0):

F (x) = e−sx. (6)

Here δ(x = 0) represents contact with a landmark such as a wall or an object (e.g., the beginning
of the linear track). The leaky integrators decay towards zero when the movement direction is away
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from the origin and increase to their maximum value (i.e., 1) when the agent moves toward the origin
(Figure 1).

Note that the above formalism can be generalized beyond time and distance. If instead of velocity,
the decay is modulated by some variable α = dz

dt , then F decays exponentially as a function of z. Thus
F can be turned into an exponentially decaying function of any variable whose derivative is observable
from the inputs [Mochizuki-Freeman et al., 2023, Maini et al., 2023]. For instance, this can provide an
explanation for neurons tuned to numerosity (if α is a change in the count).

In our experiments we used 100 neurons in the F layer with values of s from 0.001 to 0.1 spaced
either logarithmically or linearly as specified in the Results section.

Figure 2: To promote the emergence of scale-invariant place and time cells, following the theoret-
ical results, we experimented with two different connectivity constraints: Local connectivity and
local connectivity with shared weights. A) Local connectivity only allows connection between
neurons across two layers if they have the same index or their indices are less than ± 9 apart.
B) example of the resulting connectivity matrix. C) Local connectivity with shared weights: in
addition to being locally connected, all neurons in the P layer share the same set of 19 weights.
Therefore, for all neurons, the values of weights for i-th neighbor change simultaneously. D)
example of the resulting connectivity matrix.

2.2.2 Layer 2: Time/place cells (P) layer

Cells in the leaky integrator layer project into a set of cells we expect to become time and place cells
after the self-supervised training. Previous work [Shankar and Howard, 2012, Howard et al., 2014] has
shown that there is a linear mapping from a set of leaky integrators to a set of scale-invariant time
and place cells (depending on whether the exponential decay in F was a function of time or distance).
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Specifically, that linear mapping approximates a k-th order numerical derivative with respect to s:

f̃(
∗
τ ; t) = L−1

k F (s; t) =
(−1)k

k!
sk+1 dk

dsk
F (s; t), (7)

where
∗
τ := k/s and L−1

k represents the inverse Laplace transform operator approximated by a finite
difference of order k. When k → ∞, the above equation inverts the Laplace transform [Post, 1930],

bringing functions of s from the Laplace domain into functions of
∗
τ which represents an internal temporal

axis.
Importantly, functions of time in the inverse are encoded through instantaneous activity in f̃(

∗
τ ; t)

meaning that f̃(
∗
τ ; t = t′) encodes approximation of f(0 < t < t′) such that value of f̃(

∗
τ i; t = t′)

approximates the value of f(t =
∗
τ i), where

∗
τ i is i-th value of

∗
τ . When the input function is a delta

pulse, like in our case, then units in f̃ activate sequentially as time cells with peak times equal to
∗
τ : ∂F/∂t = 0 ⇒ t =

∗
τ . Furthermore, the coefficient of variation (CV) computed as the ratio of the

standard deviation and the mean of f̃ across
∗
τ is not a function of t: CV = (k − 2)−1/2 implying that

the width of the temporal fields scales linearly with the peak time, consistently with Weber’s law.

The same equation holds for exponentially decaying functions of distance such that f̃(
∗
x;x) =

L−1
k F (s;x). In this case, f̃(

∗
x;x) is a set of place cells that activate sequentially as a function of

distance from the origin such that the width of the place fields scales linearly with the peak distance
(Figure 1).

Our objective here is to evaluate whether and under what conditions the inverse transform giving
rise to time and place cells can emerge through self-supervised learning. Therefore, rather than setting
the weights between the leaky integrator and P layer to L−1

k , we initialized those weights using a random
Gaussian distribution with a mean of zero and standard deviation of 1/l, where l is the number of neurons
in the leaky integrator layer. This initialization method follows commonly used Kaiming’s method [He
et al., 2015]. Subsequently, we trained the network in a self-supervised way: P = ReLU(L1F ). For
100 leaky integrators and 100 cells in P. L1 is a 100 by 100 matrix of trainable weights, ReLU is the
activation function that ensures that activities of neurons in the P layer are positive.

2.2.3 Layer 3: Reconstruction layer

To implement self-supervised learning, we use autoencoder architecture such that the P layer projects
onto the reconstruction layer R via a 100 by 100 matrix of trainable weights L2: R = L2P

The network was trained using the mean square error (MSE) loss between R and F :

lMSE =

N∑
n=1

(Rn − Fn)
2, (8)

where N=1800 is the number of samples in each trial.

2.3 Regularization

For time and place cells to emerge, it was necessary to incorporate regularization. We investigated the
following regularization regimes: dropout, L2 norm, activity penalty, sparsity, shared weights, and local
weights.

To motivate different regularization approaches, we note that the inverse transform matrix L−1
k

approximates a k-th-order numerical derivative with respect to s. In practice, this means that each row
of L−1

k is a shifted version of the previous row and has only 2k + 1 non-zero values. The fact that L−1
k

weights repeat across rows means that the connectivity pattern between a set of leaky integrators and
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each cell in the P layer is the same. This implies that learning the connectivity pattern for one cell can
be sufficient if that connectivity pattern can be replicated across other cells.

