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Efficient and Precise Secure Generalized Edit Distance and Beyond
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Abstract—Secure string-comparison by some non-linear metrics such as edit-distance and its variations is an important building block
of many applications including patient genome matching and text-based intrusion detection. Despite the significance of these string
metrics, computing them in a provably secure manner is very expensive. In this paper, we improve the performance of secure
computation of these string metrics without sacrificing security, generality, composability, and accuracy. We explore a new design
methodology that allows us to reduce the asymptotic cost by a factor of O(logn) (where n denotes the input string length). In our
experiments, we observe up to an order-of-magnitude savings in time and bandwidth compared to the best prior results. We have also
extended our semi-honest protocols to work in the malicious model.

Index Terms—secure string matching, secure genome comparison, secure edit-distance, secure Needleman-Wunsch, secure LCS.
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1 INTRODUCTION

S TRING comparison is a useful primitive that finds appli-
cations in many real-world scenarios. Among the met-

rics for comparing strings, many non-linear metrics such as
edit distance are most interesting thanks to their versatility
in adapting its cost model to field applications. For example,
when genomes are denoted by strings, it is customary to
use non-linear metrics such as weighted edit distance and
Needleman-Wunsch distance [1] to help diagnosing genetic
diseases [2], [3], [4]. In many other scenarios where the
strings may represent file segments, sequences of system
calls, or snippets of network traffic, these non-linear metrics
are important enabling techniques of computer immunol-
ogy [5] and intrusion detection [6], [7].

Often, the input strings in these applications carry highly
sensitive information, thus are intended to stay encrypted
throughout the computation. However, securely computing
these non-linear metrics is a highly challenging research
task. Researchers have studied intensively secure protocols
to match strings based on edit distance, an epitome metric of
its kind. When designing these protocols, several properties
are vitally important.

First, one would prefer the protocols to be generic. This
implies a number of desirable features: 1) The resulting
protocol is ready to be used as a subroutine in another
secure protocol using standard composition methods; 2) It is
easy to modify the protocol to also work with other variants
of string-metrics; 3) It allows to upgrade the security guar-
antees, e.g., from semi-honest to covert or malicious threat
models, using well-known cryptographic techniques.

Second, it is desirable for the protocols to produce accu-
rate results. Imprecise results can cause false decisions that
will undermine the value of some security-critical systems.
Secure protocols that can always provide accurate results
irrespective of the secret input data can be used in many
very different scenarios.

Third, the protocols are expected to be rigorously proven
secure and free of leakage, which is necessary for safe use
of such protocols in real-world applications.

Finally, we surely wish to have protocols as effi-
cient as possible, such that they can be adopted in more

performance-critical settings.
Unfortunately, existing protocols cannot yet provide a

satisfactory solution to meet all the design expectations
above. The heuristics-based protocols [8], [9] are efficient,
but missed the first three design requirements entirely. On
the other hand, while protocols using state-of-the-art generic
garbled circuits [10] or ABY [11] are generic, accurate and
proven-secure, they are very expensive in terms of cost.

1.1 Methodology and Threat Model

Motivated by the limitation of existing protocols, we ask:
Can we design secure string comparison pro-

tocols that are as secure, accurate and generic as
required by the standard definition of secure com-
putation, while being significantly more efficient than
the best existing generic solutions?

In this work, we answer this question with a new
methodology. We adapt the garbling scheme itself to the
public properties of target computations. In the context
of computing string-comparison metrics, for example, we
made two key observations and exploited them in our
protocol design: (a) There are useful public patterns in such
computations that correlate the secret values on interme-
diate wires. E.g., in edit distance, the two input numbers
to the min circuit will differ by at most 1. (b) Many parts
of string-comparison computations can be realized more
efficiently using arithmetic (instead of binary) circuits. By
exploiting these insights, we are able to securely compute
a number of representative string-metrics significantly more
efficiently than the best previous secure protocols.
Threat Models. In this work, we consider both semi-honest
and malicious adversaries. We will discuss the semi-honest
protocols first and then show how to upgrade them to
thwart full-malicious attacks in Section 5.

1.2 Contributions

We propose a new design methodology for building efficient
privacy-preserving computations. We customize the gar-
bling to exploit public properties of the target computations.
We apply this methodology in developing secure protocols
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TABLE 1: Performance Highlights (semi-honest model)

Edit Distance Weighted ED Needleman-Wunsch LCS
Time

B/W
Time

B/W
Time

B/W
Time

B/W
LAN WAN LAN WAN LAN WAN LAN WAN

Best Prior 286 1776 39.4 360 2257 50.1 1030 6747 155 202 1224 27.1
This Work 23.7 178 4.09 83.3 625 14.3 142 1073 25.6 18.9 135 3.07

Tested with 127-bit computational security. Times are in seconds and B/W in GB. Computation inputs are two
4000-nucleotide genomes. The weight tables used in Weighted ED and Needleman-Wunsch are given in Figure 1.
“Best Prior” results are measured on efficient implementations based on the ideas of Huang et al. [12] and emp-
toolkit [13], an updated framework integrating Free-XOR, AESNI, and Half-Gates. Detailed experiment setup is
given in Section 6.

for several representative string-comparison metrics. Like
the protocols of [10], [14], [15], our protocols work in the
random oracle model. Unlike prior works, our approach
leverages low-cost bounded-input comparison, minimum,
and table-lookup, while keeping arithmetic addition free.
The overall complexity of our secure string-comparison pro-
tocols isO(n2) (with n being the length of each input string),
in contrast to O(n2 log n) of prior protocols using best
previous garbling schemes [10], [14]. We formally proved
the security of our scheme (Section 3.2) and presented ways
to extend our garbling schemes to handle arbitrary functions
through tethering it to binary garbled circuits (Section 4).

We have strengthened the semi-honest protocols into ef-
ficient actively-secure string-metrics computation protocols
(Section 5), which are by far the best of its kind. Equipped
with state-of-the-art cut-and-choose strategies, the cut-and-
choose parameters of our protocols can be selected based on
the actual cost ratio between checking and evaluating a GC
for improved performance [30]. Security of our protocols
can be guaranteed as long as one correct GC is evaluated.

We have experimentally evaluated our approach on a
range of string-comparison metrics including edit distance,
weighted edit distance, Needleman-Wunsch distance, LCS,
HCS. In the semi-honest model, our protocols are able to
run up to 16 times faster and use an significantly less band-
width than best existing GC-based protocols (see Table 1).
Unlike the heuristics-based protocols [8], [9], our approach
is generic, accurate, and proven-secure, and does not use
any public reference. As a first step in this direction of
research, our findings would shed some light on designing
other application-specific MPC protocols in the future.

1.3 Related Work
1.3.1 Heuristics-based private string matching
Researchers have proposed some interesting heuristics to
approximate best matches of low-entropy strings by their edit-
distances. Two seminal works of this kind are by Wang et
al. [9] and Asharov et al. [8]. Wang et al. estimated edit-
distance of human genomes through solving set-difference-
size problems that were efficiently sketched using a public
reference genome. Asharov et al. divided genome strings
into short segments then approximated edit-distance-based
match.1 Although these protocols offered high efficiency,

1. The protocol of [8] can’t really calculate edit-distance, but aimed
at computing the closest matches under the edit-distance metric (a task
that doesn’t necessarily require computing edit-distances).

they also suffered from leakage, accuracy, and generality
issues: (a) They assume a weaker threat model that does
leak more than what is allowed by the standard definition
of secure computation, while it is hard to argue that the
leaked information is not what an attacker wanted. (b) They
produce input-data-specific errors with their results, mak-
ing them inapplicable in scenarios where errors are less
tolerable. (c) It is hard to use these protocols as generic
building blocks in other secure protocols or on inputs
other than low-entropy genomes. It is neither clear how to
modify them to compute other variant string-metrics such
as Needleman-Wunsch, LCS, or to work against stronger
adversaries. Moreover, both protocols rely a “good” public
reference string, which may not be available in many use
cases. We note that the quality of the reference string can
severely affect the accuracy and cost of these protocols
(see experiments in Section 6.1), while methods of picking
“good” references were yet to be studied.

Finally, those protocols worked only in the honest-but-
curious threat model and can be hard to convert to ones
secure in the presence of active attacks.

1.3.2 Garbled-circuit-based approach
Generic protocols using optimized garbled circuits (GC)
were also used to compute edit-distance [12], [16]. This
type of protocols always produce accurate results, offering
strong security guarantees satisfying the standard definition
of security for MPC, and are generally applicable to other
string-comparison metrics. In addition, these GC-based pro-
tocols can be used as black-box components in larger secure
computations. There are standard practical transformations
to upgrade these protocols to work in the presence of active
adversaries.

On the flip side, the costs of such protocols are pro-
hibitive, partly because of the large constant factor blowup
from translating the computation into binary circuits. We
have implemented GC-based protocols to securely compute
edit distance, weighted edit distance, Needleman-Wunsch,
LCS and HCS. In the baseline implementation, we used all
applicable state-of-the-art optimizations including fixed-key
hardware AES [17], [18], Half-Gate garbling [10], and free-
XOR technique [19]. The performance of these protocols is
reported as “Best Prior” row in Table 1 and the performance
charts of Figure 3, Figure 4 in Section 6.1. These baseline
performance numbers are already significantly better than
any generic protocols found in the literature, since we used
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all possible state-of-the-art optimizations. Still, their perfor-
mance wouldn’t be satisfactory in many practical settings.

1.3.3 Comparison with Ball-Malkin-Rosulek [14]
Ball, Malkin and Rosulek proposed a garbling scheme where
plaintext signals are encoded in their CRT-representations
(Chinese Remainder Theorem). The CRT-representation en-
codes a plaintext value as elements in field GF(p1×· · ·×pn)
where p1, . . . , pn are a number of distinct small primes.
Their scheme can be considered as an extension of Half-
Gate’s wire-label encoding, which is over the field GF(2κ),
with general projection gates. They show with calculation
that this garbling scheme can be of theoretical interest in
saving bandwidth for certain computations that consist of
many high fan-in threshold and modular addition gates.
However, they did not consider any practical end-to-end se-
cure computation protocols and practical time efficiency. In
contrast, we focus on a class of important string comparison
metrics computations, discovering some key properties of
these computations, and advocate customizing the protocol
to leverage the public properties for efficiency improve-
ments. Our work considers both semi-honest and malicious
adversaries. We show with experiments that our protocols
are up to an order-of-magnitude better in both time and
bandwidth than best existing generic protocols.

