
NANOPI: Extreme-Scale Actively-Secure Multi-Party Computation
Resolving the Space-Round Dilemma using Lightweight Program Instrumentation

Ruiyu Zhu
Indiana University
zhu52@indiana.edu

Darion Cassel
Carnegie Mellon University
darionc@andrew.cmu.edu

Amr Sabry
Indiana University
sabry@indiana.edu

Yan Huang
Indiana University
yh33@indiana.edu

ABSTRACT
Existing actively-secure MPC protocols require either linear rounds
or linear space. Due to this fundamental space-round dilemma, no
existing MPC protocols is able to run large-scale computations
without significantly sacrificing performance. To mitigate this is-
sue, we developed nanoPI, which is practically efficient in terms
of both time and space. Our protocol is based on WRK [44, 45]
but introduces interesting and necessary modifications to address
several important programmatic and cryptographic challenges. A
technique that may be of independent interest (in transforming
other computation-oriented cryptographic protocols) is a staged
execution model, which we formally define and realize using a
combination of lightweight static and dynamic program instru-
mentation. We demonstrate the unprecedented scalability and per-
formance of nanoPI by building and running a suit of bench-
mark applications, including an actively-secure four-party logis-
tical regression (involving 4.7 billion ANDs and 8.9 billion XORs)
which finished in less than 28 hours on four small-memory ma-
chines. Our integrated framework nanoPI is open-sourced at https:
//github.com/nanoPIMPC/nanoPI.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols; •The-
ory of computation → Cryptographic protocols; • Software
and its engineering→Dynamic analysis; Frameworks; Semantics;

KEYWORDS
Large-scale actively-secure constant-round MPC

ACM Reference Format:
Ruiyu Zhu, Darion Cassel, Amr Sabry, and YanHuang. 2018. NANOPI: Extreme-
Scale Actively-SecureMulti-Party Computation : Resolving the Space-Round
Dilemma using Lightweight Program Instrumentation. In Proceedings of
2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18). ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3243734.3243850

1 INTRODUCTION
Multi-party computation (MPC) is an important cryptographic
technique that enables decentralized collaborative computations

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243850

over sensitive datasets privately held by multiple distrustful par-
ties [9, 34, 41]. After decades of intensive research, state-of-the-
art two-party secure computation protocols are able to execute
more than 100K AND-gates/second [20, 43, 44, 47, 48] even in the
presence of full-malicious adversaries. Recently, Wang et al. have
developed authenticated garbling technique which enables efficient
constant-round n-party computations secure against up to n − 1
malicious adversaries [45]. Such throughput would meet the ex-
pectation of numerous real-world computations that involve secret
data at scale, even when the parties are spread around the globe!

On the other hand, the space-complexity of actively-secure com-
putation protocols has been largely overlooked in existing efforts.
Instead, researchers have focused intensively on improving the time,
bandwidth, and round efficiency of these protocols. However, space
is in general a resource as valuable and scarce as time/bandwidth. In
fact, space can play an even more critical role in the particular con-
text of secure computation, motivated by two common scenarios,
and potentially their combination:
(1) Resource-constrained devices.Much sensitive data has been

collected and stored on personal devices such as smart phones,
watches and IoT devices, whose space budgets can be stringent
compared to conventional computers. Nevertheless, people of-
ten still hope to run secure computation directly on such devices
because it can substantially simplify the trust model when the
secret data doesn’t need to leave these devices [6, 13, 31].

(2) Computations at scale. Generic computations acceptable to
most MPC protocols are represented by boolean circuits, whose
scale is typically hundreds to thousands times larger than the
same computation executed in assembly code. Moreover, some
interesting applications of multi-party computation seem inher-
ently computation-intensive. E.g., it has long been envisioned
that secret-shares of sensitive user data such as medical records
or business transactions can be delegated to multiple indepen-
dent, untrusted principals, who run MPC protocols in prede-
fined ways to mine useful information, e.g., a prediction model,
out of the secret data [26, 30, 37]. As a result, it is not uncommon
to run into circuits with billions of gates.
Regarding the space challenge, we examined the literature and ex-

isting MPC prototypes but found, unfortunately, that for all known
protocols and their variants, either the performance is severely im-
peded by the large number of rounds required to run the protocol,
or they could not even complete due to their enormous demand
in space. The work of Whitewash [5] researched ways to reduce
the memory footprint of secure computation protocols. However,
their study was constrained in the two-party, server-assisted setting
(where a mutually-trusted non-colluding server exists) and only
against semi-honest adversaries.

https://github.com/nanoPIMPC/nanoPI
https://github.com/nanoPIMPC/nanoPI
https://doi.org/10.1145/3243734.3243850
https://doi.org/10.1145/3243734.3243850
https://doi.org/10.1145/3243734.3243850

Let |Cf | be the size of the circuit representation of a function f .
A root cause of the scalability issue for the state-of-the-art actively-
secure MPC protocols is that they are tradingO(|Cf |) space for the
performance benefit of being constant-round. Apparently, constant-
round and constant-space have been two fundamentally incompati-
ble assets of any actively-secure computation schemes.

In an attempt to resolve the challenge, Zhu et al. [48] proposed
the idea of pool-based cut-and-choose and developed a prototype
(based on JIMU [47]) that is able to efficiently run applications with
billions (or trillions) of gates using a relatively small constant space.
Other advantages brought by their framework include better APIs
(for active-security), long-term security, and efficient support of
computations over dynamic data.1 The pool-based framework fits
well to the needs of establishing long-term commodity services for
secure computations. However, it remains open how their idea can
be combined with WRK protocols [44, 45], which are more updated
and able to generalize to more than two parties.

Therefore, the main quest of this work stems from the question:
Can we design an actively-secure multi-party
computation scheme that can efficiently execute
circuits at arbitrary scale using limited space
independent of |Cf |?

We answered this question positively by developing a prototype
and have experimentally shown that actively-secure MPC can be
efficiently run at extreme-scales using constant space.

Threat Model. In this paper, we only consider protocols that are
secure against malicious (aka. active) adversaries. Such adversaries
are allowed to behave in arbitrary ways to compromise security.
In particular, we make no assumption on the number of parties an
adversary can corrupt in the protocol. This is by far the strongest
security model one can ever hope to accomplish. Comparing to
the frequently-used honest-but-curious threat model, the malicious
model is clearly preferred in business scenarios where the stakes
are high.

1.1 Contribution
New Problems. First, we unveil the space-round dilemma, a severe

issue that plagues the scalability of all existing actively-securemulti-
party computation protocols. We further zoomed in to WRK, a
state-of-the-art MPC scheme, and discovered several hidden issues
that prevent it from being efficiently scalable. These include
(1) WRK protocols require fully-unrolling its target computation

into circuits. Otherwise, they are no longer constant- (but linear-
) round. This is caused by several factors including its sub-
protocols Πabit (for producing authenticated bits), ΠaAND (for
producing authenticated ANDs), but most importantly, an un-
documented missing step to bridge the gap between the use
of function-independent ΠaAND and Πabit sub-protocols and its
function-dependent pi2pc protocol, which needs extra rounds of
communication. In addition, their authenticated garbling pro-
tocol Π2pc has ignored the enormous space demand for storing
all wires in the circuit.

1In a computation over dynamic data, some of the input may not be available by the
time the computation starts. An example computation of this kind is secure evaluation
of RAM programs, where some inputs to the circuit need to be read on-the-fly from
the Oblivious-RAM.

(2) To efficiently produce arbitrary number of abits within constant
memory, WRK’s Πabit would need to be invoked multiple times.
However, the global secret ∆ used in Πabit to MAC abits will
change across different invocations of Πabit. This issue, if left
untreated, can lead to actual security attacks.

Our Solutions. To build efficiently scalable MPC protocols, our
starting point is WRK [44, 45], the most efficient MPC protocol
known so far that is secure against any number of active adver-
saries.2 At a high level, we propose three enhancements to WRK to
allow it to execute arbitrarily large circuits within constant space.
(1) We changeWRK’s circuit processing protocol Π2pc (resp. Πmpc)

to ΠScalable
2pc (resp. ΠScalable

mpc) which can efficiently process large
circuits in small space. We propose a lightweight program trans-
formation that can be applied to programs specified in an im-
perative programming language. As a result, all binary gates
in the circuit will be automatically executed in batches (which
we dubbed as stages), meanwhile all intermediate wires will be
automatically deallocated based on their static scoping informa-
tion. Since it is a common practice to trade space for roundtrip
in MPC protocols, our use of lightweight static and dynamic
instrumentation technique may be of independent interest in
improving other protocols.

(2) We change WRK’s authenticated bit (abit) sub-protocol Πabit
into ΠScalable

abit where values of ∆ are guaranteed to be identical
across different invocations of the abit protocol. This change
reduces the space requirement of the abit sub-protocol because
the abits can be obtained in many small batches.

(3) We change WRK’s authenticated AND (aAND) sub-protocol
ΠaAND into ΠScalable

aAND by maintaining a fixed-size pool of leaky-
aANDs for efficient cut-and-choose purpose. Since leaky-aANDs
are always picked from the pool, it allows fast generation of
arbitrarily many aANDs using constant space.

Our result is a O(p)-space, O(n |Cf |/p)-round actively secure MPC
protocol where p is a user-set constant. Comparing to existing
linear-round MPC protocols, ours allows to reduce the penalty of
round-latency by a factor of p, regardless of the depth of applica-
tion circuits. We have formally proved the security of our protocols.
Comparing to existing constant-round WRK protocols, ours scales
much better in space-complexity and provides easier-to-use APIs
and long-term security if running as commodity secure computa-
tion services.