The properties of L−1
k inspired our regularization methods. The local weight regularization restricts

the connectivity of each neuron to local neighbors in the previous layer based on the following criteria:

L1i,j =

{
N (µ, σ2), if |i− j| ≤ 9

0, otherwise
(9)

whereN (µ, σ2) is a normal distribution with a zero mean and unit variance. This criterion restricted
the connectivity of each neuron to only 19 other neurons in the previous layer (mimicking value of k = 9,
which is similar to values used in previous studies [Howard et al., 2014]), i.e., neurons in the previous
layer with the same index ±9, (Figure 2A, B). A network composed of 100 neurons in the leaky integrator
layer and 100 neurons in the P layer has 1900 trainable parameters in L1.

Furthermore, we used shared weights regularization inspired by the fact that rows of L−1
k are trans-

lated versions of each other. The shared weights regularization implies that each cell in the P layer
is connected with a subset of leaky integrators using the same weights (Figure 2C, D). This further
restricts the number of trainable parameters in L1 such that for a network composed of 100 neurons
in the leaky integrator layer and 100 neurons in the P layer, matrix L1 would have only 19 trainable
parameters.

Another regularization that we investigated to promote the formation of time and place cells was
the activity penalty (lA). Specifically, we defined an activity penalty as the squared root of the sum of
squares of activities in the P layer:

lA =

√√√√ M∑
i=1

p2i (10)

where M = 100 is the number of neurons in the P layer and pi is the firing rate of the i-th neuron
in the P layer. To control the magnitude of loss generated by activity penalty, we multiplied it by a
coefficient λ2 with values between 10−7 and 10−9.

Finally, as another constraint of the activity in the P layer, we implemented sparsity regularization
loss that promotes sparse activations across the neuron population. Specifically, for each training
example j, we calculated the average normalized firing rate of the neurons in the P layer using the
sigmoid activation function:

ρ̂j =
1

M

M∑
i=1

σ(p
(j)
i ) (11)

where σ(p
(j)
i ) is the activation of neuron i for training example j after applying the sigmoid function, ρ̂j

represents the average activation across all neurons in the place cell layer for the j-th training example.
We used the sigmoid function to ensure that the firing rates are within the range [0, 1], making them
suitable for interpretation as probabilities.

We then computed the Kullback–Leibler (KL) divergence between the desired sparsity level ρ and
the average firing rate ρ̂j for each training example:

KL Loss =
∑
j

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
, (12)

where j is the training step. The parameter ρ is the sparsity parameter that represents the desired
mean normalized firing rate across the neuron population for each input.

By minimizing this KL divergence, we encourage the average activation across neurons for each
input to match ρ, effectively promoting sparsity at the population level per sample. This arrangement
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forces the representations in the P layer to have an average firing probability of ρ across neurons for
each input. Unlike simple activity penalties that might push activations toward zero, this KL diver-
gence penalizes deviations from the desired sparsity level ρ. The loss is minimized when ρ̂j = ρ for each
training example, encouraging the network to maintain the target average activation level rather than
suppressing activations entirely. The KL loss was scaled by a coefficient λ1 with a value of 10−4.

Accordingly, the total loss (l) was the sum of MSE, KL loss, activity penalty and L2 regularization
loss:

l = lMSE + λ1lKL + λ2lA + λ3L2 (13)

2.4 Hyper-parameter sweeps

To investigate the conditions in which place and time cells emerge, we performed a systematic sweep on
the following hyper-parameters: P cell layer size: 50, 100, dropout value (between the leaky integrators
and the P layer): 0.1, 0.2, 0.3, activity penalty coefficient (λ2): 10−9, 10−8, 10−7, L2 (weight decay)
regularization coefficient λ3: 0.0001, 0.001, 0.01. In all experiments, we used the Adam optimizer and
evaluated learning rates of 0.001, 0.01, and 0.1. We found the best results, in terms of stability of
convergence and the number of place cells, with a learning rate of 0.1 and all the results presented here
are obtained with that learning rate. All of the experiments were run with three different seeds and
presented results include standard deviations and confidence intervals computed from the three sets of
results. All simulations were run using PyTorch version 2.5.1 and Pytorch Lightning 2.3.0 [Paszke et al.,
2019, Falcon, 2019].

2.5 Velocity as an input rather than a modulator

In the model described in Section 2.2.1, we used velocity as a modulator of the decay rate of leaky
integrators. To examine whether scale-invariant place cells can emerge from integrating velocity, we
performed a control experiment and used the velocity as an input to the model using the following
equation instead of Equation 1:

dF (t)

dt
= −sF (t) + v(t). (14)

The rest of the model was kept the same to isolate the effect of velocity integration.

2.6 Evaluation on linear track

We focused our evaluation on place cells since, in our model, time cells are a special case of place cells
with a velocity fixed to 1. We quantified the number and properties of place cells emerging in the P
layer. To count a cell as a place cell, we required it to fire above 50% of its maximum firing rate only
in a small area of the track (less than 20% of locations) and to have low activity (below 25% of the
maximum) in the rest of the locations on the track. Additionally, we excluded cells that had a peak
within the five bins from the beginning or end of the track since those cells did not have a typical
bell-shaped firing characteristic for place cells but a decaying or growing profile. For the evaluation of
scale invariance, we examined whether the coefficient of variation remained constant across the place
cells.