In fact, an important technical distinction between the
two works is that their garbling schemes rely on the point-
and-permute technique to evaluate the garbled gates, while
we use zero-tags to allow the evaluator to identify failed
trial-decryptions. The point-and-permute technique is not
compatible with the bounded-value projection technique
which has significantly boosted the performance of our
protocols. This is because if any garbled rows skip the
transmission, the point-and-permute mechanism allows the
evaluator to learn something about the secret permutation
from observing how the (publicly-known) omitted entries
are moved before and after the permutation.

1.3.4 Comparison with ABY [11] and ABY3 [20]
The ABY framework enables generic secure computations
using one or a mixture of GMW-based Arithmetic/Binary
circuits and Yao’s binary GC. However, it won’t outperform
our protocols since it does not support bounded-value pro-
jection. Nor does it offer convenient upgrade to malicious
model security as our protocols do. In fact, ABY cannot even
outperform our GC-based baseline (see Section 6.3).

In comparison to ABY’s secret-share conversion tech-
niques, we stress that our GC-based arithmetic encoding is
very different from ABY’s GMW-based arithmetic encoding.
Henceforth, the conversion methods we present in Sec-
tion 4.1 differs from those of ABY in essential ways.

Mohassel and Rindal extended ABY to ABY3 for ma-
chine learning computations. However, ABY3 only works
for a completely different threat model (3PC with honest
majority) which is out of the scope of this paper.

1.3.5 Comparison with DKS+ [21]
The work by Dessouky et al. suggests that some custom-
built circuits could benefit from efficient OT extension spe-
cific for short messages by a constant (and application-
dependent) factor (2–4x for AES and PSI) of savings. How-
ever, they didn’t consider the string metrics that we study

here and their idea doesn’t support bounded-value projec-
tion.

2 BACKGROUND

Notations. We let κ be the computational parameter; let
“a := b” denote assigning the value of b to a; and let
“x ← S” denote assigning to x a uniformly element of the
set S.

2.1 Secure Garbling
First proposed by Yao [22], garbled circuits were later for-
malized by Bellare et al. [18] as a cryptographic primitive
of independent interest. Following the notations of Bellare
et al., a garbling scheme G is a 5-tuple (Gb,En,Ev,De, f)
of algorithms, where Gb is an efficient randomized garbler
that, on input (1k, f), outputs (F, e, d); En is an encoder
that, on input (e, x), outputs X ; Ev is an evaluator that,
on input (F,X), outputs Y ; De is a decoder that, on input
(d, Y ), outputs y. The correctness of G requires that for every
(F, e, d)← Gb(1k, f) and every x,

De(d,Ev(F,En(e, x))) = f(x).

Bellare et al. have proposed three security notions for
garbling: privacy, obliviousness, and authenticity, which we
summarize as below.
• Privacy: There exists an efficient Sprv such that for all x,{

(F,X, d) :
(F, e, d)← Gb(1k, f),
X ← En(e, x).

}
≈
{
Sprv(1k, f, f(x)

}
.

where “≈” symbolizes computational indistinguishabil-
ity.

• Obliviousness: There exists an efficient Soblvs such that
∀x,{

(F,X) :
(F, e, d)← Gb(1k, f),
X ← En(e, x).

}
≈
{
Soblvs(1

k, f)
}
.

• ε-Authenticity: For all efficient A = (A1,A2),

Pr

 Y 6= Ev(F,X)
and

De(d, Y ) 6= ⊥
:

(f, x)← A1(1k),
(F, e, d)← Gb(1k, f),
X ← En(e, x),
Y ← A2(1k, F,X).

 ≤ ε.
Optimizations have been proposed and improved gar-

bling in many aspects such as bandwidth [10], [14], [23],
evaluator’s computation [23], memory consumption [12],
and using dedicated hardware [10], [17], [24]. State-of-the-
art implementations of garbling schemes using AESNI can
typically produce a garbled row of the garbled truth table in
roughly every 25ns [13], [17], [24].

2.2 Edit Distance and Other Metric Variants
The edit distance (also known as Levenshtein distance) be-
tween any two strings s and t is the minimum number
of edits needed to transform s into t, where an edit is
typically one of three basic operations: insert, delete, and
substitute. Algorithm 1 is a standard dynamic programming
approach to compute the edit distance between two strings.
The invariant is that Di,j always represents the edit distance
between s[1..i] and t[1..j]. Lines 1–2 initialize the first row
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of the matrix D while lines 3–4 initialize the first column.
Within the main nested loops (lines 5–7), Di,j is set at
line 7 to the smallest of Di−1,j + cins , Di,j−1 + cdel , and
Di−1,j−1 + csub , where cins , cdel , and csub correspond to the
cost of insert, delete, and substitute a single character (at any
position). For basic edit distance, cins := 1, cdel := 1, and
csub := (s[i] = t[j]) ? 0 : 1, i.e., each single-character insert,
delete, and substitute incurs one unit cost while matching
characters costs zero. Once the minimal edit distance is
computed, it is easy to backtrack (from Di,j) a sequence of
edits that transform s[1..i] to t[1..j], e.g., for the purpose of
deriving an optimal alignment.

Algorithm 1 EditDistance(s, t)

1: for i := 0 to length(s) do
2: Di,0 := i · cins ;
3: for j := 0 to length(t) do
4: D0,j := j · cdel ;
5: for i := 1 to length(s) do
6: for j := 1 to length(t) do
7: Di,j := min( Di−1,j + cins , Di,j−1 + cdel ,

Di−1,j−1 + csub );

Weighted Edit Distance. More generally, the cins , cdel , and
csub above can be adjusted to fit the goals of specific
applications. For example, in diagnosing certain genetic
diseases [2], [4], it is customary to set cins and cdel to integers
between 5–10 while setting the substitution cost to 1. The ra-
tionale behind the cost gaps is that insertions and deletions
(called indels) occur much more rarely than substitution in
some application domain so one would adjust the costs so
that the changes are better captured by the editing model.
For example, during DNA replication, indels are much rarer
than substitutes, so we would expect a good alignment to
contain proportionally less indels to reflect the natural clone
of DNAs.
Needleman-Wunsch. As the statistical models of various
operations were refined with respect to the symbols in-
volved in the mutations, researchers [25], [26], [27], [28]
have found many good reasons to also adjust the costs
cins , cdel , csub according to the specific characters to be in-
serted, deleted, or substituted. In this case, cins , cdel and
csub can be viewed as functions over the alphabet of all
possible characters. For example, for genomes, they can be
encoded as one- and two-dimensional tables (Fig. 1). Note
that although the weight tables are publicly known, lookups
over the arrays have to be obliviously computed because the
indices used to lookup are secret.

A G C T
5 5 6 6

(a) Example cins or cdel

A G C T
A 0 1 2 1
G 1 0 1 2
C 2 1 0 1
T 1 2 1 0

(b) Example csub

Fig. 1: Example weight tables of genomic Needleman-
Wunsch

Longest Common Subsequence (LCS). Unlike edit dis-
tance, the length of longest common subsequence measures
the similarity of two strings. Given strings s and t, the length
of the longest common subsequence between them can be
computed using dynamic programming similar to that for
edit distance (Algorithm 2). Comparing to Algorithm 1, the
only two changes are the initialization values in line 2 and
3, and the logic to derive Di,j (line 7). The invariant now is
that Di,j always represents the length of LCS(s[1..i], t[1..j]).

Algorithm 2 Longest common subsequence(s, t)

1: for i := 0 to length(s) do
2: Di,0 := 0;
3: for j := 0 to length(t) do
4: D0,j := 0;
5: for i := 1 to length(s) do
6: for j := 1 to length(t) do
7: Di,j := max( Di−1,j , Di,j−1, Di−1,j−1 + wi,j);

With basic LCS, the matching reward, wi,j , is set to

wi,j =

{
1, if s[i] = t[j]
0, otherwise .

Heaviest Common Subsequence (HCS). As a generaliza-
tion of LCS, researchers [29] have introduced the concept
of heaviest common subsequence, just like Needleman-Wunsch
generalizes edit distance. The idea is to let different charac-
ters reward differently when they match. Therefore, wi,j can
be viewed as a matrix (to be indexed by s[i] and t[j]) where
only the diagonal entries will be positive while the rest of
the matrix are filled by 0s.

3 THE SEMI-HONEST MODEL

Next, we give our semi-honest protocols for efficiently com-
puting string-comparison metrics.

3.1 Insights and Intuitions
First, we illustrate two important observations behind the
design of our new garbling scheme.
Dominant Costs. A dominant cost of solving the general
edit distance problem lies in the oblivious computation of
addition, equality (or table-lookup in general), minimum. This
is evident from the dynamic programming Algorithm 1.
Therefore, it should be our foremost priority to make
these oblivious computations efficient in our new garbling
scheme.
Bounded Difference Values. The edit distance computation
makes a number of calls to the three-minimum function,
which can be instantiated as two nested calls to the two-
minimum function, i.e., min(a, b, c) = min

(
min(a, b), c

)
. A

key observation is that edit distances can be calculated such
that all two-minimum gates are computed on such inputs
(a, b) that a− b is bounded by some constants independent
of the absolute values of a and b. This observation opens
up an opportunity to speed up private edit distance com-
putation. We exploit this opportunity by designing special
two-minimum gadgets which only need to work for inputs
of bounded difference, but runs significantly more efficient
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than generic minimum gates (that need to process all possi-
ble inputs).

Take basic edit distance as an example. We can show
that every call to min(a, b) can be arranged so that a − b ∈
{−1, 0, 1, 2}. We can prove this fact as follows. First, because

min(Di−1,j + 1, Di,j−1 + 1, Di−1,j−1 + csub)

= min
(

min(Di−1,j + 1, Di−1,j−1 + csub), Di,j−1 + 1
)
,

let mi,j = min(Di−1,j + 1, Di−1,j−1 + csub), our goal is then
to show

(Di−1,j + 1)− (Di−1,j−1 + csub) ∈ {−1, 0, 1, 2},
(Di,j−1 + 1)−mi,j ∈ {−1, 0, 1, 2}.

Since all the quantities involved are integers, it suffices to
show

−1 ≤ (Di−1,j + 1)− (Di−1,j−1 + csub) ≤ 2, and (1)
−1 ≤ (Di,j−1 + 1)−mi,j ≤ 2. (2)

The triangle inequality of basic edit distance ensures

|Di−1,j −Di−1,j−1| ≤ 1, (3)
|Di,j−1 −Di−1,j−1| ≤ 1. (4)

Thus,

|Di−1,j −Di,j−1|
=|Di−1,j −Di−1,j−1 − (Di,j−1 −Di−1,j−1)|
≤|Di−1,j −Di−1,j−1|+ |Di,j−1 −Di−1,j−1| ≤ 2.