We implemented and experimentally evaluated the effectiveness
of our ideas. With the proposed techniques, we are able to run, for
the first time, a 4-party actively-secure logistic regression with 4.7
billion AND gates in 27.9 hours on mediocre machines (c5.large,
4GB memory, 4.75 cents/hour). As a highlight of scalability, our
protocol executed a 4-party actively-secure computation of a circuit
with more than 40.8 billion ANDs (in addition to 122 billion XORs)
on 4 Google Compute Engine n1-standard-1 instances (1 vCPU,
3.75 GB memory, 4.75 cents/hour) in 16 days. Notably, no more than
398MB memory (and 0 disk space) is used at any point during the
computation. Like Pool-JIMU, our protocol also meets other expec-
tations of being used for running long-term commodity services.

2We consider it trivially secure if all players are adversarial since there is no honest
player remaining to be protected.

We packed our compiler and cryptographic implementation into a
toolchain and open-sourced it on GitHub.3

2 PRELIMINARIES
We describe some building blocks of our MPC protocol, including
garbled circuits, WRK, and pool-based cut-and-choose.

2.1 Garbled Circuits
To compute an arbitrary function f using garbled circuit, the basic
idea is to let one party (called the garbler) prepare an “encrypted”
version of the circuit computing f ; the second party (called the
evaluator) then obliviously evaluates the encrypted circuit without
learning any intermediate values. Starting with a Boolean circuit
for f (agreed upon by both parties in advance), the garbler as-
sociates two random cryptographic keys L0i , L

1
i (also known as

wire-labels) for the i-th wire in the circuit (L0i encodes a 0-bit and
L1i encodes a 1-bit). Then, for each binary gate д of the circuit with
input wires i, j and output wire k , the garbler computes ciphertexts

Enc
Lbii ,L

bj
j

(
L
д(bi ,bj)
k

)
for all possible values of bi ,bj ∈ {0, 1}. The

resulting four ciphertexts, in random order, constitute a garbled
gate forд. In addition, the garbler reveals the mappings from output-
wire keys to bits. To start circuit evaluation, the evaluator obtains
the appropriate keys for the initial input-wires either through direct
messages or oblivious transfer [17, 18, 33] from the garbler. Given
keys Li , Lj associated with both input wires i, j of some garbled
gate, the evaluator can compute a key for the output wire of that
gate by decrypting the appropriate ciphertext. With the mappings
from output-wire keys to bits provided by the garbler, the evaluator
can learn the actual output of f .

The Point-and-Permute Technique. The point-and-permute tech-
nique proposed by Pinkas et al. [38] enables the evaluator to always
compute a single decryption per gate. The idea is to use L0i to rep-
resent a random bit λi ∈ {0, 1} on the i-th wire, so that bit bi ⊕ λi
can be revealed to the evaluator to index the garbled entry for de-
cryption. More specifically, let λi , λj , λk be the permutation bits of
the two input-wires and the output-wire of a gate. Then L0i and L0j
should be used to encrypt output key L

д(λi ,λj)⊕λk
k . Thus, a garbled

table for д = AND can be expressed as the forth column of Table 1.
Also, because the evaluator doesn’t know λi , λj , λk , it is safe to
send the garbled table without further permutation. Note that in
the random oracle model, Encx,y (z) can be realized as H(x ,y) ⊕ z
where H is modeled as a random oracle.

The Free-XOR Technique. The Free-XOR technique [3, 21] allows
XOR gates to be securely computed without any interaction even
in presence of malicious adversaries. The basic idea is to let the
circuit garbler keep a global secret ∆ and dictate that for every wire
i whose 0-label is L0i , its 1-label L

1
i is always defined as L

1
i B L0i ⊕∆.

Further, for an XOR gate with input wires i, j and output wire k , the
garbler will always set L0k B L0i ⊕ L

0
j . Thus, XOR can be securely

computed by the evaluator alone through XOR-ing the two input
wire-labels it obtained from evaluating previous gates.

3https://github.com/nanoPIMPC/nanoPI.

2.2 WRK Protocols
The garbling protocol given in Section 2.1 can only thwart semi-
honest adversaries. In the standardmalicious threat model, however,
a malicious circuit generator can put erroneous rows into the gar-
bled table. Based on the values of the permutation bits λi , λj , λk
along with the fact of whether the evaluation succeeds, an mali-
cious garbler can learn extra information about the plaintext wire
signals involved in the erroneous gates. To thwart such attacks,
Wang et al. [44] proposed a seminal technique called authenticated
garbling. The basic idea is to hide the permutation bits from any
subset of the parties so that in event of a malicious generator cor-
rupting some garbled rows, it has no clue of which pair of plaintext
values a garbled row is associated with. Meanwhile, authenticated
garbling enables the circuit evaluator to locally verify whether a
decrypted row was indeed correctly constructed. Therefore, a pro-
tocol execution will fail or succeed, but in either case its behavior
is independent of any honest party’s secret inputs.

WRK is by far the most practical constant-round actively-secure
n-party computation scheme that tolerates any number of cor-
rupted parties. It is compatible with the powerful Free-XOR tech-
nique. Nevertheless, it requires O(n |Cf |) space and works only
in the random oracle model. Their key enabling tool is authen-
ticated AND triples (aAND) that are pre-computed using a sep-
arate secure computation protocol. An AND triple in the two-
party setting is a tuple of six bits a1,b1, c1 held by party P1 and
a2,b2, c2 held by P2 such that (a1 ⊕ a2) · (b1 ⊕ b2) = c1 ⊕ c2. As-
sume P1 has a secret value ∆1 ∈ {0, 1}n . We denote by [b]1 an
authenticated bit b of party P1, which refers to a distributed tu-
ple (b,M[b],K[b]) such that M[b] = K[b] ⊕ b∆1 where P1 has
(b,M[b]), and P2 knows K[b]. We callM[b] ∈ {0, 1}n the Message
Authentication Code (MAC) of b, and K[b] ∈ {0, 1}n the verifica-
tion key of b’s MAC. An authenticated AND triple is just a tuple of
six authenticated bits [a1]1, [b1]1, [c1]1, [a2]2, [b2]2, [c2]2 such that
(a1 ⊕a2)(b1 ⊕b2) = c1 ⊕c2. WRK runs in two high-level phases: the
offline phase precomputes and stores all abits and aANDs needed
later in the protocol, followed by a function-dependent online phase
that generates and evaluates an authenticated garbled circuit using
the abits and aAND prepared earlier.

Next, we give an intuitive tutorial of WRK in the two-party
setting but refer to [45] for extending it to the multi-party setting.
Let i, j,k be the three wires associated to an AND gate. In two-party
setting, to hide the permutation bits λi , λj , λk , WRK divides them
into XOR-based bit-shares, [λ1i]

1, [λ1j]
1, [λ1k]

1 and [λ2i]
2, [λ2j]

2, [λ2k]
2,

held by P1 and P2, respectively, such that λ1i ⊕ λ
2
i = λi , λ

1
j ⊕ λ

2
j =

λj , λ
1
k ⊕ λ2k = λk . Now the first question is, to produce the first

garbled row of Table 1, how could the circuit generator (call it
P1) compute (λiλj ⊕ λk)∆ without actually knowing λi , λj , λk ?
WRK addresses this challenge by dividing (λiλj ⊕ λk)∆ into two
XOR-shares SP1 and SP2 such that SP1 ⊕ SP2 = (λiλj ⊕ λk)∆, thus
only requiring P1, P2 to locally derive SP1 , SP2 , respectively. But
then how can the parties locally compute SP1 , SP2 from values that
they already know? This is exactly where aANDs come handy: if
P1 and P2 already have the respective shares of an aAND ([a1]1 ⊕
[a2]2)([b1]1⊕[b2]2) = [c1]1⊕[c2]2 witha1⊕a2 = λi andb1⊕b2 = λj ,
then P1, P2 can learn c1 and c2, respectively, with c1 ⊕ c2 = λiλj .
Consequently, P1 can compute (c1 ⊕ λ1k)∆ from c1, λ1k and ∆, all

https://github.com/nanoPIMPC/nanoPI

Table 1: Garbling in Honest-but-curious Adversary Model
(
Note Hbi ,bj

def
= H

(
Lbii , L

bj
j

)
, ∀bi , bj ∈ {0, 1}.

)
bi ⊕ λi bj ⊕ λj bk ⊕ λk Point & Permute With Random Oracle H Free-XOR

0 0 z00 = λiλj ⊕ λk EncL0i ,L0j

(
Lz00k , z00

)
H0,0 ⊕ (L

z00
k , z00) H0,0 ⊕ (L0k ⊕ z00∆, z00)

0 1 z01 = λiλj ⊕ λk EncL0i ,L1j

(
Lz01k , z01

)
H0,1 ⊕ (L

z01
k , z01) H0,1 ⊕ (L0k ⊕ z01∆, z01)

1 0 z10 = λiλj ⊕ λk EncL1i ,L0j

(
Lz10k , z10

)
H1,0 ⊕ (L

z10
k , z10) H1,0 ⊕ (L0k ⊕ z10∆, z10)

1 1 z11 = λiλj ⊕ λk EncL1i ,L1j

(
Lz11k , z11

)
H1,1 ⊕ (L

z11
k , z11) H1,1 ⊕ (L0k ⊕ z11∆, z11)

Table 2: WRK’s Authenticated Garbling in Malicious Adversary Model
(
Note Hbi ,bj

def
= H

(
Lbii , L

bj
j

)
,∀bi ,bj ∈ {0, 1}.