2.7 Evaluation in 2-D environment

While we used a linear track to train the network, we also evaluated the spatial tuning in a 2-D environ-
ment. Specifically, we tested the network within a circular area with a radius of 80 cm (Figure 3A). We
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designed 50 trajectories, each comprising 8000 time steps, to emulate the random exploration patterns
of rodents. This was achieved by aligning the rodent’s facing direction with its heading direction [Cueva
and Wei, 2018]. Each trajectory point was computed by selecting a velocity from a Rayleigh distribu-
tion (scale parameter = 1.3) and a rotation angle from a Gaussian distribution (mean = 0, standard
deviation = 165 degrees). To ensure the trajectories remained within the boundaries, if a point strayed
beyond 80 cm from the center, the heading angle was adjusted to direct back towards the center.

Figure 3: The 2-D model uses the connectivity matrix pretrained on the 1-D model. A) Two
examples of 2-D trajectories. The origin (starting point) is marked with a red dot. B) The 2-D
model uses velocity inputs and the pretrained matrix from the 1-D model to generate a set of
place cells. Place cell layer output was copied into 8 copies, and each copy was modulated by a
von Mises distribution with a different center, giving rise to the angular specificity of cells.

The 2-D model was built by expanding the linear track model: we used the weights obtained by
training on the linear track. The velocity here refers to the rate of change in Euclidean distance from the
central origin of the circle, influencing the leaky integrators similar to the linear model. To incorporate
angular specificity, the output from the linear track’s place cell layer—now functioning as the input
for the 2-D place cells—was replicated eight times. Each replication was then modulated by a distinct

von Mises function, defined as f(θ) = eκ cos(θ−µ)

2πI0(κ)
, where θ represents the angle in polar coordinates from

the central origin, µ is the mean direction, κ is the concentration parameter, and I0 is the modified
Bessel function of the first kind at order zero. This modulation ensured that each set of 2-D place
cells was activated within a specific angular range. This approach models the angular input similarly
to the angular input in grid cell models [Banino et al., 2018], emphasizing that the analysis of place
cell outputs in this 2-D environment depends critically on the original place cell output from the linear
track model.

3 Results

We first show the results of training the network on data from a linear track and investigate the
importance of shared weights and sparsity constraints for the emergence of scale-invariant place cells.
Then, we illustrate that connectivity patterns learned in 1-D can give rise to 2-D place cells. We also
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show that the connectivity pattern learned on a short track can give rise to scale-invariant place cells
at arbitrarily long tracks.

The leaky integrator layer of the network consisted of 100 neurons with either logarithmically or

linearly spaced values of s from 0.001 to 0.1. These values were chosen so that
∗
τ = k/s spans the

length of the track. Given the spatial resolution of 1mm and with k = 9,
∗
τ values ranged from 80mm to

8000mm. The default choice for spacing was set to logarithmic spacing unless it is specified otherwise.
The reconstruction layer had the same number of neurons as the leaky integrator layer. The number of
neurons in the place cell layer varied from 10 to 300 as described in Section 2.4.

3.1 Autoencoder with no connectivity constraints

Figure 4: Activity of neurons in the P layer for an autoencoder without sparsity or connectivity
constraints. Only neurons with non-zero activity are shown and the activity of each neuron is
normalized to be between 0 and 1. Each panel except E has 100 neurons in the P layer. Each
panel except C has geometrically spaced time constants. Panel A shows the activity with no
regularization, while panels B, D, and E have different types of regularization with the value of
regularization parameters written in the parentheses (see supplemental figures for results with
different values of the regularization parameters).

We first trained the network described in Section 2.2 without any regularization such that the loss
function consisted only of the MSE loss. Therefore, for a network composed of 100 neurons in the P
layer, the number of trainable parameters was 10000 in matrix L1 and 10000 in matrix L2. The activity
of neurons in the P layer as a function of position along the track is shown in Figure 4A for 100 neurons
in the P layer. Some of the neurons remained silent, some had gradually decreasing activity (similar to
their input, leaky integrators), and some developed unimodal activity profiles, like biological place cells.
It is worth noting that neurons with unimodal activity profiles mostly reached a peak firing rate in a
narrow spatial range. This is in contrast to biological place cells, which typically span the environment
that the animal is exploring. Adding dropout (Figure 4B and Figure A3), L2 regularization (Figure 4D
and Figure A2), activity penalty (Figure 4E and Figure A4) and different number of units in the P layer
(Figure 4F and Figure A1) had an impact on the neural activity as detailed in Table 1 and in Figure 5.
Some configurations resulted in a large number of place cells (e.g., activity penalty of 10−8 led to 50
place cells). To examine whether the width of the place fields scaled linearly with the peak distance,
as expected if the activity is scale-invariant, we computed the correlation coefficient between the width
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Figure 5: Relationship between place field widths and peak distances for different values of the
hyperparameters for autoencoder with no connectivity constraints. Each row corresponds to a
sweep over a different parameter. Note that some hyperparameters values resulted in no place
cells and those are not shown here (see Section 2.4 for all the values of the hyperparameters). The
results shown here are correspond to one of the three seeds. Correlation coefficient is indicated
in the upper left corner. For average number of place cells and average correlation coefficient see
Table 1.

and the peak. For a scale-invariant activity, the CV would be constant resulting in perfect correlation.
While we observed large variability with hyperparameter setting, the largest correlation coefficient in
Table 1 of 0.98 indicates that some hyperparameter combinations can result in scale-invariant learning
in the absence of connectivity constraints. Replacing the logarithmic spacing of time constants in the
leaky integrator layer with linear spacing did not change these properties (Figure 4C).
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Table 1
Number of place cells and correlation coefficient between width and peak distance across hyper-
parameter choices for autoencoder without connectivity constraints. The reported values are the
average across three runs with standard deviation for the number of place cells and confidence
intervals for the correlation coefficient.