Also because (3), (4), and 0 ≤ csub ≤ 1, we know

−1 ≤ (Di−1,j + 1)− (Di−1,j−1 + csub) ≤ 2, and

−1 ≤ (Di,j−1 + 1)− (Di−1,j−1 + csub) ≤ 2.

Since

(Di,j−1 + 1)− (Di−1,j + 1) ≤ |Di,j−1 −Di−1,j | ≤ 2,

(Di,j−1 + 1)− (Di−1,j−1 + csub) ≤ 2,

thus,

(Di,j−1 + 1)−mi,j =

(Di,j−1 + 1)−min(Di−1,j + 1, Di−1,j−1 + csub) ≤ 2.

Finally, we have

(Di,j−1 + 1)−mi,j

=(Di,j−1 + 1)−min(Di−1,j + 1, Di−1,j−1 + csub)

≥(Di,j−1 + 1)− (Di−1,j + 1) ≥ −1.

Therefore, both constraints (1) and (2) must hold.

Generally, observations like the one above can also be
shown for many other string-comparison metrics. Next,
we state our general proposition of this insight, which we
formally prove in Appendix B. We note that, unlike the
example above, our proof for the general case does not rely
on the triangle inequality property of the metrics.

Proposition 1. Let s, t, Di,j , cins , cdel , csub be defined as in
Section 2.2, where cins , cdel are generalized to one-dimensional

tables and csub is generalized to a two-dimensional table. Let

mi,j = min
(
Di,j−1 + cdel

[
t[j]

]
, Di−1,j−1 + csub

[
s[i], t[j]

])
ui,j =

(
Di,j−1 + cdel

[
t[j]

])
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
vi,j =

(
Di−1,j + cins

[
s[i]
])
−mi,j

Then, there exist public constants C1, C2, C3, C4 which are
independent of Di,j , such that for all valid indices i, j.

C1 ≤ui,j ≤ C2, C3 ≤vi,j ≤ C4.

3.2 The Garbling Scheme

Basic Idea. Since these computations only deal with in-
tegers, we generalize the idea of garbling binary signals
to work directly on arithmetic signals. Recall that when
garbling binary circuits, the garbler picks, for every wire
in the circuit, a secret string w0 ← {0, 1}128 to encode 0 and
sets w1 := w0 ⊕∆ to encode 1 (where ∆ is a circuit-global
secret uniformly sampled from {0, 1}127). To generalize this
idea, we replace “⊕”, the adder on the binary field, with
“+p”, the adder on the prime field Zp (where p is public
and sufficiently large, e.g., p > 287). In our scheme, the
garbler will first pick a uniform global secret ∆ from Zp.
Then, for every wire in the arithmetic circuit, the garbler
picks a uniform k0 (called wire-key) from Zp to denote 0; and
encode every integer a ∈ Zp as ka = k0 +p a ×p ∆ where
“+p” and “×p” denote mod-p addition and multiplication,
respectively.

To garble a gate, the garbler would use encoding of a
gate’s every possible input signal as a key to encrypt the
encoding of its corresponding output signal; to evaluate
the gate, the evaluator will decrypt every garbled row of
the gate. To allow the evaluator to tell which row decrypts
successfully, we add a constant tag of sufficient length
to every wire-key ka to form a wire-label. Thus, it is the
output wire-labels (rather than wire-keys) that are actually
encrypted.

If the zero-tags are short (e.g., 40-bits), one might worry
that a wire-label could happen to successfully decrypt more
than one garbled row in the same gate due to collision,
which violates the correctness property of garbling. How-
ever, to semi-honest attackers, who cannot leverage side-
computation to affect protocol execution, the length of
the zero-tags is actually a statistical security parameter. To
malicious attackers, the issue can be addressed, either by
increasing the length of zero-tags (Section 4.2), or by fixing
the random-tape of the Gb function to a collaboratively
coin-tossed bit-string (so the garbler cannot precompute and
cherry-pick a particular random-tape to produce a problem-
atic garbled gate).
Notation for Wire-labels. In the rest of the paper, we always
use upper-case letters (e.g., A) to name wires. If wAa denotes
a wire-label, the superscript (A) indicates the id of the wire
to which this wire-label is associated and the subscript (a)
indicates the plaintext signal that the wire-label encodes.
When the wire name is irrelevant to a discussion, the su-
perscript can be omitted. In our terminology, generating (or
sampling) a fresh wire-label, say wAa , for a plaintext value a
means first picking kA0 ← Zp (unless kA0 is already known)
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then setting kAa := kA0 +p a ×p ∆ and wAa := 040‖kAa . We
require wAa ∈ {0, 1}128, so if kAa < p, leading zeros are
padded in front to ensure wAa has exactly 128 bits.

Next, we show how every gadget needed in the private
edit distance computation can be efficiently instantiated.
Addition. To securely add two plaintext signals a, b ∈ Zp on
two wires A and B, which are represented by wire-labels

wAa = 040‖(kA0 +p a×p ∆) and

wBb = 040‖(kB0 +p b×p ∆), respectively,

it suffices for the garbler to set

wC0 = wA0 +p w
B
0

while the evaluator locally computes

wCc := wAa +p w
B
b .

Assuming there is no overflow2, it is easy to verify that
wCc = (wC0 +p (a+p b)×p ∆), which is indeed the expected
encoding of a +p b on wire C . Moreover, recall that if
a + b < p, then a + b = a +p b. Therefore, this essentially
realizes addition over Z when a+ b < p.

As a natural extension of secure addition, multiplying a
secret value a of a wire A, encoded by wire-label

wAa = 040‖(kA0 +p a×p ∆)

with a public constant c can simply be realized as:
1) the garbler sets wC0 = c×p wA0 ; and
2) the evaluator locally derives the wire-label wZz = c ×p
wAa .

Again, note that if c × a < p then c × a = c ×p a. Hence, it
realizes constant multiplication over Z if c× a < p.

Obviously, addition (or public-constant multiplication)
is also free—no expensive cryptographic computation nor
network traffic is used—but only a mod-p addition (or mod-
p multiplication, respectively) on each side of the protocol.
Equality. When computing csub , an equality test is needed to
decide whether two input characters are identical. Let a, b ∈
{0, 1, . . . , ζ} be two integers, and wa, wb are the wire-labels
corresponding to a and b, respectively. To securely compute
if a equals b, first d = a − b is securely computed, hence
the garbler knows kD0 and ∆ while the evaluator knows
wDd = 040‖(kD0 +p d×p ∆). Then, since d ∈ {−ζ, . . . , ζ},
1) the garbler samples a fresh pair of wire-labels wZ0 and
wZ1 to encode signal 0 and 1 on the output-wire Z ; and
sends the following 2ζ + 1 garbled rows

EncwD0 (wZ1 , id); and

EncwDi (wZ0 , id),∀i 6= 0, i ∈ {−ζ, . . . , ζ}

in a randomly permuted order. Note that idZ is the
identifier of this projection gate.

2) the evaluator tries to decrypt the above 2ζ+1 ciphertexts
using wDd as the key. Thus, only the ciphertext encrypted

2. For every specific computation, this assumption can be guaranteed
to hold by setting p to be a sufficiently large prime so that no intermedi-
ate values in the computation could overflow. For example, fixing p to
the largest 88-bit prime suffices for edit-distance-based human genome
comparisons. We also note that, without incurring significant overhead,
it is possible to use a 128-bit prime p with the extension technique
discussed in Section 4.

with key wDd will be successfully decrypted to reveal the
valid wire-label wZz encoding (a = b)?1 : 0.

Namely, the evaluator will learn wZ1 if and only if a = b;
and otherwise, will learn wZ0 .

The cost of the secure equality is linear in the range of
(a − b). Recall that the cost of traditional binary garbled
circuit based integer comparison is linear in the number
of bits to represent the input numbers. Therefore, when
a− b can be bounded by a constant (for application-specific
reasons), our approach reduce can reduce the cost by a factor
of min(log a, log b).
Minimum. First, we observe that given two integers a, b,
min(a, b) = a− 〈a− b〉, where “〈·〉” is a function defined as
follows,

〈x〉 =

{
x, if x ≥ 0;
0, otherwise.

In essence, “〈·〉” is a generalized comparison, which can
be realized using the same idea of secure projection like in
the equality gadget above. Let X,Z be the input and output
wires, respectively, and assume x ∈ {−ζ, . . . , ζ}, the garbler
simply sends the following 2ζ+1 ciphertexts in a randomly
permuted order:

EncwXi (wZ0 , id),∀i ∈ {−ζ, . . . ,−1}; and

EncwXi (wZi , id),∀i ∈ {0, . . . , ζ}

where for 0 ≤ i ≤ ζ , wZi is the wire-label representing
plaintext value i on the wire Z . When a, b are large but
|a − b| is bounded by some constant (which is indeed the
case for the string metrics considered in this paper), we can
save a factor of min(log a, log b) than traditional garbling.
Table-lookup. A one-dimensional table of n entries can be
viewed as an association-list

{(0, v0), (1, v1), . . . , (n− 1, vn−1)},

where vis are bounded integer values. A table-lookup gad-
get can be treated as an unary gate with input-wire I and
output-wire V . Given a wire-label wIi that encodes plaintext
index i, a secure table look-up will output a wire-label
wVvi that actually encodes vi. In our scheme, this can be
straightforwardly realized as follows:
1) The garbler generates fresh wire-labels wVv0 , . . . , w

V
vn−1

to encode v0, . . . , vn−1 on the output-wire V ; and sends
the following n ciphertexts in a randomly permuted
order:

EncwIi (wVvi , id), ∀i ∈ {0, . . . , n− 1}

where wIi encodes i on the input index wire I .
2) The evaluator uses wIi as key to decrypt the above n

ciphertexts. Due to the way the ciphertexts are con-
structed, precisely one of them will be successfully
decrypted, revealing the wire-label wVvi that encodes vi.
Moreover, looking up a multi-dimensional table with our

scheme is readily reducible into a one-dimensional table
lookup problem. Take the two-dimensional m-by-n-table
lookup as an example. A two-dimensional table can always
be mapped to a one-dimensional table by concatenating the
rows, i.e., an index (i, j) (where 0 ≤ i < m, 0 ≤ j < n) over
the 2D-table can be translated into an index k = i ∗m + j
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over a 1D-table of size mn. Since m is public, the affine
mapping of wire-labels wIi and wJj (that encode the row
and column indices) to the wire-label wKk (that encode the
translated index) is almost free with our scheme. Once the
translation is done, the secure 2D-table lookup reduces to
sending and trial-decrypting mn ciphertexts—the same as
the treatment to securely look up a 1D-table of mn entries.