)
Share of P1’s Garbled Entry

H0,0 ⊕
(
L0k ⊕ (c1 ⊕ λ

1
k)∆ ⊕ K[c2] ⊕ K[λ2k] , c1 ⊕ λ1k , M[c1] ⊕M[λ1k]

)
H0,1 ⊕

(
L0k ⊕ (c1 ⊕ λ

1
k ⊕ λ

1
i)∆ ⊕ K[c2] ⊕ K[λ2k] ⊕ K[λ2i] , c1 ⊕ λ1k ⊕ λ

1
i , M[c1] ⊕M[λ1k] ⊕M[λ1i]

)
H1,0 ⊕

(
L0k ⊕ (c1 ⊕ λ

1
k ⊕ λ1j)∆ ⊕ K[c2] ⊕ K[λ2k] ⊕ K[λ2j] , c1 ⊕ λ1k ⊕ λ1j , M[c1] ⊕M[λ1k] ⊕M[λ1j]

)
H1,1 ⊕

(
L0k ⊕ (c1 ⊕ λ

1
k ⊕ λ

1
i ⊕ λ

1
j)∆ ⊕ K[c2] ⊕ K[λ2k] ⊕ K[λ2i] ⊕ K[λ2j] ⊕ ∆, c1 ⊕ λ1k ⊕ λ

1
i ⊕ λ

1
j , M[c1] ⊕M[λ1k] ⊕M[λ1i] ⊕M[λ1j]

)
Share of P2’s Garbled Entry(

M[c2] ⊕M[λ2k] , c2 ⊕ λ2k , K[c1] ⊕ K[λ1k]
)(

M[c2] ⊕M[λ2k] ⊕M[λ2i] , c2 ⊕ λ2k ⊕ λ
2
i , K[c1] ⊕ K[λ1k] ⊕ K[λ1i]

)(
M[c2] ⊕M[λ2k] ⊕M[λ2j] , c2 ⊕ λ2k ⊕ λ2j , K[c1] ⊕ K[λ1k] ⊕ K[λ1j]

)(
M[c2] ⊕M[λ2k] ⊕M[λ2i] ⊕M[λ2j] , c2 ⊕ λ2k ⊕ λ

2
i ⊕ λ

2
j ⊕ 1, K[c1] ⊕ K[λ1k] ⊕ K[λ1i] ⊕ K[λ1j]

)
of which P1 already knows. Because (c1 ⊕ λ1k)∆ ⊕ (c2 ⊕ λ2k)∆ =
(λiλj ⊕ λk)∆, one would wish P2 to be able to locally compute
(c2 ⊕ λ2k)∆. Unfortunately, P2 cannot because it does not know ∆.

To resolve this, WRK exploited the fact that P2 already knows
M[c2] and M[λ2k], both generated from the same ∆1 (P1’s global se-
cret for authenticating P2’s bits). Because K[b]⊕M[b] = b∆1 for any
authenticated bit b, it suffices to require P1 to set ∆ = ∆1, and define

SP1
def
= (c1 ⊕ λ

1
k)∆ ⊕ K[c2] ⊕ K[λ2k]

SP2
def
= M[c2] ⊕M[λ2k]

so that SP1 ⊕ SP2 = (λiλj ⊕ λk)∆ while the parties can each locally
compute SP1 and SP2 , respectively. Finally, to prevent a malicious
P1 from replacing c1 ⊕ λ1k with an arbitrary bit, WRK requires P1 to
provideM[c1] ⊕M[λ1k], the MAC of c1 ⊕ λ1k , so that P2 can verify
the correctness of a garbled row. Further, observing that the MACs
are XOR-homomorphic and λiλj = λi ⊕λiλj , λiλj = λj ⊕λiλj , and
λiλj = 1 ⊕ λi ⊕ λj ⊕ λiλj , so the other three garbled rows can also
be computed using the same aAND used for computing the first
row (see Table 2).

Note that because the MACs and keys are used in construct-
ing garbled tables, the length of the MACs and keys becomes a
computational security parameter.

Generating Authenticated AND Triples. The parties need to run
a separate secure protocol in a secret-input-independent prepara-
tion phase to generate aAND triples. In fact, this protocol, dubbed

ΠaAND, dominates the overall cost of the WRK protocols. WRK’s
ΠaAND works in two high-level steps:
(1) Generating leaky-aANDs using ΠLaAND. A leaky-aAND triple

has the same property as aAND except that a cheating party is
able to correctly guess a honest party’s first abit output with
probability 1/2, at the risk of being caught with probability 1/2.

(2) Combine every B randomly-chosen leaky-aANDs into a fully-
secure aAND. The integer B is known as the bucket size.

2.3 Pool-based Cut-and-choose
Many state-of-the-art implementations of actively-secure computa-
tion protocols [20, 28, 36, 39, 47], including WRK, are based on the
idea of batched cut-and-choose. These protocols, however, suffered
from scalability issues as they require linear storage (in the length
of the computation) because much per-gate information needs to
be stored before the cut-and-choose challenges can be revealed. To
overcome this issue, Zhu et al. [48] proposed to maintain a fixed-
size pool for keeping necessary information to do cut-and-choose.
Namely, the garbled gates used for checking/evaluation will al-
ways be selected from a fixed-size pool and the pool will be refilled
immediately after any garbled gate is consumed. They have an
example instantiation (called Pool-JIMU) of the idea on top of JIMU
protocol and showed its extraordinary scalability advantage. In ad-
dition, Pool-JIMU also offers unpaired long-term statistical security
guarantee, i.e., cut-and-choose failures are bounded throughout
the life-time of the pool regardless of how many secure compu-
tation instances have been executed. They have shed some light

on applying the idea also on improving the scalability of WRK’s
expensive aANDs generation protocol. However, they overlooked
several important technical issues in combining Pool with WRK.
As we will show in Section 4, these oversights can lead to serious
performance issues, and even real attacks.

3 THE SPACE-ROUND DILEMMA
Generally speaking, there are two flavors of MPC protocols. Early
MPC protocols such as BGW [4] and CCD [7] require constant
round per layer of ANDs. Protocols in this category may be useful
for computing wide but shallow circuits, assuming there is sufficient
space to hold the secret values of all the input wires of a layer of
ANDs. Note that these protocols could run in constant space, simply
at the cost of incurring linear rounds in the size of the circuits. For
general computations, due to the prohibitive time cost incurred by
the round-trips (especially when network latency is high), constant-
round MPC protocols are thought to be much more desirable.

The second category of actively-secure MPC protocols, pio-
neered by BMR [3] and resurrected by many recent works [11,
12, 27, 44, 45], are able to execute any circuit in constant rounds.
However, a largely overlooked drawback of this category of proto-
cols is their space complexity. In fact, we have examined all known
MPC protocols in this category but find that they all rely a common
online-offline trick to circumvent the round complexity. Namely,
they all use a constant-round but linear-space offline preparation
phase, followed by a function-dependent online phase. Therefore,
their space complexities grow linearly in the running time of the
computation.

Table 3 summarizes a list of state-of-the-art actively-secure MPC
protocols whose practical efficiency have been verified with actual
software implementations. We consider the round, computation,
and communication complexity of these protocols in view of their
space complexity. Note that all the constant-round, asymptotically
more efficient protocols [10, 12, 15, 19, 20, 28, 36, 39, 44, 45, 47]
cannot even be launched without O(|Cf |) space to hold the whole
garbled circuits, which is typically the case in practice. In contrast,
our protocol can always run within a user-specified small spaceO(p).
Although ours uses linear rounds, experiments show that, compared
with the O(1)-round WRK, the actual delay due to roundtrips in
our protocol is hardly noticeable even with a relatively small space
(Figure 13). Note that themain focus of this work is themore general
n-party setting, and the two-party protocols are included to show
that this dilemma is somehow fundamental.

Concrete Impact of Space. In order to appreciate the impact of
space complexity of WRK protocols, we have run a number of ex-
periments using WRK. Our two-party setting experimental results
are depicted in Figure 1. We measured the actual peak memory
usages of WRK running different circuits whose AND counts range
from 35K to 8M, in the two-party setting. Clearly, their memory
usage grows linearly with the number of ANDs in the circuit, which
aligns well with our theoretical analysis. To get some idea about
the peak memory consumption of executing circuits with more
than 8M ANDs, we used a linear model k̂ · |Cf | + b̂ to extrapolate
the curve based on 29 points of actual observations, where k̂, b̂ are
assigned with minimal values indicated by any pair of observed

Table 3: Compare state-of-the-art implementations of actively-
secure MPC protocols that allow dishonest-majority.