Type Value Corr. Coeff. (CI) # Place Cells (±SEM)

Activity Penalty 10−7 0.86 (0.79, 0.91) 26.0 ± 3.06
10−8 0.83 (0.75, 0.89) 30.0 ± 4.16
10−9 0.80 (0.71, 0.86) 32.67 ± 2.33

Dropout 0.1 0.72 (0.60, 0.81) 29.0 ± 1.15
0.2 0.48 (0.25, 0.65) 22.0 ± 1.15
0.3 0.47 (0.20, 0.67) 16.67 ± 4.70

L2 10−2 0.60 (0.40, 0.75) 20.0 ± 2.65
10−3 0.98 (0.96, 0.99) 14.33 ± 1.33
10−4 0.68 (0.41, 0.84) 11.0 ± 1.53

ρ 0.1 < 5 Place Cells 0 ± 0
0.2 < 5 Place Cells 0 ± 0
0.3 < 5 Place Cells 0 ± 0
0.5 -0.64 (-0.90, -0.06) 5.67 ± 1.45
0.7 0.84 (0.76, 0.89) 33.0 ± 7.64

Size 50 0.82 (0.64, 0.91) 11.33 ± 0.67
100 0.81 (0.67, 0.89) 16.67 ± 2.03

3.2 Sparse autoencoder with no connectivity constraints

Next, we added a sparsity constraint to the network as described in Section 2.3. We used sparsity
coefficient of 0.5 and repeated all the parameter sweeps as in the previous section. Results without any
additional regularization are shown in Figure 6A. Other panels in Figure 6 show the effects of applying
L2 regularization, dropout, activity penalty, using linear instead of log-spacing of time constants and
using a different number of neurons in the P layer (see also Figure A7, Figure A6, Figure A8 and
Figure A5 for more examples). Summary of the results is provided in Table 2. Overall, the resulting
neural activity shows the emergence of relatively broad place fields in some neurons and a much wider
spatial range of the peak firing rate than without the sparsity term.

3.3 Sparse autoencoder with local and shared weights

Subsequently, we investigated the impact of localizing the connectivity between the input layer and
place cell layer (see Section 2.3 for details). This often resulted in place cells with narrow place fields
that do not resemble biological data (Figure 7, Figure 8, Table 3, see also Figure A9, Figure A10,
Figure A11 and Figure A12 for more examples). Adding activity penalty and dropout made some of
the place fields wider

Lastly, we constrained the connectivity matrix between the input layer and the place cell layer to
have both local and shared weights (see Section 2.3 for details). This gave rise to scale-invariant place
cells that match the theoretical model described in Section 2.2 and resemble the experimental data
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Figure 6: Activity of neurons in the P layer for an autoencoder with sparsity constraints but no
connectivity constraint. Panels follow the same conventions as in Figure 4.

Table 2
Number of place cells and correlation coefficient between width and peak distance across hyper-
parameter choices for autoencoder without connectivity constraints, but with sparsity coefficient
ρ = 0.5. The reported values are the average across three runs with standard deviation for the
number of place cells and confidence intervals for the correlation coefficient.

Type Value Corr. Coeff. (CI) # Place Cells (±SEM)

Activity Penalty 10−7 0.64 (0.45, 0.77) 20.33 ± 1.20
10−8 0.29 (-0.08, 0.60) 11.67 ± 0.33
10−9 0.69 (-0.50, 0.98) 3.67 ± 0.88

Dropout 0.1 < 5 Place Cells 3.33 ± 0.33
0.2 < 5 Place Cells 3.33 ± 0.67
0.3 < 5 Place Cells 3.33 ± 0.33

L2 10−2 0.72 (0.40, 0.89) 8.33 ± 0.67
10−3 -0.31 (-0.69, 0.20) 7.67 ± 1.33
10−4 -0.69 (-0.95, 0.13) 4.33 ± 0.67

Size 50 < 5 Place Cells 1.0 ± 0.58
100 0.88 (0.24, 0.99) 4.0 ± 1.15

[Sheehan et al., 2021] (Figure 9, Table 4 and Figure 11, see also Figure A13, Figure A14, Figure A15
and Figure A16 for more examples). The scale invariance is apparent when the spatial distance from
the origin is shown on a log scale (second column in Figure 11). The peaks of the place fields were
spaced logarithmically (following the theoretical model, this was a consequence of logarithmically spaced
time constants), and the width of the place fields increased linearly with the peak location (Figure 10),
consistent with Weber’s law. The weights learned by the network (fourth column in Figure 11) resembled
a spatial derivative, which provides an approximation of the inverse transform (see Section 2.2). Overall,
this constraint led to linear relationship between width and the peak distance for a wide range of
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Figure 7: Activity of neurons in the P layer for an autoencoder. Panels follow the same con-
ventions as in Figure 4. Note the sharpening of the place fields compared to the plots without
connectivity constraints.