Recall that with traditional binary circuit garbling
schemes, a generic multiplexer-based secure table lookup
is significantly more expensive because: 1) each index and
each content integer in the table need to be encoded by
multiple wire-labels; 2) n multiplexers would be needed to
scan the table while the cost of each multiplexer depends on
the bit length of the table content values as well as the length
of the index. Alternatively, if the table is small, a secure table
lookup can be realized as a giant garbled truth table like
Huang et al. suggested [12]. However, it is unclear how this
can be efficiently realized with AESNI support because log n
keys (one key per bit of the index) are involved in producing
every garbled row. A more straightforward solution would
use SHA hashing, which, however, is orders-of-magnitude
slower than AESNI instructions. In contrast, secure table
lookup with our garbling scheme is significantly cheaper.
Handle Initial Inputs. We assume the initial circuit inputs
to our (arithmetic) circuit are in bits and the processing of
these binary input values resembles that in binary garbled
circuit protocols, i.e., the circuit generator’s private input
bits are encoded by wire-labels that are directly sent to the
evaluator while the circuit evaluator’s private input bits
are translated to their corresponding wire-labels through
oblivious transfer. Though we stress that the format of
the wire-labels that encode the initial input bits conforms
to the mod-p field notion of wire-labels required by our
garbling scheme. Therefore, a set of addition and public-
constant multiplication gadgets will be used to translate
the bits representation of input values into their arithmetic
representations.
Implementation. Today’s high-performance garbling
schemes rely heavily on ideal block ciphers instantiated
with fixed-key AES. Our scheme can also leverage fast
fixed-key AES garbling accelerated by AESNI. For all
the building blocks, our garbling scheme requires only
one cryptographic primitive, Encwin

(id , wout), where win

and wout are 128-bit wire-labels with valid zero-tags and
i < 2128 is an integer serving as a gadget counter. Similar to
Half-Gates [10], we implement Encwin

(id , wout) as

Encwin
(i, wout) = π(K)⊕K ⊕ wout

where K = 2win ⊕ i (note that 2win refers to doubling win

in GF(2128)) and π is a random permutation realized using
fixed-key AES. We can implement Decwin

(i, c) as

Decwin
(i, c) =

{
m := π(K)⊕K ⊕ c, m has the zero-tag;
⊥, otherwise.

where K is as defined before.

3.3 Formal Analysis

Complexity. With our approach, the dominating cost can
be attributed to the projection gates (used in computing

the minimum and equality). For edit-distance, to compute
each entry of the n2-entry dynamic programming matrix,
only two projection gates are needed: one 8-row projection
for equality and another 8-row projection for minimum.
So overall, the cost is 16n2 garbled rows. In comparison,
using Half-Gate’s [10] garbling to compute edit-distance,
computing each entry of the n2 DP matrix requires a fixed-
width equality gate (2 garbled rows), two variable-width
minimum gates (2 log n × 2 rows), and one variable-width
addition gates (2 log n rows), totaling at (6 log n + 2)n2

garbled rows. With Ball-Malkin-Rosulek, even if additions
are ignored, the cost per matrix entry will still be c1 log n
rows for equality plus c2 log n rows for minimum (where
c1, c2 are fairly large constants depending on the choice of
the CRT-representation), totaling at (c1 + c2)n2 log n rows.
Therefore, our approach brings log n-factor savings over
best existing generic garbling schemes.
Correctness. We formalize our garbling scheme in Figure 2.
It is easy to verify that correctness of this garbling scheme
fails only if more than one row in the same gate decrypt
to valid (but different) wire-labels. To semi-honest attackers,
the length of the zero-tags provides statistical security. Thus
correctness fails only when multiple honestly-garbled rows
in the same gate happen to decrypt to different wire-labels
each with a valid zero tag (such that an evaluator would
be confused), which is bounded by 2−40 in each gate. One
might also worry that large circuits may be more likely to
fail since a circuit with a |C| non-free gates might fail with
probability

∑|C|
i=1 2−40 · ni (this is actually a loose upper-

bound) where ni is the number of rows in the ith gate. How-
ever, this is not the case because for every internal gate, the
evaluator can always try all seemingly-valid wire-labels in a
subsequent gate to eliminate such spurious wire-labels. So a
spurious wire-label can only propagate with 2−40n1 ·2−40n2
probability at most, where n1, n2 are the number of garbled
rows in the two connected gates, respectively. Since the
number of rows in every garbled gate is bounded by a
small constant in practice, we have 2−40n1 ·2−40n2 � 2−40.
Therefore, the overall failure probability only depends on
the final layer of gates, that is, at most

∑|Cout |
i=1 2−40 · ni

where |Cout | is the number of non-free gates in the final
layer and ni is the number of rows in the ith final-layer-
gate. Since |Cout | is typically a small constant in MPC
applications (e.g., 4 ≤ |Cout | ≤ 20 to denote the output
distance/score in private string-comparison applications),
our garbling schemes are correct except for a negligible
probability (in concrete sense). In Section 4.2, we give a
technique to increase both the computational and statistical
security to 127-bit, which will address the concern even in
presence of malicious attackers.
Security. Note that equality, minimum and table-lookup
gadgets are all essentially realized by a primitive operation
called projection. Secure projection obliviously maps an input
signal ai to a predefined output signal bi based on a publicly
table {(a1, b1), . . . , (an, bn)}. Thus, to prove the garbling
scheme to be secure, it suffices to just consider addition and
projection.

Theorem 1. If π is an ideal block cipher that is used to realize
Enc and Dec as described above. the scheme in Figure 2 satisfies
the privacy and obliviousness definitions given in Section 2.1, and
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Gb(1k, f)

∆← {0, 1}k

for I ∈ f.input-wires do
wI0 ← Zp

ê := (w1
0, . . . , w

|f.input-wires|
0 ,∆)

for g ∈ f.gates do
if g is Add-gate then
{I1, I2} := g.input-wires
O := g.output

wO0 := wI10 +p w
I2
0

else if g is Projφ-gate then
I := g.input-wire
O := g.output-wire
Zζ := g.domain

for t ∈ Zζ do
wIt := wI0 +p t×p ∆

wOt := wO0 +p φ(t)×p ∆

cgt ← EncwIt (g, wOt )

cg := {cg0, . . . , c
g
ζ−1}

F̂ := (c1, . . . , c|f.Proj|)

for Oi ∈ f.output-wires do
Zζ ← i.domain

for t ∈ Zζ do
wOit := wOi0 +p t×p ∆

dOit ← Enc
w
Oi
t

(out‖t)
di := {dO0 , . . . , dOζ−1}

d̂ := (d1, . . . ,d|f.output-wires|)

return (F̂ , ê, d̂)

Ev (F̂ , X̂)

(X1, . . . , X|f.input-wires|) := X̂

(c1, . . . , c|f.Proj|) := F̂

for Ii ∈ f.input-wires do
wIi := Xi

for g ∈ f.gates do
if g is Add-gate then
{I1, I2} := g.input-wires
O := g.output-wire
wO := wI1 +p w

I2

else if g is Projφ-gate then
I := g.input-wire
O := g.output-wire
Zζ := g.domain

{c0, . . . , cζ−1} := cg

for t ∈ Zζ do
if Decw(g, ct) 6= ⊥ then
wO := Decw(g, cgt )

for Oi ∈ f.output-wires do
Yi := wOi

Ŷ := (Y1, . . . , Y|f.output-wires|)

return Ŷ

En(ê, x̂)

(w1
0, . . . , w

|f.input-wires|
0 ,∆) := ê

for xi ∈ x̂ do
Xi := wi0 +p xi ×p ∆

return X̂ := (X1, . . . , X|f.input-wires|)

De(d̂, Ŷ )

(Y1, . . . , Y|f.output-wires|) := Ŷ

for di ∈ d̂ do
Zζ := i.domain

{d0, . . . , dζ−1} := di

for t ∈ Zζ do
if DecYi(dk) = out‖k then
yi := k

return ŷ := (y1, . . . , y|f.output-wires|)

Fig. 2: The garbling scheme

an application-dependent notion of authenticity.

Proof of Theorem 1 is given in Appendix A.

4 EXTENSIONS

In this section, we discuss three extensions of our approach:
one for garbling arbitrary computations, the second for in-
creasing the security parameters, and the third for achieving
application-independent authenticity.

4.1 Garbling Arbitrary Computations

Our garbling scheme as is described so far can’t handle
generic computations because we haven’t discussed how to
multiply two secret values efficiently. To efficiently handle
arbitrary computations, our basic idea is to tether the above
scheme with a traditional binary circuit garbling such as
Half-Gate.
Arithemtic Wire-labels to Binary Wire-labels. Suppose the
circuit garbler knows w0 = 040‖k0 and ∆, whereas the
evaluator knows wa = 040‖(k0 +p a ×p ∆). Let the binary
form of the integer a be a1a2, . . . , an. After conversion,

we hope the the garbler learns wire-labels w1,0, . . . , wn,0
and ∆ while the evaluator learns w1,a1 , . . . , wn,an such
that wi,ai = wi,0 ⊕ ai∆. We describe two methods to
accomplish this goal that exhibit complementary tradeoffs
between performance and generality.

4.1.1 Via secret shares
If the range of a is publicly known to be restricted to
{0, . . . , ζ}. The basic idea is to let the garbler send a random
permutation of

Encwi(i⊕m), ∀i ∈ {0, . . . , ζ}

where m is a dlog ζe-bit secret mask picked by P1. Thus, the
evaluator who has wa is able to recover a ⊕ m. Then, the
two parties can use traditional garbled circuit protocols [10]
to run any followup computation over a by starting from
their respective shares m and a⊕m.

To convert an arithmetic wire, it costs ζ + 1 encryptions
to send the encrypted masked-shares, 176 encryptions to
translate the garbler’s input bits and 88 oblivious transfers
(for the evaluator’s 88-bit input) in the second stage of
the secure computation. This approach would be preferred
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when ζ is known to be relatively small. As ζ grows too big,
it becomes infeasible to transmit O(ζ) encryptions, in which
case we can opt to an alternative conversion method suitable
for large ζs.

4.1.2 Via generic secure modular-arithmetic
The basic idea is to construct a binary garbled circuit to
securely compute (ka−k0)/∆ where “−” and “/” are mod-
p subtraction and division, respectively. By requiring the
garbler to locally compute (∆−1 mod p), we can reduce
the above computation into a secure mod-p subtraction
followed by a secure mod-p multiplication, both realized
by a traditional binary circuit garbling scheme.