Space Round Comp./Comm.
complexity§

[22], [1, 25] O(1) O(1)∗ O (s |Cf |)

[35] O
(
|Cf |

)
O(d) O

(
|Cf |

(
1 + s/log |Cf |

))
[43] O(1) O(1)∗ O

(
|sCf |

)

2-
pa

rt
y
se
tt
in
g

[15, 28, 39] O(τ |Cf |) O(1)† O
(
|Cf |

(
1 + s/log τ

))
[10, 20, 36, 47] O

(
|Cf |

)
O(1)† O

(
|Cf |

(
1 + s/log |Cf |

))
[44] O

(
|Cf |

)
O(1)† O

(
|Cf |

(
1 + s/log |Cf |

))
[48] O

(
p
)

O
(
|Cf |/p

)
O

(
|Cf |

(
1 + s/logp

))
[8] O

(
|Cf |

)
O(d) O

(
n |Cf |

(
1 + s/log |Cf |

))
[19] O

(
|Cf |

)
O(d) O

(
n |Cf |

(
1 + s/log |Cf |

))

n
-p
ar
ty

se
tt
in
g

[12] O
(
n |Cf |

)
O(1)† O

(
n |Cf |

(
n + s/log |Cf |

))
[45]⋆ O

(
n |Cf |

)
O(1)† O

(
n |Cf |

(
n + s/log |Cf |

))
This work O(p) O

(
n |Cf |/p

)
O

(
n |Cf |

(
n + s/logp

))
|Cf | denotes the circuit size of f . τ is the number of executions in a batch.
d , the circuit depth, is application-dependent. p is an (almost) application-
independent (except for circuit size) parameter determined by the size of local
memory. s is the statistic security parameter.
§ Worst-case complexity of per-party work.
∗ Asymptotically more expensive and hard to run computations on dynamic
data.
† Will fail for many circuits due to its extraordinary space requirement.
⋆ It has been experimentally shown that, in practice, WRK is substantially
more efficient than other MPC protocols due to its small constant factors.

points. Hence the dashed estimation line is an underestimation of
the actual peak memory usage.

Note that even on a nowadays powerful cloud server with 128GB
memory (roughly the c5.18xlarge instance at $3/hour on Amazon
EC2), WRK would not be able to securely compute the edit distance
of two 350-nucleotide genome strings. On less expensive computers
like PCs (and resp. mobile devices), WRK is even incapable of exe-
cuting 20 iterations of SHA256 (resp. 20 iterations of AES). Finally,
we stress that this is only in the lighter-weight two-party setting. In
a general n-party setting, WRK’s peak memory usage will have to
be multiplied by a factor of n − 1 because each party needs to store
a abit’s key and MAC for every one of the rest n − 1 parties. There-
fore, it is really stretching for this state-of-the-art MPC protocol to
compute something practically useful when n increases.

The Impact of Rounds and Inefficacy of Naïve Adaptations. A nat-
ural attempt to reduce the space requirement of original WRK is to
limit the batch sizes of its abits and leaky-aANDs generation sub-
routines to some constants so that the resulting WRK-variant can
be streamingly executed. However, not only will this small change
affect protocol correctness and introduce security vulnerabilities
(as we will explain in Section 4), the prohibitive overhead incurred

0 0.25M 0.5M 1M 2M 4M 8M 16M 32M 128M 256M 512M 1B 2B 4B
0

2G

8G

32G

128G

1T

4T

16T

/⇝/

/f /

Mobile devices (1 GB)

PC (8 GB)

Cloud server (128 GB)

20 AES
100 AES

20 SHA256
200-nucleotide ED

Sort 5K Ints
350-nucleotide ED

Logistic Regression on 100 MNIST dataset

Logistic Regression on 1K MNIST dataset

Number of ANDs (|Cf |)

Pe
ak

m
em

or
y
us
ag
e

Actual observation
Estimation

Figure 1: Peak memory usage of two-party WRK protocol. Security parameters: s = 40, κ = 128. The estimation assumes a linear model k̂ · |Cf | + b̂

for the peak memory usage. We chose to underestimate by setting k̂ B min
for all observed
(д1,m1), (д2,m2)

{
m1 −m2
д1 − д2

}
and b̂ B min

for all observed
(д1,m1), (д2,m2)

{����m1 −
m1 −m2
д1 − д2

д1

����}.

2 Party LAN 2 Party WAN 4 Party LAN 4 Party WAN

10K

20K

30K

40K

50K

WRK
50.7

WRK
16.2

WRK
38.2

WRK
10.7Naïve

WRK
2.7

Naïve
WRK
0.02

Naïve
WRK
1.6

Naïve
WRK
0.01

Sp
ee
d
(A
N
D
/s
)

WRK
Naïve WRK

Figure 2: Performane degradation of naïvely adapted WRK
Assume s = 40, κ = 128. Speeds measured on running an random circuit
mixing 25% ANDs and 75% of XORs. The bucket size is 3. The network
latency of LAN and WAN are 0.2ms and 40ms, respectively.

by the roundtrips also renders the performance of the streamed
protocol execution pointless.

In order to quantify the performance penalty, we have tried
out this naïve modification to WRK and experimentally measured
its performance in various setups. As Figure 2 shows, the naïvely
converted WRK variant runs more than 20x slower than original
WRK even in the low-latency LAN setting. In a WAN network,
the factor of slowdown increases to 800–1000, which makes it
practically unusable!

Finally, although we picked WRK as the baseline in our case-
study both because of its performance advantage over its peer pro-
tocols and also the availability of implementation, the fundamental
conflict between the round and space complexities of malicious
MPC protocols is present in all known MPC protocols. The commu-
nity has yet to see any actively-secure MPC implementation that
is able to run extremely large circuits at a reasonably fast speed.
Thus, new secure mechanisms are needed to better reconcile the
conflicts between space and round in MPC protocol design.

4 DIAGNOSIS AND APPROACH OVERVIEW
In this section, we first analyze the root causes of WRK’s space-
round dilemma. Then, we sketch our ideas to address the challenge,
even under very stringent space/time budgets.

For presentation clarity, we restrict our discussion to the two-
party setting, but the ideas can naturally be carried over to the
multi-party setting.

4.1 Root Causes
Root cause 1: The abit protocol. The way in which abits are gen-

erated and used in WRK requires O(|Cf |) space: (1) Note that abit
is realized using OT extension, which requires constant rounds per
batch. Therefore, computing O(|Cf |) abits within constant rounds
implies using O(|Cf |) space so that O(|Cf |) OTs can run in par-
allel. (2) The call to abit in step (2) of protocol Π2pc (Figure 14)
assumes that the O(|Cf |) tuples returned by abit are all stored in
the program by both parties.

Root cause 2: The aAND protocol. For similar reasons as above,
the way aAND is generated and used in WRK also seriously limits
its scalability: (1) WRK’s aANDs generation protocol ΠaAND is
constant-round but usesO(Cf)-space. (2) Even ifWRK’sΠaAND was
efficiently executable in constant-space, the way aAND gets used
in WRK’s Π2pc also prevents Π2pc from running in constant-space.
This second issue happens to be occluded by a presentation flaw in
their papers [44, 45].

Take their two-party authenticated garbling Π2pc [44] as an ex-
ample. The ideal aAND of FPre used by Π2pc (which we excerpted
from [44] as Figure 3) is actually different from their FaAND func-
tionality (which we copied below for easy comparison):

FaAND

Honest case: Generate uniform [r1]1, [r2]1, [r3]1, and [s1]2, [s2]2, [s3]2,
such that (r1 ⊕ s1) ∧ (r2 ⊕ s2) = r3 ⊕ s3.
Corrupted parties: A corrupted party gets to specify the randomness
used on its behalf by the functionality.

The gap is that: FaAND does not allow the participants to control
the values of the abits, whereas the aAND of FPre does allow P1

FPre(κ)
init: Upon receiving init from P2 and ∆1 from P1, choose uniform ∆2 ∈ {0, 1}κ and store ∆1, ∆2. Send ∆2 to P2.
abit: Upon receiving abit from both P1 and P2, sample uniform r, s ∈ {0, 1}, uniform K[r], M[r], K[s], M[s] ∈ {0, 1}κ such that K[r] = M[r] ⊕ r∆B and

M[s] = K[s] ⊕ s∆1. Send (s, M[s], K[r]) to P2.
aAND: Upon receiving (aAND, (r1, M[r1], K[s1]), (r2, M[r2], K[s2]), (r3, M[r3], K[s3])) from P1 and (aAND, (s1, M[s1], K[r1]), (s2, M[s2], K[s2])) from P2,

verify thatM[ri] = K[ri]⊕ri∆2 and thatM[si] = K[si]⊕si∆1 for i ∈ {1, 2} and send cheat to P1 and P2 if not. Otherwise, set s3 B r3⊕(r1⊕s1)(r2⊕s2),
set K[r3] B M[r3] ⊕ r3∆2 and M[s3] B K[s3] ⊕ s3∆1. Send (s3, M[s3], K[r3]) to P2.

Figure 3: The two-party FPre functionality. (κ is a computational security parameter.) (excerpted from [44])

(resp. P2) to specify the abit-values r1, r2 (resp. s1, s2). WRK’sΠaAND
only realizes FaAND but Π2pc actually depends on the extra control
offered by FPre’s aAND so that its abit generation can be treated
as function-independent offline work! The same presentation flaw
also appeared in the multi-party version of WRK [45].

This issue can be fixed by introducing an extra round for the
parties to align the random abits returned by Fabit and FaAND. We
looked into their source code and verified that this is what actually
happens in their software implementation. We stress, however, that
this extra treatment won’t affect the round complexity of WRK only
if sufficient space is available to cache the abits associated with all
the wires and AND triples so that all the messages can be sent in
the same round. In practice, since space is eventually limited by
some constant, Π2pc has to use O(|Cf |) rounds.

Root cause 3: The function-dependent protocol Π2pc. If a wire splits
into multiple wires (which are used as input to different AND gates),
then the same authenticated permutation bit has to be used to
compute all those AND gates involving the split wires. This implies
that Π2pc needs to be aware of all wire-connection information of
the circuit, which depends on the function and even the specific
ways to construct the function. WRK obtains this wire-connection
information by fully unroll the function, which is not feasible when
|Cf | is large. If only partial information of wire-connections is
known, as is the case when Pool-JIMU executes programs, the
naïve Π2pc must keep every wire around just in case some are
later found split into other wires. This is clearly against the idea of
space-efficient streamed execution.