Table 3
Number of place cells and correlation coefficient between width and peak distance across hyper-
parameter choices for autoencoder with local connectivity. The reported values are the average
across three runs with standard deviation for the number of place cells and confidence intervals
for the correlation coefficient. Sparsity coefficient ρ = 0.5 unless specified otherwise.

Type Value Corr. Coeff. (CI) # Place Cells (±SEM)

Activity Penalty 10−7 0.31 (0.08, 0.50) 26.0 ± 0.58
10−8 0.49 (0.28, 0.65) 24.67 ± 2.33
10−9 0.36 (0.14, 0.55) 25.33 ± 0.88

Dropout 0.1 0.50 (0.26, 0.68) 19.0 ± 2.52
0.2 0.37 (0.10, 0.60) 17.67 ± 1.76
0.3 0.31 (-0.04, 0.60) 12.67 ± 1.20

L2 10−2 < 5 Place Cells 1.67 ± 0.67
10−3 < 5 Place Cells 0 ± 0
10−4 0.44 (-0.07, 0.77) 7.33 ± 0.67

ρ 0.1 0.89 (0.82, 0.94) 19.0 ± 1.15
0.2 0.87 (0.78, 0.92) 19.33 ± 4.18
0.3 0.75 (0.59, 0.85) 18.0 ± 3.79
0.5 0.61 (0.45, 0.73) 28.67 ± 1.86
0.7 -0.09 (-0.31, 0.14) 27.0 ± 0.58

Size 50 < 5 Place Cells 2.33 ± 0.33
100 0.76 (0.64, 0.84) 25.67 ± 2.73

No Sparsity — 0.41 (-0.22, 0.80) 6.33 ± 1.45
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Figure 8: Relationship between place field widths and peak distances for different values of the
hyperparameters for autoencoder with local connections. Each row corresponds to a sweep over a
different parameter. Note that some hyperparameters values resulted in no place cells and those
are not shown here (see Section 2.4 for all the values of the hyperparameters). The results shown
here are correspond to one of the three seeds. Correlation coefficient is indicated in the upper
left corner. For average number of place cells and average correlation coefficient see Table 3.

hyperparameter choices (Table 4).
We also noted that most of the training time was spent on minimizing the KL loss (coming from

the sparsity regularization) rather than the MSE loss (Figure 12). Inserts in panels A (local, not shared
weights) and B (local shared weights) in Figure 10 show decrease of KL (left) and MSE (right) loss as a
function of training steps. For both shared and non shared weights, the loss MSE loss decreases rapidly
towards a convergence value, while KL loss decreases much more slowly. The difference is especially
pronounced for model architecture with local, not shared weights (Figure 12A).

3.4 Using velocity as an input to the network does not lead to the
emergence of place cells

We investigated if scale-invariant place cells can also emerge when simply using the velocity as an input
rather than a modulator, as described in Equation 14. To this end, we trained the model with velocity
as input and found that it does not produce place cells (Figure 13). We found no emerging place cells.
This finding was not affected by adding sparsity, local weights, and weight sharing. Also, we observed
no place cells when we used different value of dropout, L2 loss, activity penalty and sparsity loss (we
conducted the same hyperparameter search that was used for other network configurations, as specified
in Section2.4).
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Figure 9: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
with local connectivity with shared weights. Panels follow the same conventions as in Figure 4.
Neural activity is now consistent with Weber’s law (see main text and Figure 11 for details about
the evaluation).

3.5 Emergence of log-polar place cells in 2-D environment

Adopting the connectivity matrix learned in the 1-D environment and using it in the 2-D environments
as described in Section 2.7 gives rise to log-polar spatially modulated fields that resemble findings of
[Høydal et al., 2019] and more generally show similar tuning as see in the retina (see Section 4 for
discussion). Since the 2-D representation was constructed by replicating multiple 1-D representations
(without additional training), it inherits the scale-invariant property demonstrated in the previous
section. Therefore the width of the place fields scales linearly as a function of distance from the center,
regardless of the angular position.

3.6 Emergence of place cells in large environments

The mechanism of shared weights enables the emergence of time and place cells at any temporal or
spatial scale, including those not available during training. Because the weights are shared, each time
or place cell receives the same projection but from a different set of neurons in the leaky integrator
layer (Figure 2C). This means if the network has learned the projection weights on short tracks, it will
still have place cells on long tracks. Furthermore, as shown in Section 2.2, those cells will be scale-

invariant. The range of scales is determined by the choice of the minimum and maximum value of
∗
τ as

it determines the shortest and longest peak time or distance.
Figure 15 shows that shared weights learned with the proposed self-supervised setup indeed give

rise to place cells at distances larger than the training distances. In this case, the training data was the
same as the training data used to generate 1-D place cells in a 180 cm long track, but the testing track
had a length of 300 cm. Therefore the same neurons continue having peak activities in the first 180
cm, without any change. The neurons added after training will have peaks distances between 180 cm
and 300 cm. The only requirement for this is that there are neurons in the leaky integrator layer with
sufficiently large time constants to cover the range of 300 cm.
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Figure 10: Relationship between place field widths and peak distances for different values of the
hyperparameters for autoencoder with local and shared connections. Each row corresponds to a
sweep over a different parameter. Note that some hyperparameters values resulted in no place
cells and those are not shown here (see Section 2.4 for all the values of the hyperparameters). The
results shown here are correspond to one of the three seeds. Correlation coefficient is indicated
in the upper left corner. The Strong correlation between width and peak distances is broken
only at the edges, where the shared connectivity pattern is incomplete. For average number of
place cells and average correlation coefficient see Table 4.