Because k0, ka, p ∈ {0, 1}88, the cost of this approach
is that of a traditional garbled circuit secure computation
protocol with 88× 3 input bits (88× 2 bits from the garbler
and 88 bit from the evaluator), an 88-bit mod-p secure sub-
traction, and an 88-bit mod-p secure multiplication. Since
it only depends on the computational security parameter
rather than the range of the plaintext values, it fits better
when the range of a can be very big (e.g., more than 217).

With either approach, we stress that the authenticity of
the final output-wire labels holds if a� p, because without
knowing w0 and ∆, for any a, b ∈ Zp,

(w0 +p a×p ∆, w0 +p b×p ∆) ≈ (X,Y )

where X,Y are uniform random samples from 040‖Zp. So
for example, when it is known that a ≤ 232 from the appli-
cation context, our approach can offer at least 87− 32 = 55
bits authenticity.
Binary Circuit Wire-labels to Arithmetic Wire-labels. Con-
verting wire-labels from traditional binary circuit garbling
to arithmetic wire-labels used in ours is more straightfor-
ward: the garbler only needs to send a randomly permuted
pair of ciphertext[

Encw′0(w0), Encw′1(w1)
]

per wire in the binary circuit, where w′0, w
′
1 are wire-labels

conforming to the format required by the traditional gar-
bling (e.g., ∀b ∈ {0, 1}, w′b = w′0 ⊕ b∆,∆ ∈ {0, 1}128), and
w0, w1 are freshly sampled labels based on our garbling
scheme (e.g., ∀b ∈ {0, 1}, wb = 040‖kb, kb = k0 +p b ×p
∆,∆ ∈ Zp). So the evaluator can decrypt the ciphertext
corresponding to the binary circuit wire-labels it learns from
the evaluation.

To derive an arithmetic wire-label wa that encodes

a = a0 + a1 × 2 + · · ·+ an × 2n−1, ai ∈ {0, 1},

from binary wire-labels w′a0 , . . . , w
′
an , it suffices to first con-

vert binary encodings w′a0 , . . . , w
′
an to arithmetic encodings

wa0 , . . . , wan , then wa can be derived from wa0 , . . . , wan
through local constant multiplication and local addition.

4.2 Increase Security Parameters
The scheme as we described thus far only guarantees 87 bits
computational and 40 bits statistical security for semi-honest
adversaries. Next, we show how to modify our scheme to
provide 127 bits computational and 128 bits statistical secu-
rity for semi-honest adversaries (or 128 bit computational
security for malicious adversaries).

The key idea is to set p to be a 128-bit prime (in doing
so, we abandon the idea of using 40-bit all-zero tags to
identify successful decryptions) and add to each garbled
row Encwin

(i, wout) a 128-bit tag. That is,

Encwin
(i, wout) = (C1, C2)

where

C1 = π(K)⊕K ⊕ wout

C2 = π(K ⊕ 1)⊕K ⊕ wout

K = 2win ⊕ i

where 2win refers to doubling win in GF(2128) and π is an
ideal block cipher realized by fixed-key AES.

Symmetrically, we can define

Decwin (i, (C1, C2)) =

{
m1, m1 = m2

⊥, otherwise

where

m1 = π(K)⊕K ⊕ C1

m2 = π(K ⊕ 1)⊕K ⊕ C2,

and K is as was defined above. Thus, the evaluator, who
obtains w′out by trial decrypting garbled rows in the i-th
gate with wire-label w′in , can verify whether

π(2w′in ⊕ i⊕ 1)⊕ 2w′in ⊕ i⊕ w′out = C2

to tell if the decryption was successful. The intuitive reason
behind this is that if w′in is not equal to win (the key used to
generate (C1, C2), then w′out 6= wout and

π(2w′in⊕i⊕1)⊕2w′in⊕i⊕w′out 6= π(2win⊕i⊕1)2win⊕i⊕wout ,

for all but a negligible probability.

4.3 Application-Independent Authenticity

The authenticity of the garbling scheme described before
(as well as the CRT-based garbling scheme of Ball-Malkin-
Rosulek) is application-dependent since its authenticity-
error n/p can grow with n (see proof of Theorem 1),
the size of the application-dependent plaintext-domain.
To provide the standard, application-independent notion
of authenticity, we can modify our garbling scheme so
that every wire’s plaintext value a is encoded as a pair(
k0 +p a×p ∆, k̂0 +p a×p ∆̂

)
where ∆, ∆̂ are the gar-

bler’s two independently-sampled, circuit-global secrets
and k0, k̂0 are the garbler’s two independently-sampled
wire-specific secrets. In more detail,
• Encode. To encode a plaintext value a ∈ Zp, the garbler

picks uniform k0, k̂0,∆, ∆̂ ∈ Zp and computes

La :=
(
k0 +p a×p ∆, k̂0 +p a×p ∆̂

)
as the encoding (i.e., wire-label) of a.

If the garbler (who knows k0, k̂0,∆, ∆̂) receives an en-
coding L =

(
L, L̂

)
, to check the validity of the encoding,

he/she will verify

(L− k0)×p ∆−1 =
(
L̂− k̂0

)
×p ∆̂−1
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and decode L to (L− k0) ×p ∆−1 only if the above
equality holds.

• Addition. Since the encoding is additively homomorphic,
given two encodings La and Lb, the encoding of their sum
can be locally computed as La+b := La +p Lb.

• Projection. To garble a projection (v1 7→ u1, . . . , vt 7→
ut), a t-row garbled gate is computed as follows:

EncLv1
(Lu1

) , EncLv2
(Lu2

) , . . . , EncLvt
(Lut) .

Theorem 2. The improved garbling scheme of Section 4.3
satisfies the privacy, obliviousness, and authenticity properties
outlined in Section 2.1.

Proof of Theorem 2 can be found in Appendix C.2.

5 THE MALICIOUS MODEL

In this section, we give a general approach to compile our
semi-honest protocols into ones secure against malicious
adversaries. We consider the standard definition of active-
security of secure two-party computation with respect to
the standard ideal model execution: the trusted party, upon
receiving input string x and y from party P1 and P2,
respectively, computes the agreed string metric between x
and y and sends the result to P2.
Protocol Design Intuition. We use the cut-and-choose tech-
nique, where the circuit generator sends n garbled circuits
to the evaluator, k of which will be checked and the rest
will be evaluated to derive the final outcome. For improved
performance, we used the probabilistic cut-and-choose strat-
egy of [30] to fix n but pick k from a public distribution,
based on the observed cost ratio between checking and
evaluation per GC. Also, the garbler sends only hashes of
GCs in the “garble” step to save bandwidth, but re-generates
the evaluation GCs in the “evaluate” step. Our protocol
succeeds as long as at least one of the evaluation circuit
is correctly generated. Due to page limit, we describe our
malicious model protocols in Appendix C.1 and formally
prove its security in Appendix C.3, but state Theorem 3
below for completeness.

Theorem 3. The protocol of Appendix C.1 securely computes f
in presence of malicious adversaries.

6 EVALUATION

In this section, we evaluate a set of secure string comparison
protocols which motivated our work.
Experiment Setup. We used two n1-standard-1 instances
(1vCPU, 3.75GB memory, priced at 3 cents/hour) on Google
Cloud Platform. The LAN setting has 2Gbps with 1ms
latency. The WAN has 200Mbps with 40ms latency. The
computational security parameter κ is 127 and the statistical
security parameter s = 40. Unless specified otherwise, the
performance numbers are averaged over 10 runs.

We implemented our scheme in C/C++, using Intel
AESNI intrinsic instructions to realize the fixed block cipher
π. We use emp-tool [13]’s implementation of Half-Gate [10]
garbling and efficient OT extension [31], [32] to construct
the baseline protocols to compare with. For fair comparison,
all baseline protocols use their best possible custom circuits
optimized to take advantage of free-XOR [19] benefits.

6.1 Application Performance
We applied the proposed garbling scheme to implementing
five string metrics: edit distance, weighted edit distance,
Needleman-Wunsch, longest common subsequence (LCS),
and heaviest common subsequence.

Table 1 highlighted the performance improvements of
our semi-honest protocols in comparison with best previous
results. Generally, the gains of our approach are slightly big-
ger on Edit Distance and LCS, since the choices of weights
can affect the sizes of the projection gates (as indicated
by Proposition 1). We observe that running times on LAN
and WAN all conform very well with the linear cost model:

Timeoverall = Timecomputation + Sizetraffic/Speednetwork.

Thus, in the scalability experiments below we will focus on
the LAN setting.

Figure 3 and Figure 4 delineate the time and bandwidth
costs of these end-to-end applications over input strings of
lengths 800–4000 characters. The curves all show a quadratic
shape, which is consistent with the asymptotic complexity
of the underlying dynamic programming algorithms. We
set cins and cdel to 5 and csub to 1 for Weighted-ED. Our
Needleman-Wunsch used the weight tables of Figure 1.

6.2 Comparison with [9] and [8]
These heuristics-based protocols are still more efficient than
our protocols. However, those protocols are only able to
approximate certain computation over very restricted sets
of low-entropy strings and are not provably secure with
respect to the standard definition of security for MPC pro-
tocols. It is also crucial to select a “good” reference string
since as the accuracy of these heuristic protocols can be very
sensitive on the choice of the reference strings. However,
no secure methods to choose “good” reference strings were
known.

The quality of an approximation method can be mea-
sured by Root-Mean-Square Relative-Error (RMSRE)√√√√( n∑

i=1

[(vi − u)/u]2

)
/n

where {v1, . . . , vn} are n approximations of a ground-truth
value u using the method. Typically, approximation meth-
ods with RMSRE greater than or equal to 50% are not
usable in most real-world string-comparison applications.
We run an experiment over the same dataset used by [8], [9],
where we picked uniformly 2000 pairs of 3500-nucleotide
genome strings, computed the edit-distances between them
using the protocols of [8], [9] with a randomly generated
reference string. We observed a RMSRE of 75% and 59%
using [9]’s and [8]’s approach, respectively. Both numbers
clearly indicate serious accuracy issues of applying their
methods in practice.