Concrete Space Analysis. Assume 128-bit computational security,
every party needs to store at least a triple (Lγ ,M[λ1γ],K[λ2γ]) per
wire (which is 16×3 = 48 bytes) and three authenticated bits (which
is 32 × 3 = 96 bytes) per leaky-aAND. Because each AND defines
a new wire and needs an nonleaky-aAND to compute, so at least
48 + 96B bytes memory are needed for each AND where B is the
bucket size. In addition, to efficiently implement Πabit and ΠaAND,
it is important to batch-run sufficiently many AESNI instructions,
which demands additional large contiguous memory to pack the
data to run through the AES cipher.

In the general n-party setting, each garbler has to store roughly
16+32(n−1)+96B(n−1) bytes per AND: 16 bytes for the wire-label
Lγ , 32(n − 1) bytes for wire permutation abit share, and 96B(n − 1)
for 3B MACs and 3B keys (but the length of eachM or K now has
expanded n − 1 times). The evaluator has to store (48 + 96B)(n − 1)
bytes per AND because n − 1 wire-labels per wire is needed at the
time of gate evaluation.

4.2 New Challenges and Key Solution Ideas
One would naturally think carrying the pool idea [48] over here to
WRK will resolve the space-round issue, just like it did to JIMU [47].
Unfortunately, this is not the case. In fact, efficiently running WRK
protocols with limited space requires not only cryptographic en-
hancements, but also some new programming language support
that no existing MPC frameworks has offered. Next, we overview
the new challenges and our key ideas to address them.

4.2.1 The Authenticated Garbling Phase. WRK requires aligning
aANDs to their corresponding wire-permutation-bits. In combina-
tion with the wire management problem, this poses new scalability
challenges. We address these challenges through novel combination
of static and dynamic program instrumentation techniques, which
we find most interesting.

The high level idea is that, given a computation specified as an
imperative program, we first apply a source-to-source transforma-
tion to insert appropriate function calls for wire management and
staged gate execution. As a result, when the statically instrumented
program runs, it behaves like running the original WRK except
that it also collects runtime information (such as wire-connection,
gate and wire counts, etc. that are not available at compile-time) to
automatically batch gate execution in stages.

Aligning aANDs with Wire-permutation-bits. Let α , β be the two
input-wires of an AND gate and λα , λβ be the permutation bits
on the input-wires. Since the aANDs (used to garble AND gates)
and the abits (used as wire-permutation-bits) are precomputed in-
dependently, in step (4a) of Figure 14, we must ensure the values
of the secretly-shared permutation bits λα , λβ are consistent with
those returned by FaAND. (We invite the readers to read Section 2.2
for reasons why the bits need to be consistent.) As was explained
in Section 4.1, this incurs an extra round. To alleviate the impact
of round latency due to the alignment, it is important to batch
many AND gates together to share a single network roundtrip.
On the other hand, the space available to store the per-gate in-
formation needed for garbling will limit the number of ANDs to
be processed in a batch. Finally, this alignment process has to be
function-dependent to properly handle wire-splits. (In contrast,
Pool-JIMU has a constant-round wire-soldering step but can be
trivially done in a function-independent way, thus don’t require
the advanced programming techniques as WRK protocols do.)

Managing the Wires. Due to space constraint, it is infeasible to
fully unroll a program to obtain all the intermediate wires and their
connection information. However, WRK’s online circuit phase does
need information of all wires to complete efficiently in constant
rounds. Our goal here is to run WRK in constant space without

overly penalize speed. But is it possible to finish a long computation
while keeping only constantly many wires?

A key idea to answer this question is to leverage the program
representation of the computation. In practice, useful computations
almost always have a constant-size representation no matter how
long they need to run. In fact, this idea was used by Zhu et al.
to reduce its space complexity: Pool-JIMU only maintains a small
set of wires corresponding to the set of program variables visible
at current point of runtime execution. There, wires are created
(and destructed, resp.) as the execution enters (and exits) their
corresponding variables’ defining scopes.

Unfortunately, this idea does not directly work with WRK. Take
the following simple function (1-bit multiplexer) as an example.

mux1(x, y, c) {
t B x ⊕ y;
t B c ∧ t;
return t ⊕ y;

}

Should the old strategy be used, several issues arise, evidencing
new programming challenges:
(1) A scope can be small, e.g., function mux1’s scope contains only

two binary gates. If the wires corresponding to variables t, c, etc.
are to be destructed on exiting their scope, then the AND gates
inside the scope have to be executed (before its input-wires
are destructed), thus incurring constant rounds per scope-exit.
Therefore, for small scopes, freeing up wires upon exiting their
defining scopes limits the batch size and incurs more rounds.

(2) Some statements, like “t B c∧t” in the example above, cannot
be directly supported without additional treatment. This is
because the execution of some ANDs has to be delayed (so
that they are batch-executed with other ANDs). Therefore, the
output of an AND gate cannot overwrite input-wires of any
ANDs (including its own) whose execution is currently delayed.

(3) Copy assignments like “x B y” cannot be executed as usual as
in JIMU-Pool: the wire associated with variable y may be de-
structed at some point of exiting its scope whereas the variable
xmay have a longer lifespan, e.g., when x is not a local variable
but y is a local variable.

(4) General compositions of binary operations such as “x ∧ y ∧ z”
and “x ⊕ y ∧ z” cannot be directly executed as with Pool-JIMU,
simply because gate execution are delayed and batched, and
that in-place wire assignment is not possible.

Our Solution. We propose a novel program execution model that
addresses these new challenges. Comparing to the normal stack-
based program execution, our new execution model preserves the
final outcome and space-efficiency, but circumvents the inability
of normal stack-based model in efficiently supporting WRK. The
high-level key ideas can be informally described as a list of rules:
(1) Every gate will run after certain delay. That is, a gate is pro-

cessed as pushing the gate into a queue, marking it ready to
execute once the next batch (called stage) is triggered.

(2) A stage is automatically and dynamically triggered when there
is not enough memory to batch more gates.

(3) Every wire will be marked as destructable (but not actually
destructed) when exiting its static scope. The actual destruction
occurs automatically after executing every stage.

(4) An assignment always implicitly creates a new wire, and binds
the target variable with the new wire.

(5) Before each assignment, the previous wire associated with the
target variable needs also to be marked as destructable, while
the actual destruction happens only after the current stage is
executed.

(6) All expressions must be translated to three-address assignments.
Why would these transformation rules resolve our challenge?

And even if they do, wouldn’t it be cumbersome and error-prone
for programmers to manually enforce them for every specific appli-
cation program? We answer both questions by developing a static
program rewriter (as a standalone executable) and a dynamic pro-
gram instrumenter (as a collection of functions to be linked with
user’s application code) for a subset of C, then formally prove that
executions of the transformed programs must produce identical
outcome as the original programs but only consume small space.
Out of the six rules above, rule (1) and rule (6) are implemented
by the static rewriter; rule (2) is implemented by the dynamic in-
strumenter; and rule (3), rule (4), rule (5) are jointly realized by
both. Leveraging loops and recursion, our language is capable of
specifying many useful boolean circuits such as AES, edit distance
and logistical regression in a highly compact way. As a result, our
toolchain is able to completely automate the ideas to efficiently run
WRK for circuits of arbitrary size.

4.2.2 The Preparation Phase. As we explained earlier, both Πabit
andΠaAND in the preparation phase are plagued by the space-round
dilemma. We first show that naïvely converting WRK’s Πabit to a
space-efficient variant can introduce security vulnerabilities. Then
we explain ideas to generate abits in an efficient and scalable way
without compromising security.

Attacking Naïvely Scaled Πabit. The basic idea to scale up Πabit
is to break the constant-round, single-batch of ℓ abits generation
process into ℓ/k batches, each producing k abits (k is set based
on available resource). However, realizing this by naïvely calling
WRK’s Πabit repetitively invites security attacks. Recall that in
WRK abits are generated using random correlated oblivious trans-
fers (RCOT), a sub-protocol that takes no input from the parties
and returns P1 (the RCOT sender) ℓ random correlated message
pairs

{(
mi

0,m
i
1
)}

1≤i≤ℓ so that ∃∆ ∈ {0, 1}n ,∀i,mi
0 ⊕m

i
1 = ∆; and

returns P2 (the RCOT receiver)
{(
b,mi

b
)}

1≤i≤ℓ . Note that there
is no guarantee that the same ∆ should be output across different
RCOT calls. Hence, WRK’s proof of security no longer applies. Even
worse, this can actually leave the main secure computation protocol
vulnerable to, what we call, inconsistent-∆ attacks!

To see how an inconsistent-∆ attack works, note that with all
but negligible probability, P1 as an RCOT sender will get two values
of the correlation-difference, say ∆ and ∆′, from two calls to RCOT
protocol. So with high probability, in some iterations of step (4a), the
abit rα of a particular aAND is authenticated with ∆′, whereas the
rest of the abits involved in the same aAND call are authenticated
with ∆. By definition, it is easy to verify that aAND will fail if
rα = 1 but succeed if rα = 0. Since everyone knows which abits
are associated with which ∆ values, just by observing whether the
execution fails or not, an attacker learns an abit of its peer’s. Since
a leaked abit can associate with the permutation bit corresponding

to an input-wire carrying another party’s secret input, that party’s
secret input bit will be leaked by observing if a protocol execution
fails!