4 Discussion

Extensive efforts have been put into better understanding the computational mechanisms behind hip-
pocampal neurons. Our work builds on similarity observed in neural representations of time and space
[Eichenbaum, 2017b, Howard and Eichenbaum, 2015, Ekstrom and Ranganath, 2018, Banquet et al.,
2021, Alexander et al., 2020]. Specifically, we investigated whether and under what connectivity con-
tracts self-supervised learning can result in weights analytically derived in a computational model that
unifies hippocampal neural representations of space, time and concepts [Howard et al., 2014].

The model from Howard et al. [2014] converts representations of time into representations of other
variables for which a temporal derivative is available. Thus, representations of time can be converted
into representations of distance using a velocity signal. The key property of the model is that it results
in scale-invariant representations, consistent with Weber’s law. To construct the representation of time,
the model requires a spatial derivative that resembles lateral inhibition. We found that self-supervised
learning can indeed give rise to such a connectivity profile (Figure 11).

The connectivity profile did not emerge until we restricted weights to be local, and imposed sharing
of the weights across the neurons. Specifically, in an autoencoder without weight constraints, with all
to all connections (all neurons in the leaky integrator layer connecting to all neurons in the P layer),
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Table 4
Number of place cells and correlation coefficient between width and peak distance across hyperpa-
rameter choices for autoencoder with local connectivity and shared weights. Sparsity coefficient
ρ = 0.3 unless specified otherwise.

Type Value Corr. Coeff. (CI) # Place Cells (±SEM)

Activity Penalty 10−7 0.97 (0.96, 0.98) 46.0 ± 23.07
10−8 0.96 (0.93, 0.97) 24.67 ± 20.80
10−9 < 5 Place Cells 0 ± 0

Dropout 0.1 0.98 (0.97, 0.99) 37.33 ± 21.95
0.2 0.99 (0.98, 0.99) 65.33 ± 3.53
0.3 0.98 (0.96, 0.99) 20.67 ± 20.67

L2 10−2 0.95 (0.89, 0.98) 9.0 ± 8.50
10−3 0.98 (0.97, 0.99) 65.33 ± 3.84
10−4 0.99 (0.99, 1.00) 23.67 ± 23.67

ρ 0.1 0.99 (0.98, 0.99) 42.67 ± 21.96
0.2 0.97 (0.96, 0.98) 45.0 ± 22.50
0.3 0.97 (0.96, 0.98) 46.33 ± 23.21
0.5 1.00 (1.00, 1.00) 24.0 ± 21.55
0.7 1.00 (0.99, 1.00) 23.4 ± 14.37

Size 50 < 5 Place Cells 0 ± 0
100 0.98 (0.98, 0.99) 64.0 ± 2.52

No Sparsity — 1.00 (1.00, 1.00) 43.33 ± 21.86

the reconstruction loss was reduced, but the neural activity in the P layer in general did not resemble
scale-invariant place cells. This did not change after making the architecture overcomplete (having more
neurons in the P layer than in the leaky integrator layer) or undercomplete (having more neurons in
the leaky integrator layer than in the P layer), as shown in Figure A5.

Enforcing local connectivity between the leaky integrator layer and the P layer (Figure 2A) gave rise
to place cells, but with unrealistically narrow tuning curves (Figure 7). However, when local connectivity
used shared weights, such that each neuron in the leaky integrator layer projected with the same but
translated connectivity pattern to the P layer (Figure 2C) emerging place cells resembled those from
neural recordings (e.g., [Sheehan et al., 2021] in linear track and [O’Keefe and Burgess, 1996] in 2-D
environments).

Shared weights enable the network to do path integration on tracks longer than those used during
training (Figure 15). We also showed that in the 2D environment, using the weights resulting from
training on a linear track and modulating the outputs with the animal’s angle results in spatially tuned
cells that resemble 2D place cells and object vector cells, similar to ones reported in Høydal et al.
[2019], Deshmukh and Knierim [2013]. In this context, the animal’s angle is defined relative to the
log-polar space with the center of the space representing the origin and value of the angle corresponding
to difference of the animal’s angle relative to north.