In contrast, our approach doesn’t require any public
reference string to work, can always produce accurate re-
sults, and can work for many variant string metrics over
arbitrary strings. However, without knowing how to pick
good reference strings, it is not possible to draw meaningful
performance comparisons, even merely for the standard
edit-distance case.
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8 16 24 32 40
0

20

40

60

80

100

String length (×100)

Baseline
This work

8 16 24 32 40
0

50

100

150

200

String length (×100)

Baseline
This work

8 16 24 32 40
0

10

20

30

String length (×100)

Baseline
This work

8 16 24 32 40
0

20

40

60

String length (×100)

Baseline
This work

LCS
Time

(s) HCS
Time

(s)

LCS
Bandwidth

(GB) HCS
Bandwidth

(GB)

Fig. 4: LCS and HCS. (κ = 127)

6.3 Comparison with protocols using ABY
We also find our GC-based baseline better than ABY-based
protocols. Analytically speaking, this is because, for the
string metrics considered in this paper,
(1) a pure Y approach is essentially the same as our baseline;

(2) a pure B approach (i.e. GMW on binary circuits) has
comparable cost to Y, but allows to move the expensive
cryptography into an input-independent offline phase
(at the cost of linear online rounds). Thus, for overall
efficiency, it neither makes sense to combine B and Y;

(3) even if A allows free addition, it can’t do secure com-
parison efficiently (other than first translate arithmetic
encodings into binary encodings, then compare using
either B or Y). In the best known circuits for computing
these string metrics, every addition gate is immediately
followed by a comparison gate. Because secure wire-
label conversion is not cheaper than secure addition
using Y or B, using A alone or mixing it with B or Y
won’t produce better protocols than our baseline.

Micro-benchmarks. We also measured the costs of addition,
projection, and wire-label conversion. Due to page limit, we
report our micro-benchmark experiments in Appendix D.

7 CONCLUSION

Customizing garbling schemes to specific computations can
bring dramatical efficiency benefits. We have taken a first
step to explore this methodology in constructing secure
protocols for several representative string-comparison met-
rics. Our protocols are up to an order-of-magnitude more
efficient than best existing results, but also generic, accurate,
and provably secure under the standard, preferred defi-
nition of security. Our protocols can also be converted in
standard ways to offer active security. Our findings would
shed some light on designing other application-specific
MPC protocols in the future.
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APPENDIX A
PROOF OF THEOREM 1

Theorem 1. If π is an ideal block cipher that is used to realize
Enc and Dec as described above. the scheme in Figure 2 satisfies
the privacy and obliviousness definitions given in Section 2.1, and
an application-dependent notion of authenticity.

Proof. Privacy: Figure 5 describes a simulator Simprv that
can be used to show our garbling scheme is private. The
construction of Simprv is similar to Gb except for three
changes that we highlighted in red: (1) Simprv has a third
input f(x); (2) it uses f(x)i to replace t when producing
the decoding information dOi ; and (3) it calls En with an
arbitrary legitimate input x0 to produce X in the end.

Simx0
prv(1k, f, f(x) )

∆← {0, 1}k

for I ∈ f.input-wires do

wI0 ← Zp
ê := (w1

0, . . . , w
|f.input-wires|
0 ,∆)

for g ∈ f.gates do

if g is Add-gate then

{I1, I2} := g.input-wires

O := g.output

wO0 := wI10 +p w
I2
0

else if g is Projφ-gate then

I := g.input-wire

O := g.output-wire

Zζ := g.domain

for t ∈ Zζ do

wIt := wI0 +p t×p ∆

wOt := wO0 +p φ(t)×p ∆

cgt ← EncwIt (g, wOt )

cg := {cg1, . . . , c
g
ζ−1}

F ′ := (c1, . . . , c|f.Proj|)

for Oi ∈ f.output-wires do

Zζ ← i.domain

for t ∈ Zζ do

wOit := wOi0 +p t×p ∆

dOit ← Enc
w
Oi
t

(out‖ f(x)i ) {f(x)i denotes the

value of f(x) on the ith output-wire.}
di := {dO0 , . . . , dOζ−1}

d′ := (d1, . . . ,d|f.output-wires|)

X ′ := En(ê, x0) {x0 is a legitimate value in f.domain.}
return (F ′, X ′, d′)

Fig. 5: The Simulator for Proving Privacy

For any x, consider (F,X, d) generated by

(F, e, d)← Gb(1k, f)

X := En(e, x)

and the tuple (F ′, X ′, d′) produced by Simx0
prv(1k, f, f(x)).

Should Simx0
prv know x, then it would not replace t with

f(x)i in producing dOit but simply call En(ê, x) in the
end to generate X ′. Note that Simx

prv outputs exactly the
distribution (F ′′, X ′′, d′′). It is easy to see that (F,X, d)
and (F ′′, X ′′, d′′) are identically distributed. Now, to see
(F ′′, X ′′, d′′) ≈ (F ′, X ′, d′), we note that

(1) the distinguisher cannot tell the two distributions apart
by examining any garbled gates because ê is a tuple of
uniform strings and Simx

prv and Simx0
prv used exactly the

same procedure to produce all garbled gates.
(2) For every output-wire Oi, for every wOit the distin-

guisher does not learn, dOit is no different from a random
string (because π is an ideal cipher); from the wOit
learned by the distinguisher, the distinguisher can only
get f(x)i from decrypting dOit , which is no different
from what it would learn from examining (F,X, d).

Obliviousness: We simply observe that in Simprv, f(x)
is used only to compute d, which is dropped in the security
definition of obliviousness. Thus, the simulator Simobl can be
derived from Simx

prv simply by dropping the input f(x) and
the third component d in the output. The proof of privacy
can be carried over to prove obliviousness.

Application-dependent Authenticity: We note that due to
the construction of Enc, if the adversary A can provide
any Y ′ such that Y ′ 6= Ev(F,X)) and De(d, Y ′) = k 6= ⊥
(where (F, e, d) ← Gb(1k, f), X := En(e, x)), then A must
know wk = w0 +p k ×p ∆, which is the output wire-label
corresponding to k. However, without knowing w0 and ∆,
for any particular k, A can only guess wk = w0 +p k ×p ∆
correctly with probability at most 1/p. Hence, let n be the
size of the domain of the plaintext k, then the adversary
can only succeed in guessing a valid output wire-label with
probability at most n/p. Thus, our scheme guarantees n/p-
authenticity. Since n can vary with application, we call this
notion of authenticity application-dependent.

Remark. In many practical applications such as string-
comparison, it is easy to bound the value of n to small
(application-specific) constants (e.g., < 300 in all applica-
tions considered in this paper) so that n/p is negligible.

APPENDIX B
PROOF OF PROPOSITION 1

Proposition 1. Let s, t, Di,j , cins , cdel , csub be defined as in
Section 2.2, where cins , cdel are generalized to one-dimensional
tables and csub is generalized to a two-dimensional table. Let

mi,j = min
(
Di,j−1 + cdel

[
t[j]

]
, Di−1,j−1 + csub

[
s[i], t[j]

])
ui,j =

(
Di,j−1 + cdel

[
t[j]

])
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
vi,j =

(
Di−1,j + cins

[
s[i]
])
−mi,j
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Then, there exist public constants C1, C2, C3, C4 which are
independent of Di,j , such that for all valid indices i, j.

C1 ≤ui,j ≤ C2, C3 ≤vi,j ≤ C4.

Proof. Because |Di,j−1 −Di−1,j−1| ≤ cins
[
s[i]
]
, therefore

Di−1,j−1 − cins
[
s[i]
]
≤ Di,j−1 ≤ Di−1,j−1 + cins

[
s[i]
]

so,

Di,j−1 + cdel
[
t[j]

]
≥ Di−1,j−1 − cins

[
s[i]
]

+ cdel [t[j]]

Di,j−1 + cdel
[
t[j]

]
≤ Di−1,j−1 + cins

[
s[i]
]

+ cdel
[
t[j]

]
hence,

ui,j =Di,j−1 + cdel
[
t[j]

]
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
≥cdel

[
t[j]

]
− cins

[
s[i]
]
− csub

[
s[i], t[j]

]
(5)

ui,j =Di,j−1 + cdel
[
t[j]

]
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
≤cins

[
s[i]
]

+ cdel
[
t[j]

]
− csub

[
s[i], t[j]

]
(6)

So we can set

C1 := min
i,j

(
cdel

[
t[j]

]
− cins

[
s[i]
]
− csub

[
s[i], t[j]

])
,

C2 := max
i,j

(
cins

[
s[i]
]

+ cdel
[
t[j]

]
− csub

[
s[i], t[j]

])
,

and we have C1 ≤ ui,j ≤ C2.
Symmetrically, we can derive that(

Di−1,j + cins
[
s[i]
])
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
≥cins

[
s[i]
]
− csub

[
s[i], t[j]

]
− cdel

[
t[j]

]
(7)(

Di−1,j + cins
[
s[i]
])
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
≤cins

[
s[i]
]

+ cdel
[
t[j]

]
− csub

[
s[i], t[j]

]
(8)

(8)− (5) yields(
Di−1,j + cins

[
s[i]
])
−
(
Di,j−1 + cdel

[
t[j]

])
≥ −2cdel

[
t[j]

]
(9)

(7)− (6) yields(
Di−1,j + cins

[
s[i]
])
−
(
Di,j−1 + cdel

[
t[j]

])
≤ 2cins

[
s[i]
]

(10)

Thus, we know from (7) and (9) that

vi,j ≥ max
(
cins

[
s[i]
]
− csub

[
s[i], t[j]

]
− cdel

[
t[j]

]
,

−2cdel
[
t[j]

])
and from (8) and (10) that

vi,j ≤ max
(
cins

[
s[i]
]

+ cdel
[
t[j]

]
− csub

[
s[i], t[j]

]
,

2cins
[
s[i]
])

Finally, by defining

C3 := min
i,j

(
max

(
cins

[
s[i]
]
− csub

[
s[i], t[j]

]
− cdel

[
t[j]

]
,−2cdel

[
t[j]

]) )
C4 := max

i,j

(
max

(
cins

[
s[i]
]

+ cdel
[
t[j]

]
− csub

[
s[i], t[j]

]
, 2cins

[
s[i]
]) )

we proved C3 ≤ vi,j ≤ C4.

APPENDIX C
ACTIVELY-SECURE PROTOCOLS

We use three ideal functionalities FIHash (interactive hash),
FCOT (correlated OT), and Fcoin-toss (coin tossing) defined
in Appendix C.4. First, the garbler is required to use a
coin-tossed randomness to run Gb. This prevents an ad-
versarial garbler from compromising the correctness any

garbled table through selecting problematic randomness.
To ensure P1’s input wire-labels to the evaluation circuits
denote the same plaintext value, we used FIHash, an XOR-
homomorphic interactive hash implementation that was
also used by JIMU [33] for similar purposes. Each initial
input and final output wire in f ’s circuit is associated with a
random permutation bit λI and the evaluator knows 〈λI〉 (i-
hash of bit λI ) and 〈mI

λI 〉 (i-hash of the wire-label denoting
bit λI . Thanks to the XOR-homomorphism of FIHash, it is
easy for the evaluator to securely translate a wire-label mI

b

(a label on the master circuit denoting b) into mI,i
b (a label

on the i-th GC denoting b) for any b ∈ {0, 1}, given their
i-hashes and their XOR-differences (see Step 5.).