Secure, Scalable ΠScalable
abit . To avoid the inconsistent-∆ issue, we

propose two minor modifications to WRK’s Πabit: (1) we change
the underlying RCOT protocol so that it takes a predefined ∆ as
input from the sender which is used to form random correlated
messages; and (2) to prevent an adversary from deliberately using
different ∆ in different RCOT batches, we add a consistency check
step at the end of every batch of RCOTs to ensure that identical ∆
values are used across different batches. Our abit protocol, called
ΠScalable
abit , can efficiently produce an arbitrary number of abits using

constant-space. ΠScalable
abit is specified in Figure 8.

Fast, Scalable ΠScalable
aAND . We improve the memory-scalability of

cut-and-choosing leaky-AND triples through maintaining a fixed-
size pool of leaky-AND triples. Instead of storing O(|Cf | · B) leaky-
aANDs before randomly grouping every B leaky-aANDs into a
bucket, we can carry out the random grouping always within a
pool of p leaky-aANDs while refilling a used leaky-aAND as soon
as it is marked to be converted into a fully-secure AND triple. Thus,
WRK’s cut-and-choose-based ΠaAND is modified to efficiently run
in constant space using pool-based cut-and-choose. Comparing
to Pool-JIMU, the differences here are: (1) every leaky-aAND is
checked for validity with a constant fault-detection rate 1/2, and
(2) every leaky-aAND can be checked and combined with other
leaky-aANDs to form a fully-secure aAND. As a result listed in [48,
Table 6], it suffices to maintain a pool of 479K leaky-AND triples
to achieve bucket size 3. (Note that the smaller the buckets are,
the faster WRK’s ΠaAND runs.) Our aAND protocol ΠScalable

aAND can
efficiently generate any number of aANDs using constant-space.
ΠScalable
aAND is specified in Figure 9.

4.3 Putting It All Together
We integrated the cryptographic enhancements and PL techniques
mentioned above and provide a complete toolchain, nanoPI, for
non-crypto-experts to develop and execute long-term or extreme-
scale, actively-secure MPC protocols. The high-level workflow of
nanoPI is depicted in Figure 4. Our system consists of the following
components:
• A Static Rewriter. It instruments circuit functions written by

application developers with resourcemanagement APIs provided
by our backend. In essence, the static writer extracts program’s
static scope information and passes it to our backend interpreter
to allow improved resource management.
• Cryptographic functions.They realize our improved efficiently

scalable variant of WRK components such as functions abitGen,
aANDGen, and runCircuit, etc.
• Stage functions. These functions are responsible to automat-
ically arrange the gates into different stages, securely execute
the gates respecting their topological order, retain necessary
resource for intermediate values to connect the stages while
recycling others as soon as possible.
• Basic Circuits Library. This is a set of basic circuits frequently

used in building real world applications. We follow the common

practice of existing secure computation frameworks [14, 29, 40,
42] which included optimized version of basic circuits to facilitate
non-crypto-expert application developers.

na
no

PI

Static Rewriter

Crypto Functions
(e.g., abitGen)

Stage Functions
(e.g., init, release)

Basic Circuits
(e.g., mux, add)

User circuits
(*.C)

Instrumented
circuits (*.C)

Pi

O
ff-
th
e-
sh
el
l

C
co
m
pi
le
r

Figure 4: The overview of nanoPI’s workflow.

5 PROTOCOL DETAILS
We divide the formal description of our approach into smaller pieces
to facilitate the proof of security. Section 5.1 describes the enabling
PL techniques for efficiently scaling up WRK’s online phase. Sec-
tion 5.3 presents techniques for space-efficient generation of abits
and aANDs. While our description focuses on the two-party setting,
the ideas naturally generalize to multi-party settings (see Section 6).

5.1 Scalable Authenticated Garbling
We use an idealized subset of C as a compact circuit description
language. We develop (and prove the correctness of) a new program
execution semantics for this subset of C that models the space
requirements of WRK’s authenticated garbling algorithm (Π2pc)
without overly penalizing its performance due to network round-
trips. As a proof-of-concept, we formalize the subset-of-C circuit
description language using the grammar below:
Programs p F d1;d2; . . . ; F1; F2; . . . ;b
Variable Declarations d F bit x | bit[n] x
Function Declarations F F f (d1,d2, . . .){b}
Blocks b F d1;d2; . . . ; s1; s2; . . .
Circuit Variables X F x | x[i]
Iteration Variables i F 0 | 1 | 2 . . .
Operators ⊙ F nand | nor | . . .
Statements s F X = true | X = false

| X = X1 ⊙ X2
| repeat i [0..n] s1; s2; . . .
| f (X1,X2, . . .)

A program in this language is a sequence of (global) variable
declarations d1,d2, . . . followed by a sequence of function declara-
tions F1, F2, . . . followed by a block. A block is itself a sequence of
(local) variable declarations followed by a sequence of statements.
Functions are only called for effect in this language. There are two
types of values: bits and arrays of bits of a fixed size. In order to
be able to concisely describe circuits with common structure, the
language includes a limited form of iteration whose bounds must
be known at compile time and arrays to refer to homogeneous
collections of wires. We will use the following program as a small
running example in this section.

1 bit r; // We assume r, rs[0], rs[1], xs[0],

2 bit[2] rs; // and xs[1] were all initialized and

3 bit[2] xs; // store secret values.

4

5 f (bit x) { bit t; t = t ∧ x; r = r ∧ t;}

6

7 repeat i [0..2] { f (xs[i], xs[i]); rs[i] = r;}

Canonical Semantics. A well-established method for specifying
the formal semantics of languages like our subset of C is via a set-
theoretic denotational model [46]. The details of such a denotational
model can be dramatically simplified if we pre-process programs to
eliminate convenient-for-use but semantically distracting features.
In our case, we use well-understood correctness-preserving pro-
gram transformations (see for example [2]) to (i) unroll all loops,
(ii) inline all functions, and (iii) replace all arrays by collections of
scalars. This preprocessing step terminates in our setting because
the source program is assumed to describe a finite circuit. The syn-
tax of the resulting scoped circuit description language can thus be
simplified to the following:

Programs p F b
Blocks b F d1;d2; . . . ; s1; s2; . . .
Variable Declarations d F bit x
Statements s F x = true | x = false

| x = x1 ⊙ x2 | {b}

Programs in this core language are almost straight-line programs
corresponding to a sequential composition of gates, except that we
retain nested lexical scope relations. This is important for reasoning
about space allocation and de-allocation as explained next. Our
running example expands to the following:
1 bit r;

2 bit rs0; bit rs1;

3 bit xs0; bit xs1;

4 { // first call to f

5 bit x;

6 x = xs0;

7 bit t;

8 t = t ∧ x;

9 r = r ∧ t;

10 }

11 rs0 = r;

12 { // second call to f

13 bit x;

14 x = xs1;

15 bit t;

16 t = t ∧ x;

17 r = r ∧ t;

18 }

19 rs1 = r;

We stress that because we retain scope information, only one set
of declarations for x, y, and t exists at any particular time irrespec-
tive of how many times the original loop was iterated. Similarly,
only one instance of the local variables of a function will be live
irrespective of how many times the original function was inlined.

The denotational semantics for this core language uses conven-
tional tools (e.g, [46]) described next. We first define the auxiliary
notions of an environment ρ and a store σ . An environment maps
variables to (heap) locations and a store maps these locations to
values. An environment ρ can be extended with a new entry x ← ℓ
to produce a new environment ρ[x ← ℓ]. We note that, reflecting

the usual rules of static scoping, the original ρ may already have
an entry for x and that entry is shadowed by the new binding. In
other words, the rule for looking up the current binding for x in an
environment is defined as follows:

(ρ[x ← ℓ])(y) =

{
ℓ if x = y
ρ(y) otherwise

which resolves a variable lookup to the statically innermost dec-
laration. The store σ is a mapping from locations to values, but it
never contains duplicate locations in its domain. Thus for stores,
the notation σ [ℓ ← v] creates a location ℓ if ℓ is fresh in σ and
otherwise performs an in-place update of the contents of ℓ.

The semantics of a declaration in the scoped language is modeled
as a transformation that takes a current environment and store,
and returns an extended environment in which the new variable is
bound to a fresh location that is initialized to false in the store:
D⟦bit x⟧⟨ρ,σ ⟩ = ⟨ρ[x ← ℓ],σ [ℓ ← false]⟩

where ℓ is fresh in σ

To calculate the environment and store for a sequence of declara-
tions, we simply apply the functionD⟦·⟧ to each declaration in turn,
passing the resulting environment and store from one declaration
to the next. Formally:

D⟦d ;ds⟧⟨ρ,σ ⟩ = D⟦ds⟧(D⟦d⟧⟨ρ,σ ⟩)
Each statement receives an environment and a store and com-

putes a (possibly modified) store that is propagated to the following
statement. The result of the program is the final store. Formally, the
semantics of blocks and statements is defined using two mutually
recursive functions B⟦·⟧ and S⟦·⟧ defined below. Each of these
functions takes a current environment and store and returns only
a store.