The current model relies on the presence of cells that decay exponentially as a function of elapsed
time. Recent studies found such neurons in the Lateral Entorhinal Cortex (LEC) of rodents and
primates and named them temporal context cells [Bright et al., 2020, Tsao et al., 2018]. Therefore, if
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Figure 11: Place cells show scale-invariant properties when weights are local and shared, and
time constants are geometrically spaced. The first two columns show the activity of neurons in
the P layer with linear (first column) and logarithmically (second column) spaced x-axis. Equal
with and uniform spacing of units in the second column indicates the scale invariance. The third
column shows the learned connectivity matrix between the leaky integrators and cells in the P
layer – note that the weights are local and shared. The fourth column shows the cross-section of
the connectivity matrix displaying the weights between a single neuron in the leaky integrator
layer and the neurons it is connected to within the P layer. Because the weights are shared,
this connectivity pattern is the same for all neurons in the leaky integrator layer. Note that the
weights switch signs consistent with the idea that they are implementing an approximation of
a spatial derivative. A) Network trained using a sparsity parameter of 0.7. B) Network trained
using a sparsity parameter of 0.1. Other regularization terms (dropout, L2 and activity penalty)
were set to 0, same as in Figure 9A).

LEC projections to the hippocampus go through the connection matrix L1, they would give rise to time
cells. If the LEC signal were modulated by velocity, then the hippocampal activity would include place
cells.

For plausibility of our framework, it is essential that neural firing can change with a wide range
of time constants, and that those time constants can be modulated by external signals, in particular
the speed of the animal. Previous work has addressed computational mechanisms that could gives rise
to neurons with such properties [Tiganj et al., 2015, Liu et al., 2019]. That work focused on calcium-
controlled cation (CAN) current and demonstrated that when the amount of calcium leaving the cell
during an interspike interval is larger than the calcium influx during a spike, the overall decay in calcium
concentration can be exponential. This is shown to result in exponentially decaying firing rate and with
realistic biophysical values, the time constants can range up to several minutes. Tiganj et al. [2015] have
also demonstrated that the time constants can be modulated with biologically plausible mechanisms
including external signal (e.g., neuromodulators) that can impact the time constant of calcium clearance,
the maximum conductivity of the CAN current channels, the amount of calcium influx during spikes
or the charge needed to cause each spike. Specifically, based on a large body of previous work on
modulation of CAN current by the acetylcholine level and changes in persistent firing [Yoshida and
Hasselmo, 2009, Yoshida et al., 2012, Fransen et al., 2002, Fransén et al., 2006, Egorov et al., 2002], the
authors proposed that cholinergic modulation can influence the amount of charge necessary to generate
an action potential, therefore providing means for modulating the time constants. The time course of
cholinergic modulation depends on how fast the concentration of acetylcholine can change and on the
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Figure 12: Total loss values during training with local (A) and shared weights (B). Most of the
optimization time is spent on lowering the KL loss, as indicated by insets showing KL and MSE
loss separately.

Figure 13: Using velocity as an input to the network rather than a modulator of recurrent
weights does not give rise to place cells. A-B) The network successfully minimizes the loss
and reconstructs the inputs, but this does not give rise to place cells (B). C-D) logarithmic
spacing of the time constants 1/s from Equation (14) does not change the results: inputs are
reconstructed with high sparsity, but place cells do not emerge (D). All parameters were the
same as in Figure 11B, specifically we did not use dropout, and L2 and activity penalty were set
to 0, while sparsity loss was 0.7.

time course of muscarinic receptor activation. If the acetylcholine level can be affected by the speed
of the animal, then such mechanism would directly translate into modulation of the firing rate (see
discussion in Tiganj et al. [2015] for more examples of possible modulatory mechanisms).

Sparsity and local connectivity with lateral inhibition are common in computational models of neural
circuits. In particular, sparsity has been a common assumption underlying neural coding across the
brain [Olshausen and Field, 1996, Chen et al., 2018, Foldiak, 2003, Lundqvist et al., 2018]. Similarly, the
existence of local connectivity with lateral inhibition has also been widely assumed and often associated
with sparsity [Yu et al., 2014, Munoz and Istvan, 1998, Xing and Gerstein, 1996, Burke et al., 2017]. The
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Figure 14: Scale invariance in the radial direction combined with angular tuning gives rise to
log-polar tuning curves. Each plot shows an example of a place cell formed in the 2-D model.
Color represents the average activity within a 4 by 4 square in the environment (scale is the same
as in Figure 3) normalized between 0 (dark blue) and 1 (bright yellow).

Figure 15: Evaluating place cells on a track longer than the training track. Due to shared
weights, once trained, place cells maintain scale invariance across unseen track lengths. A) Place
cells after training on a 180 cm long track. B) Place cells after evaluation on a 300 cm long track.
Top row: Linear scale. Bottom row: Logarithmic scale.
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fact that these constraints were necessary for the emergence of scale invariance suggests a potentially
important role of evolution in shaping the connectivity patterns into local and repetitive across neurons
(shared weights).

In recent years, several other models of spatially tuned cells have emerged. Cueva and Wei [2018]
have used recurrent networks fed with velocity inputs to generate grid and border cells. Vijayabaskaran
and Cheng [2022] showed that place cells and grid cells emerge in a model trained on goal-directed
navigation. Benna and Fusi [2021] showed that by giving the angle and distance from the wall to the
network and imposing sparsity on the inputs, place cells can form, and their shape changes depending on
the previous movement history of the animal. Aziz et al. [2022] used a combination of path integration
and vision inputs to train an autoencoder, resulting in spatially modulated cells, including place cells
and grid cells. While these models were remarkably successful in giving rise to spatially modulated
cells, their focus was not on constructing scale-invariant time and place cells.