We assume y has more than 40 bits. To ensure the evalua-
tor use consistent y in all evaluation GCs, the parties run the
correlated OT functionality FCOT once for the evaluator to
learn the wire-labels

{
mI
yI

}
I∈Inp(P2)

, which represent y on

the master circuit. For evaluation, these master wire-labels
are translated to wire-labels on each evaluation GC using
XOR-differences whose validity is guaranteed by FIHash.

Finally, FIHash also allows the evaluator to what output
wire-labels are valid and identify inconsistent but valid
output wire-labels. Note that inconsistent valid wire-labels
reveals δ of the master circuit, and further reveals the
garbler’s input x when the garbler cheats (see Step 6.).

C.1 Full Protocol Description

Let s be the statistical security parameter. Assume P1 (the
circuit generator holding input string x) and P2 (the circuit
evaluator holding input string y that has more than s bits)
want to compute a string-comparison metric f between x, y.

1. Setup. On cut-and-choose parameter n and computa-
tional security parameter κ, P1 and P2 call Fcoin-toss for
P1 to learn {seed i ∈ {0, 1}κ}i∈[n]. For i ∈ [n], P1 sets

(δi,∆i) :=
(
PRG(seed i, “delta”),PRG(seed i, “Delta”)

)
and sends {〈δi〉}i∈[n] to P2 through FIHash.

The master circuit. P1 samples δ ∈ {0, 1}κ. For every
input-wire I of P1’s input to f , P1 samples uniform
random bit λI := PRG(δ, I‖“lambda”); for every input-
wire I of P2’s input to f and every output-wire I of f ,
P1 sets λI := 0. For every input-wire or output-wire I
of f , P1 samples mI

0 ∈ {0, 1}κ, sets mI
1 := mI

0 ⊕ δ, and
sends 〈λI〉, 〈mI

λI 〉, 〈δ〉 to P2 through FIHash.
OT of seeds. P1 picks a uniform ∆ ∈ {0, 1}κ. P1

and P2 call Fcoin-toss for P2 to learn an n-bit string
J sampled from certain public distribution (see [30]
for the details on how this public distribution of J is
calculated). Then P1 with input

(
∆, {seed i}i∈[n]

)
and P2

with input J call FCOT for P2 to learn {seed i | Ji = 1}
and {seed i ⊕∆ | Ji = 0}.

2. Inputs. For every input-wire I in the i-th GC, P1 sets

mI,i
0 := PRG(δi, (I, i)‖“label”),

mI,i
1 := mI,i

0 ⊕ δi.

Then,
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a) P1’s Input. For every input-wire I of P1’s input in
the i-th garbled circuit, P1 sets

λI,i := PRG(δi, (I, i)‖“lambda”).

b) P2’s Input. For every input-wire I of P2’s input in
the i-th garbled circuit, P1 sets

λI,i := 0.

(C-OT) P1 with
(
δ, {mI

0}I∈Inp(P2)

)
and P2

with {yI}I∈Inp(P2), invoke FCOT so P2 learns
{mI

yI}I∈Inp(P2). P2 verifies that mI
yI matches with

〈mI
0〉 ⊕ yI〈δ〉 for all I , and aborts otherwise.

Now, for every input-wire I in the i-th GC, P1 sends
〈λI,i〉, 〈mI,i

λI,i〉 to P2 through FIHash.
3. Garble. P1 generates n garbled circuits {GC i}i∈[n] for f

as follows:
a) For every input-wire I of the i-th garbled circuit, P1

generates arithmetic wire-labels

wI,i0 := PRG(δi, I, i)

wI,i1 := wI,i0 +p ∆i,

then sends an ordered pair[
EncmI,i

λI,i

(
wI,iλI,i

)
,EncmI,i

1⊕λI,i

(
wI,i1⊕λI,i

)]
.

which will allow securely translating binary field
encodings into their Zp encodings.

b) For addition, subtraction, constant multiplication
and bounded-value projection gates, P1 runs the Gb
algorithm of the garbling scheme of Figure 2.

c) For every output-wire I of the i-th garbled circuit,
P1 sends a secure projection table allows to translate
arithmetic encoding wI,iv (v takes a bounded number
of values) to its binary encodings mI,i,0

b0
, . . . ,mI,i,k

bk

where v = b0b1 · · · bk and mI,i,j
0 := PRG(δi, I, i, j),

mI,i,j
1 := mI,i,j

0 ⊕ δi for all j ∈ [k]. P1 sends{
〈mI,i,j

0 〉
}
I∈Output(f),i∈[n],j∈[k]

to P2 via FIHash.

P1 sends H(GC i) to P2 (H is a collision-resistant hash).
4. Check. For each check-circuit GC i, namely those i ∈

[n],Ji = 1, P2 use seed i to verify that P1 have played
honestly in all previous steps; and aborts otherwise. In
particular, P2 checks the following constraints:
a) GC i generated from seed i matches its hash H(GC i).
b) δi generated from seed i matches 〈δi〉 via FIHash.
c) mI,i

0 generated from δi matches 〈mI,i
0 〉 via FIHash.

d) λI,i generated from δi matches 〈λI,i〉 via FIHash.
e) For all I ∈ Output(f), j ∈ [k], wire-label mI,i,j

0 of
GC i matches 〈mI,i,j

0 〉 via FIHash.
5. Evaluate. For each evaluation-circuit GC i, namely those
i ∈ [n],Ji = 0, P2 sends seed i⊕∆ to P1 who verifies the
consistency of the value. Then, P1 and P2 collaborate to
evaluate these circuits. For every evaluation-circuit GC i,
P1 sends δ ⊕ δi to P2, who verifies it with 〈δ〉 ⊕ 〈δi〉.
a) P1’s Input. For every input-wire I of P1’s input xI ,
P1 sends mI

xI , λI⊕λI,i, mI
λI⊕m

I,i
λI,i⊕(λI⊕λI,i)δi to

P2, who verifies their validity against their i-hashes

through FIHash. P2 computes mI,i
xI

:= mI
xI ⊕ (mI

λI ⊕
mI,i
λI,i ⊕ (λI ⊕ λI,i)δi)⊕ (λI ⊕ xI)(δ ⊕ δi).

b) P2’s Input. For every input-wire I of P2’s input yI ,
P1 sends mI

0 ⊕m
I,i
0 to P2, who verifies their validity

against their i-hashes through FIHash. P2 computes
mI,i
yI

:= mI
yI ⊕ (mI

0 ⊕m
I,i
0 )⊕ yI(δ ⊕ δi).

c) Eval. With the wire-labels obtained above, P2 eval-
uates the garbled circuit according to the garbling
scheme’s Ev method.

d) Check. P2 verifies that all GC i (i ∈ [n]) received
match their hashes received in Step 3..

6. Output. For every output-wire I in the i-th evaluation
circuit, P1 sends mI

0 ⊕m
I,i
0 to P2, who verifies its valid-

ity through FIHash. P2 validates every output wire-label
obtained from circuit evaluation against their i-hashes,
then translates them to plaintext values.
a) If P2 all valid wire-labels obtained from evaluating

the n − k circuits refer to the same plaintext value,
then P2 outputs this value and halts.

b) If P2 obtains two valid output wire-labels on the
same output wire I which decode to different plain-
text values, then P2 can obtain valid mI

0 and mI
1

simultaneously by:

mI
0 := mI,i1

0 ⊕ (mI
0 ⊕m

I,i1
0 )

mI
1 := mI,i2

1 ⊕ (mI
0 ⊕m

I,i2
0 )⊕ (δ ⊕ δi2)

for some i1, i2. Then P2 can learn δ := mI
0 ⊕ mI

1,
whose value can be validated through FIHash. With
δ, P2 can learn {λI}I∈Inp(P1)

, and further recovers
P1’s input x from {λI}I∈Inp(P1)

,
{
〈mI

λI 〉
}
I∈Inp(P1)

and those
{
mI
xI

}
I∈Inp(P1)

it received in Step 5.. P2

locally computes f(x, y) and outputs it.

C.2 Proof of Theorem 2

Theorem 2. The improved garbling scheme of Section 4.3
satisfies the privacy, obliviousness, and authenticity properties
outlined in Section 2.1.

Proof. Note that the garbling mechanism for addition and
projection is the same as that of our basic garbling scheme
described in Section 3. The proofs for privacy and oblivi-
ousness properties are essentially the same as that of the
main theorem (Theorem 1). Thus, below we focus on the
proof of authenticity. Assume for the purpose of contra-
diction that the adversary A can provide some Y ′ such
that Y ′ 6= Ev(F,X)) but De(d, Y ′) = k 6= ⊥ (where
(F, e, d) ← Gb(1k, f), X := En(e, x)). Then A must know
La =

(
k0 +p a×p ∆, k̂0 +p a×p ∆̂

)
for some a. However,

without knowing any of k0, k̂0,∆, ∆̂, for any particular a,
the probability that A succeeds in guessing a La =

(
L, L̂

)
such that

(L− k0)×p ∆−1 =
(
L̂− k̂0

)
×p ∆̂−1

is 1/p at the best, (because both sides of the equation above
are uniformly distributed over Zp). Therefore, with e.g. p >
287, the authenticity error will be less than 2−87.
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C.3 Proof of Theorem 3

Theorem 3. The protocol of Appendix C.1 securely computes f
in presence of malicious adversaries.

Proof. We prove the security in a hybrid-model where the
parties have access to ideal functionalities for FIHash, FCOT,
and Fcoin-toss. The standard composition theorem [34] im-
plies security when the sub-routines are instantiated with
secure implementations of these functionalities.
If P1 is corrupted. We construct an efficient simulator
S interacting with the ideal string-metrics functionality as
P1. S runs the corrupted real-model P1 as a subroutine,
interacting with it like real-model P2 with input y = 0
using the protocol of Appendix C.1, except for the following
changes:
1) In Step 1., through the simulated FIHash, S learns
{λI}I∈Input(P1).

2) In Step 5.a, S learns {mI
xI}I∈Input(P1). For all I ∈

Input(P1), if mI
xI matches 〈mI

λI 〉, then S sets xI := λI ;
if mI

xI matches 〈mI
λI 〉 ⊕ 〈δ〉, then S sets xI := λI .