B⟦ds; ss⟧⟨ρ,σ ⟩ = S⟦ss⟧(D⟦ds⟧⟨ρ,σ ⟩)
S⟦s; ss⟧⟨ρ,σ ⟩ = S⟦ss⟧⟨ρ,S⟦s⟧⟨ρ,σ ⟩⟩

S⟦x = true⟧⟨ρ,σ ⟩ = σ [ρ(x) ← true]
S⟦x = false⟧⟨ρ,σ ⟩ = σ [ρ(x) ← false]
S⟦x = y ⊙ z⟧⟨ρ,σ ⟩ = σ [ρ(x) ← σ (ρ(y)) ⊙ σ (ρ(z))]

S⟦{b}⟧⟨ρ,σ ⟩ = B⟦b⟧⟨ρ,σ ⟩
The maximum size of the environment is the maximum number

of locations that are simultaneously live in one static scope. In our
running example, when we are executing inside either call for f,
the environment contains entries for r, rs0, rs1, xs0, xs1, ys0

, ys1, x, y, t. Upon exiting the scope, the environment reverts
to only having entries for r, rs0, rs1, xs0, xs1, ys0, ys1. More
explicitly, environments provide a formalization of the notion of
live locations: only locations reachable through the environment
are live and all other locations can be recycled.

Staged Semantics. The semantics above models a standard exe-
cution in which statements are executed sequentially, entering and
exiting scopes as determined by the syntactic structure of the pro-
gram. This semantics can be adapted to reflect the staged execution
model that we propose for executing WRK’s authenticated garbling
protocol Π2pc, since it adopts a more liberal execution schedule
which allows delayed and batched execution of primitive operations,
even if these operations occur in different scopes. To model such a
semantics, we proceed in three stages.

First, we define a source-to-source translation that replaces ev-
ery assignment by a new declaration, thus allocating a new heap
location instead of in-place updating the existing one. Intuitively
this allows the history of values assigned to a variable to co-exist
simultaneously, modeling rule (4) of our intuitive solution outlined
in Section 4.2. In detail, this translation replaces every assignment
“x = v” by a declaration “bit x” that is immediately followed by an
assignment “x = v”. For convenience, we abbreviate this combina-
tion as “bit x = v”. The situation for non-local variables is more
subtle: updates to fresh locations originating from a non-local vari-
able need to be stored back in the non-local variable upon exiting
a local scope. This is done by appropriately inserting “update” in-
structions whenever exiting a scope. The example code from page 9
will thus be translated into:

1 bit r;

2 bit rs0; bit rs1;

3 bit xs0; bit xs1;

4 { // first call to f

5 bit x = xs0;

6 bit t;

7 bit t = t ∧ x;

8 non_local bit r = r ∧ t;

9 }

10 update r;

11 bit rs0 = r;

12 { // second call to f

13 bit x = xs1;

14 bit t;

15 bit t = t ∧ x;

16 non_local bit r = r ∧ t;

17 }

18 update r;

19 bit rs1 = r;

Note that this is no longer a legal program in our subset-of-C
language but can be viewed as a program in an intermediate lan-
guagewhere, e.g., havingmultiple declarations for the same variable
within a scope causes no problem. The repeated declarations of t in
the same scope just resolve to different entries in the environment
which is harmless as each subsequent use of t sees the previous
declaration and t is only visible within the inner scope. For r, the
new declaration in the inner scope would update the local copy
with the value of r ∧ t but this update would be lost as soon as
we exit the inner scope. For that reason, the translation adds a
special label to declarations arising from assignments to non-local
variable declarations like the declaration for r; as we explain next,
the special label is used to maintain a connection, called η, between
the local and non-local instances of r. Specifically, upon exiting the
inner scope, an update operation uses η to copy the contents of the
local instance of r back into the non-local instance. See below for
more explanation about η.

Second, we split the semantic definition of staged execution into
two functions that communicate through a shared queue contain-
ing delayed thunks [16] or closures [23]. One function (see Figure 5)
traverses the program as usual but instead of executing expressions
like “bit x = y ⊙ z” immediately, it instead allocates a fresh lo-
cation ℓ, extends the environment with a binding of the declared
variable to ℓ, extends the store with a marker • indicating that ℓ
is currently uninitialized, constructs a closure ℓ ← ρ(y) ⊙ ρ(z)
containing the locations referenced by y and z, and pushes this

closure on the shared queue. The other function (see Figure 6) tra-
verses the queue of closures and executes asynchronously. In order
to maintain a global order of execution that respects the original
data dependencies, an additional data structure η is maintained to
connect local and non-local instances of the same variable. Note
that updates to η are in-place, namely, “η[x\ℓ]” denotes updating
the location where the non-local variable x ’s latest value is stored
to ℓ. The update operations introduced in the previous stage use
this η association to push the proper updates on the shared queue
so that future references to non-local locations see the latest value
assigned within the inner scope. As shown in Figure 5, η is updated
when processing declarations (by Cd⟦·⟧) and used for interpreting
“update” instructions (by Cs⟦·⟧).

For example, a staged execution of the above running example
could result in a series of configurations given in Table 4. Focus on
the part of the execution surrounding and including the first inner
scope. Initially, the declarations simply extend the environment
with fresh locations which are uninitialized. At line 7, we enter a
new scope and extend the environment with a new location 0x1014
for x. But instead of immediately updating the contents of 0x1014,
we push a closure that can do the update asynchronously when
it is invoked. Execution continues, creating fresh locations, and
delaying updates to the store. Note that on line 10, the reference
to t resolves to the latest allocated location 0x101c for t. Once
we exit the scope at line 11, the environment reverts back to ρ5
which was the environment before entering the local scope. In the
next line, we communicate the latest value for r which was stored
in 0x1020 to the non-local location 0x1000. Table 4 illustrates a
situation where the closures queue reaches its critical size after
executing line 16 of the above translated program. At that point,
all the pending updates are performed and the resulting store will
be identical to the one reached by a canonical execution.

For an intuitive argument of correctness of this part of semantics,
let’s take the conventional semantics of assignments:

S⟦x = true⟧⟨ρ,σ ⟩ = σ [ρ(x) ← true]

and compare it with the new staged semantics for assignments:

Cs⟦x = true⟧⟨ρ,σ ,η,L⟩ = ⟨σ ,η,L + {ρ(x) ← true}⟩

We see that the only difference is that the update ρ(x) ← true is
associated with L instead of σ . The situation is similar for declara-
tions: the original semantics is:

D⟦bit x = true⟧⟨ρ,σ ⟩ = ⟨ρ[x ← ℓ],σ [ℓ ← true]⟩

and the new staged semantics is:

Cd⟦bit x = true⟧⟨ρ,σ ,η,L⟩ =
⟨ρ[x ← ℓ],σ [ℓ ← •],η,L + {ℓ ← true}⟩

where ℓ is fresh in σ in both cases. Again the difference is that the
update ℓ ← true is associated with L instead of σ .

These examples illustrate that the staged semantics preserves
the atomic actions of the canonical semantics but we have not
guaranteed yet that these actions will happen in the same order. To
enforce this, we insist that the actions in L are performed in the
original order, i.e., by treating L as an FIFO queue. Semantically,
we formalize this by always inserting new closures to the right in
Figure 5 and extracting them from the left in Figure 6. In the latter

Cs⟦x = true⟧⟨ρ,σ ,η,L⟩ = ⟨σ ,η,L + {ρ(x) ← true}⟩
Cs⟦x = false⟧⟨ρ,σ ,η,L⟩ = ⟨σ ,η,L + {ρ(x) ← false}⟩
Cs⟦x = y ⊙ z⟧⟨ρ,σ ,η,L⟩ = ⟨σ ,η,L + {ρ(x) ← ρ(y) ⊙ ρ(z)}⟩
Cs⟦update x⟧⟨ρ,σ ,η,L⟩ = ⟨σ ,η,L + {ρ(x) ← η(x)}⟩

Cd⟦bit x = true⟧⟨ρ,σ ,η,L⟩ = ⟨ρ[x ← ℓ],σ [ℓ ← •],η,L + {ℓ ← true}⟩ where ℓ is fresh in σ
Cd⟦bit x = false⟧⟨ρ,σ ,η,L⟩ = ⟨ρ[x ← ℓ],σ [ℓ ← •],η,L + {ℓ ← false}⟩ where ℓ is fresh in σ
Cd⟦bit x = y ⊙ z⟧⟨ρ,σ ,η,L⟩ = ⟨ρ[x ← ℓ],σ [ℓ ← •],η,L + {ℓ ← ρ(y) ⊙ ρ(z)}⟩ where ℓ is fresh in σ

Cd⟦non_local bit x = true⟧⟨ρ,σ ,η,L⟩ = ⟨ρ[x ← ℓ],σ [ℓ ← •],η[x\ℓ],L + {ℓ ← true}⟩ where ℓ is fresh in σ
Cd⟦non_local bit x = false⟧⟨ρ,σ ,η,L⟩ = ⟨ρ[x ← ℓ],σ [ℓ ← •],η[x\ℓ],L + {ℓ ← false}⟩ where ℓ is fresh in σ
Cd⟦non_local bit x = y ⊙ z⟧⟨ρ,σ ,η,L⟩ = ⟨ρ[x ← ℓ],σ [ℓ ← •],η[x\ℓ],L + {ℓ ← ρ(y) ⊙ ρ(z)}⟩ where ℓ is fresh in σ

Figure 5: Formal semantics with collecting closures.