In complex real-world environments, factors beyond speed are likely to affect the neural correlates
of spatial position. In particular, visual inputs may be used to correct the spatial representation, for
instance through graph relaxation [Erdem et al., 2015]. This could disrupt scale invariance since the
variance in the estimate of the traveled distance would become dependent on visual inputs and might no
longer scale with the mean. This would have a similar effect on scale invariance as counting or having
access to a watch in interval reproduction tasks [Fetterman and Killeen, 1990]—counting improves
performance and breaks scale invariance. Nevertheless, understanding the neural mechanisms of path
integration remains critical for comprehending how spatial representations are formed and maintained,
especially since path integration provides a foundational process upon which additional sensory cues
can be utilized. Path integration also has valuable clinical relevance since deficits in path integration
have been linked to neural degeneration related to Alzheimer’s disease [Segen et al., 2022, Castegnaro
et al., 2023].

Our experiments focused on the spatial domain, however the equivalent results can be generated in
the temporal domain. Setting velocity input to 1 converts the place cells into time cells – the spatial
domain can be seen as a generalization of the model, while the temporal domain is a special case with a
velocity equal to 1. Therefore, learning the weights could happen in either temporal or spatial domain.
In the temporal domain, the onset of a salient stimulus triggers a set of neurons with exponentially
decaying activity with a spectrum of time constants. The activity of these neurons is reconstructed
through the autoencoder circuit. With temporal input, the latent space of the autoencoder would give
rise to scale-invariant time cells. The same weights can then be used for spatial representations, and
they will give rise to scale-invariant place cells as long as the velocity is used to modulate the decay
rate of the exponentially decaying cells.

Since in our framework the only difference between time and place cells is in modulation by velocity,
it implies two possible relationships between time and place cells. First, it could be that these are the
same neurons, whose firing can be tuned to time or position depending on the gating of the velocity
inputs, consistent with the observations reported in Kraus et al. [2013]. It is also possible that velocity
modulation of some neurons is permanent and not gated, implying that downstream neurons would
always be tuned to the spatial location. Analogously, it is possible that some of the leaky integrators do
not receive any velocity modulation, resulting in exponential decay as a function of time and downstream
time cells. It is worth noting that these possibilities are not mutually exclusive and that some neurons
might by switching between representations of space and time while others might be specialized and
consistently tuned to either space or time.

Our work illustrates that self-supervised learning can, under specific constraints, lead to powerful
neural representations of time and space, shedding light on the mechanisms of memory formation in
the entorhinal-hippocampal circuit. Future studies could attempt to integrate grid cells in the same
framework with the scale-invariant time and place cells.
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Appendix

A.1 Simple autoencoder with no constraints

Figure A1: Activity of neurons in the P layer for an autoencoder without sparsity or connectivity
constraints. Each panel corresponds to a different number of neurons in the P layer, which is
indicated on the top of each panel.
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Figure A2: Activity of neurons in the P layer for an autoencoder without sparsity or connectivity
constraints. Each panel corresponds to a different activity penalty. Note that small activity
penalties were selected since larger activity penalties wipe out the activity in the entire place cell
layer.
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Figure A3: Activity of neurons in the P layer for an autoencoder without sparsity or connectivity
constraints. Each panel corresponds to a different value of dropout.
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Figure A4: Activity of neurons in the P layer for an autoencoder without sparsity or connectivity
constraints. Each panel corresponds to a different value of L2 regularization.
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A.2 Sparse autoencoder with no constraints

Figure A5: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
no connectivity constraints. Each panel corresponds to a different number of neurons in the P
layer.
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Figure A6: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
no connectivity constraints. Each panel corresponds to a different activity penalty.
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Figure A7: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
no connectivity constraints. Each panel corresponds to a different dropout value.
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Figure A8: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
no connectivity constraints. Each panel corresponds to a different L2 regularization value.
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A.3 Sparse autoencoder with local weights

Figure A9: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
local weights. Each panel corresponds to a different number of neurons in the P layer.
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Figure A10: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
local weights. Each panel corresponds to a different activity penalty.
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Figure A11: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
local weights. Each panel corresponds to a different dropout value.
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Figure A12: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
local weights. Each panel corresponds to a different L2 regularization.
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A.4 Sparse autoencoder with local and shared weights

Figure A13: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
local and shared weights. Each panel corresponds to a different number of neurons in the P
layer.
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Figure A14: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
local and shared weights. Each panel corresponds to a different activity penalty.
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Figure A15: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
local and shared weights. Each panel corresponds to a different dropout value.
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Figure A16: Activity of neurons in the P layer for an autoencoder with sparsity constraint and
local and shared weights. Each panel corresponds to a different L2 regularization.
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A.5 Linear spacing of time constants also gives rise to place cells, but
not with scale-invarint properties

Figure A17: Linear spacing of time constants also results in place cells. However, such place
cells are not scale-invariant. The left panel shows the activity profile of place cells in a model
that used the linear spacing of time constants (values of s were linearly sampled from 0.001 to
0.1 as described in Section 2.2) with a place cell layer size of 100, and a sparsity parameter (ρ) of
0.8, without dropout and with L2 and activity penalty set to 0. The right panel shows the same
graph but with a logarithmic axis. Note that activations are not equally wide and equidistant
as with geometrically spaced time constants.
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