3) In Step 6., S submits x to the trusted functionality and
outputs whatever P1 outputs.
To show that the joint out distribution in this ideal-

model involving S is indistinguishable from that of the real-
model involving the corrupted P1, we consider a series of
experiments each with a slightly modified simulator.
1) Hybrid1 The simulator S1 interacts with the corrupted
P1 running the real-model protocol, where S1 uses P2’s
actual input y as its input. Their interaction is identical
to the real-model execution.

2) Hybrid2 Simulator S2 acts the same way as S1 in
Hybrid1, except:
a) In Step 1., through the simulated FIHash, S2 learns
{λI}I∈Input(P1).

b) In Step 5.a, S2 learns {mI
xI}I∈Input(P1). For I ∈

Input(P1), if mI
xI matches 〈mI

λI 〉, then S2 sets xI :=

λI ; ifmI
xI matches 〈mI

λI 〉⊕〈δ〉, then S2 sets xI := λI .
c) In Step 6., S2 outputs f(x, y).

We claim Hybrid2 ≈ Hybrid1 because
• To the corrupted P1, the only messages it got from the

simulators are {seed i ⊕ ∆ | i ∈ [n],Ji = 0} in Step 4..
However, these messages in Hybrid1 and Hybrid2 are
identically distributed, a fact guaranteed by FCOT.

• In both experiments, the simulators correctly output
f(x, y) if at least one correct GC is evaluated.

3) Hybrid3 Simulator S3 acts the same way as S2 in
Hybrid2, except:
a) S3 runs the corrupted P1 as a sub-routine and take

an ideal P1’s role to interact with the ideal string-
metrics functionality.

b) In Step 6., S3 submits x to the ideal string-metrics
functionality and outputs whatever the corrupted P1

outputs.
We claim Hybrid3 ≈ Hybrid2 because

• S3’s output is the same as the corrupted P1’s in Hybrid2.
• The ideal P2 in Hybrid3 and S2 in Hybrid2 both output
f(x, y).

4) Hybrid4 Simulator S4 acts the same way as S3, except
s4 uses y = 0 instead of P2’s actual input as its input
when interacting with the corrupted P1. S4 is identical
to S . This is the ideal-model execution.
We claim Hybrid4 ≈ Hybrid3 because the real-model

P2’s outgoing-message distributions (including whether
and when P2 aborts) do not depend on the value of its input
y.
If P2 is corrupted. We construct an efficient simulator S
interacting with the ideal string-metrics functionality as an
ideal-model P2. S will run the corrupted P2 as a sub-routine,
interacting with it as real-model P1 with input x = 0
using the protocol of Appendix C.1, except for the following
changes:
1) In Step 1., S learns J through the simulated FCOT.
2) In Step 2., S learns y through the simulated FCOT. S

sends y to the ideal functionality and gets back z =
f(x, y).

3) In Step 3., for all i ∈ [n],Ji = 1, S generates GCi
honestly. For all i ∈ [n],Ji = 0, S runs the simulator
Sprv(f, z) to produce GCi (see the privacy definition of
garbling for Sprv).

4) In Step 6., S outputs whatever the malicious P2 outputs.
To show that the joint out distribution in this ideal-

model involving S is indistinguishable from that of the real-
model involving the corrupted P2, we consider a series of
experiments each with a slightly modified simulator.
1) Hybrid1 The simulator S1 interacts with the corrupted
P2 using the real-model protocol with P1’s actual input
x. This is the real-model execution.

2) Hybrid2 The simulator S2 is the same as S1 in
Hybrid1, except:
a) In Step 1., S learns J through the simulated FCOT.
b) In Step 2., S2 learns y through the simulated FCOT.
c) In Step 3., for all i ∈ [n],Ji = 1, S generates GCi

honestly. For all i ∈ [n],Ji = 0, S runs the simulator
Sprv(f, z) to produce GCi (see the privacy definition
of garbling for Sprv).

We claim Hybrid2 ≈ Hybrid1 because our garbling
scheme is proven to be private, hence the corrupted P2

cannot tell if a GC is honestly garbled or simulated with
a chosen output z.
3) Hybrid3 Simulator S3 is the same as S2 in Hybrid2,

except:
a) S3 runs the corrupted P2 as a subroutine and inter-

acts with the ideal string-metrics functionality as an
ideal-model P2.

b) In Step 3., instead of computing f(x, y), S3 submits
y to the ideal functionality and receives f(x, y).

c) In Step 6., S3 outputs whatever the corrupted P2

outputs.
We claim Hybrid3 ≈ Hybrid2 because

• S3’s output is the same as the corrupted P2’s in Hybrid2.
• The ideal-model P1 in Hybrid3 and S2 in Hybrid2 both

have no output.
4) Hybrid4 the simulator S4 is the same as S3 in Hybrid3,

except that it uses x = 0 as its input to interact with the
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corrupted P1. S4 is identical to S and this is the ideal-
model execution.
We claim Hybrid3 ≈ Hybrid2 because the real-model

P1’s outgoing-message distributions (including whether
and when P1 aborts) do not depend on the value of x.

C.4 Definition of FIHash, FCOT, and Fcoin-toss

The FIHash Functionality. We adopt the definition of FIHash

from that of JIMU [33]. Note that FIHash allows to verify
the validity of the XOR-difference among several previously
hashed messages. FIHash also enables the receive to verify
any single message by calling Verify on a single message
(i.e., t = 1).

• Hash. Upon receiving (Hash, m1, . . . ,mν) (ν ≥ 1) from
P1 (where with respect to P2, each mi has κ-bit entropy):
for every i, pick a fresh number id i, record (id i,mi) and
generate a delayed output (Receipt, id i) to P2.

• Verify. Upon receiving (Verify, id1, . . . , id t, d)
(t ≥ 1) from P2: if there are recorded values
(id1,m1), . . . , (id t,mt) (otherwise do nothing), set
z = 1 if m1⊕· · ·⊕mt = d, and z = 0, otherwise; generate
a delayed output (VerifyResult, z) to P2.

Fig. 6: The ideal functionality FIHash.

The FCOT Functionality. FCOT is the correlated OT func-
tionality as defined in Figure 7. It can be efficiently realized
with small modification to the actively-secure OT-extension
protocol of Keller et al. [35]. The idea of FCOT was also used
in authenticated garbling [15], [36] to construct authenti-
cated multiplicative triples.
The Fcoin-toss Functionality. On receiving “init” from both
parties, Fcoin-toss samples a uniform bit-string s and send it
to the designated party (while allowing premature aborts).

APPENDIX D
MICRO-BENCHMARK EXPERIMENTS

We measured the performance of several basic operations
under our garbling scheme. All experiments in this sub-
section are conducted with respect to 87-bit computational
security.
Secure Addition. Table 2 shows the performance of secure
addition in our approach. Recall that addition is (almost)
free, our scheme is able to perform one addition every 2.8
nano-seconds, regardless of the bit-length of the numbers to
add. This result is in line with the cost of computing a mod-p
addition on this hardware. In contrast, costs of binary circuit
based addition circuits (powered by Half-Gates) increase
roughly linearly with the width of the adder. Ours are 500–
40,000 times faster and consume no bandwidth.

Correlated-OT: Upon receiving
(

∆, {mi}i∈[l]
)

where ∆,mi ∈
{0, 1}κ ∈ {0, 1}κ from S and x where x ∈ {0, 1}l from R, send
{mi ⊕ xi∆}i∈[l] to R.

Fig. 7: The Correlated OT functionality FCOT.
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Fig. 8: Costs of secure table-lookup. (Timings are measured
by averaging over 106 runs.)

Secure Table-Lookup. This is also the essential enabling
primitive for secure comparison and bounded range min-
imum computations. Figure 8 shows the efficiency of secure
table-lookup with our scheme and compares it to the best
existing garbled-circuit-based implementation. Two relevant
parameters are used to describe the table: the table size (i.e.,
the number of entries in the table) and the bit-length of
each entry. With our scheme, the cost of secure table-lookup
grows linearly with the number of entries in the table, but
not the bit-length of the entries.

In contrast, a garbled-circuit-based table-lookup costs
more when the values in the table grow bigger, because
the secure multiplexers has to take wider inputs. In our
experiments, we assumed the table contains either 4-, 8-,
or 12-bit values, representing the value range of constant
tables used in many practical applications. On these table
parameters, our approach is 3.6–20 times faster and 6–23
times more bandwidth-efficient.
Wire-label Conversions. Converting Boolean wire-labels
from the binary circuit garbling scheme into arithmetic wire-
labels in our scheme is highly efficient, at about 420ns (and
∼32 bytes bandwidth) per bit of Boolean wire-label, since it
involves only two garbled rows per Boolean wire (Table 3).

Converting arithmetic wire-labels into Boolean ones
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TABLE 2: Costs of secure additions

Time (ns) Bandwidth (byte)
8-bit 16-bit 32-bit 64-bit 8-bit 16-bit 32-bit 64-bit

Half-Gates [10] 1420 2770 5520 11100 154 330 682 1386
This Work 2.8 0

We note the timings coincide well with the cost of AESNI-based garbling (∼ 45 ns/row) and that of
modulo arithmetic with respect to an 88-bit prime (∼2.8 ns/+p). Timings are averaged over 106 runs
for Half-Gates and 109 runs for ours.

TABLE 3: Costs of label conversions.

Time (µs) Bandwidth (KB)
8-bit 16-bit 32-bit 64-bit 8-bit 16-bit 32-bit 64-bit

Boolean to Arithmetic 3.34 6.69 13.31 26.75 0.26 0.51 1.02 2.05
Arithmetic to Boolean

(via secret-shares) 10.89 743.2 ——— 4.22 1048.83 ———

Arithmetic to Boolean
(via generic secure modulo-arithmetic) 9628 2004.96

Timings in the first two rows are averaged over 106 runs while those in the third row are over 103 runs.

used in Half-Gates is comparatively more expensive. The
generic method needs 9.6 millisecond and 2MB per arith-
metic wire-label, mostly spent on oblivious mod-p multi-
plication under the Half-Gates garbling scheme. However,
if the arithmetic wire-label is known to denote values of
a smaller range (usually < 220 possibilities), the faster
secret-sharing based label conversion method turns out very
efficient. For example, if the range of the arithmetic signal is
up to 28, the conversion an arithmetic wire-label takes only
less than 11ns and 4.2KB bandwidth. We empirically find
that the secret-sharing based conversion can outperform the
generic method when the plaintext value is within 216.
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