Table 4: Staged execution of our running example code with a stage execution kicks in after line 16.

line # ρ σ η L

0 ρ0 = {} σ0 = {} η0 = {} L0 = {}

1 ρ1 = ρ0[r← 0x1000] σ1 = σ0 η1 = η0 L1 = L0
2 ρ2 = ρ1[rs0← 0x1004] σ2 = σ1 η2 = η1 L2 = L1
3 ρ3 = ρ2[rs1← 0x1008] σ3 = σ2 η3 = η2 L3 = L2
4 ρ4 = ρ3[xs0← 0x100c] σ4 = σ3 η4 = η3 L4 = L3
5 ρ5 = ρ4[xs1← 0x1010] σ5 = σ4 η5 = η4 L5 = L4
6 ρ6 = ρ5 σ6 = σ5 η6 = η5 L6 = L5
7 ρ7 = ρ6[x← 0x1014] σ7 = σ6 η7 = η6 L7 = L6 +

{
0x1014← (∗ 0x100c)

}
8 ρ8 = ρ7[t← 0x1018] σ8 = σ7 η8 = η7 L8 = L7
9 ρ9 = ρ8[t← 0x101c] σ9 = σ8 η9 = η8 L9 = L8 +

{
0x101c← (∗ 0x1018) ∧ (∗ 0x1014)

}
10 ρ10 = ρ9[r← 0x1020] σ10 = σ9 η10 = η9[r\0x1020] L10 = L9 +

{
0x1020← (∗ 0x1000) ∧ (∗ 0x101c)

}
11 ρ11 = ρ5 σ11 = σ10 η11 = η10 L11 = L10
12 ρ12 = ρ11 σ12 = σ11 η12 = η11 L12 = L11 +

{
0x1000← (∗ 0x1020)

}
13 ρ13 = ρ12[rs0← 0x1024] σ13 = σ12 η13 = η12 L13 = L12 +

{
0x1024← (∗ 0x1000)

}
14 ρ14 = ρ13 σ14 = σ13 η14 = η13 L14 = L13
15 ρ15 = ρ14[x← 0x1028] σ15 = σ14 η15 = η14 L15 = L14 +

{
0x1028← (∗ 0x1010)

}
16 ρ16 = ρ15[x← 0x102c] σ16 = σ15 η16 = η15 L16 = L15

If a staged execution kicks in here, then it updates
σ16 = {(0x1000, false), (0x1014, true), (0x101c, false), (0x1020, false), (0x1024, false), (0x1028, true)} and L16 = {}.
17 ρ17 = ρ16[t← 0x1030] σ17 = σ16 η17 = η16 L17 = L16 +

{
0x1030← (∗ 0x102c) ∧ (∗ 0x1028)

}
18 ρ18 = ρ17[r← 0x1034] σ18 = σ17 η18 = η17[r\0x1034] L18 = L17 +

{
0x1034← (∗ 0x1000) ∧ (∗ 0x1030)

}
19 ρ19 = ρ18 σ19 = σ18 η19 = η18 L19 = L18
20 ρ20 = ρ19 σ20 = σ19 η20 = η19 L20 = L19 +

{
0x1000← (∗ 0x1034)

}
21 ρ21 = ρ20[rs1← 0x1038] σ21 = σ20 η21 = η20 L21 = L20 +

{
0x1038← (∗ 0x1000)

}
⟨ρ,σ ,η, {ℓ ← true} + L⟩ = ⟨ρ,σ [ℓ ← true],η,L⟩
⟨ρ,σ ,η, {ℓ ← false} + L⟩ = ⟨ρ,σ [ℓ ← false],η,L⟩
⟨ρ,σ ,η, {ℓ ← ℓ1 ⊙ ℓ2} + L⟩ = ⟨ρ,σ [ℓ ← σ (ℓ1) ⊙ σ (ℓ2)],η,L⟩

Figure 6: Formal semantics for executing delayed closures.

figure, the three equations simply move the atomic actions from L
to the store σ .

We formalize the argument that the staged semantics produces
the same answers as the canonical semantics in the following propo-
sition.

Proposition 5.1 (Correctness of Staged Semantics). The
sequence of atomic actions ℓi ← vi on the store performed in the
canonical semantics coincides with the ones performed in the staged
semantics.

Third, in a configuration ⟨ρ,σ ,η,L⟩, the environment ρ and the
delayed closures L contain all the live locations. (The locations in
the association η are already in the environment ρ.) Any method
that shrinks σ by collecting all other locations, i.e., all locations
that do not occur in ρ or in L, would be sound. Our specification
for this abstract notion of garbage collection is inspired by the line
of work on abstract models of memory management initiated by

Morrisett et al. [32]. We need a rule:

⟨ρ,σ [ℓ ← v],η,L⟩ = ⟨ρ,σ ,η,L⟩

if ℓ occurs in neither ρ nor L. The rule specifies that the config-
uration consisting of the environment, store, association η, and
closures on the left is indistinguishable from the configuration on
the right. First the location ℓ occurs exactly once in the left store
σ [ℓ ← v] as locations are always unique in the store. That location
is deallocated on the right leaving the store σ without the loca-
tion ℓ. The correctness of this rule is straightforward to prove by
inspecting the semantic relations in Figs. 5 and 6. Indeed, in every
semantic rule that mentions a store lookup σ (ℓ) or a store update
σ [ℓ ← v], the location ℓ is already present in either ρ or L. Hence
all other locations are inaccessible and can be garbage collected.

Therefore the actual space used at any point during the execu-
tion is proportional to the number of live locations at that point,
i.e., the number of locations accessible through either the current
environment or the closures data structure. At one extreme, the
closures data structure can be restricted to have exactly one clo-
sure which is immediately executed. The space usage in this case
would coincide with that of the standard scoped execution and that
corresponds to the minimum-space/maximum-rounds needed to
execute the circuit. At the other extreme, the closures data struc-
ture can extend through the entire program forcing all locations to
be simultaneously live, achieving minimum-rounds at the cost of
maximum-space. In practice, the size of the closures data structure
can be a constant independent of the size of the program and the
space usage is only a constant factor more than the minimal one.
Thus, we conclude with a proposition about the space efficiency of
staged execution semantics.

Proposition 5.2 (Space Usage). If the staged semantics collects p
operations for each stage, its space usage at each point in the exe-
cution is proportional to p plus the number of live locations in the
environment.

5.2 Fixing Π2pc

We modifies WRK’s Π2pc so that it uses FaAND instead of FPre’s
aAND. This is done by replacing the step (4a) of Figure 14 with the
following:
(4) (a) P1 and P2 invoke FaAND. In return, P1 receives random

[x1]1, [x2]1, [x3]1 and P2 receives random [y1]2, [y2]2, [y3]2
such that (x1 ⊕ y1)(x2 ⊕ y2) = x3 ⊕ y3. P1 and P2 securely
align x1 ⊕ y1 with rα ⊕ sα , and securely align x2 ⊕ y2 with
rβ ⊕ sβ . Finally, P1 sets rσ B x3 and P2 sets sσ B y3, thus
rσ ⊕ sσ = λα ∧ λβ .

The modified step securely aligns two secret bits a, b, each of which
is already divided into two abits, e.g., ([a1]1, [a2]2), ([b1]1, [b2]2).
The alignment operation can be simply done by letting the two
parties to exchange [a1 ⊕ b1]1 and [a2 ⊕ b2]2. This allows them
to check in plaintext if a1 ⊕ b1 = a2 ⊕ b2, which is equivalent to
a1 ⊕ a2 = b1 ⊕ b2. If the equality doesn’t hold, P1 should flip its bit
a1 while P2 resetting K[a1] B K[a1] ⊕ ∆2.

Proposition 5.3. If H is modeled as a random oracle, the original
WRK protocols with modified step (4a) described above securely com-
putes f against malicious adversaries with statistical security 2−s in
a hybrid model with ideal Fabit and FaAND.

Intuitively, because both x1 and rα are uniform, revealing x1 ⊕
rα won’t give P2 any advantage in guessing either x1 or rα . The
proposition above is proved in a hybrid model with ideal Fabit and
FaAND. The proof is in the full version of the paper.

5.3 Scalable Generation of abits and aANDs
We describe our scalable abit generation protocol ΠScalable

abit in the
FLeaky-RCOT-hybridmodel.FLeaky-RCOT functionality is given in Fig-
ure 7, which can be efficiently implemented based on actively-
secure OT extension by Keller et al. [18].

FLeaky-RCOT(n, ℓ)
Public parameters: security parameter n, batch-size ℓ.
Honest case: Upon receiving ∆ ∈ {0, 1}n from P1, for every i ∈ [ℓ]

choose uniform ci ∈ {0, 1} and uniform mi ∈ {0, 1}n . Send
{mi }i∈[ℓ] to P1 and send {(ci ,mi ⊕ ci · ∆)}i∈[ℓ] to P2.

Dishonest case: Upon receiving x guesses {(i j , bj)}j∈[x] (where i j ∈
[n], bj ∈ {0, 1}) from P2, check if ∆ij = bj (i.e., whether the i j -th bit
of ∆ is equal to bj) for every j ∈ [x]. If all checks pass, send nothing
to P1 but “attack succeed” to P2; otherwise, in case any check fails,
send “P2 cheats” to P1 and “bad guess” to P2.

Figure 7: The leaky-RCOT functionality.

Our ΠScalable
abit in Figure 8 generates abits in batches of p. A key

insight is that we can allow different batches to share the same ∆ by
letting the sender to pick uniform rank-n matrixA and ∆′ ∈ {n+ s}
for each batch subject toA×∆′ = ∆. ∆′will be used to run a batch of
p + s Leaky-RCOT, and A is used to specify an entropy-preserving
linear transform to compress the correlated leaky messages re-
turned by FLeaky-RCOT. It is important to run the consistency check
in (4c) to prevent active attackers from deliberately using different
∆ in different batches. The basic idea of this check resembles the
ones used in several prior works [18, 36, 47].

Proposition 5.4. ΠScalable
abit of Figure 8 can securely realize Fabit.

The aAND generation protocol ΠScalable
aAND is given in Figure 9. The

cut-and-choose bucket size of ΠScalable
aAND will be derived from the

statistical security parameter s and the space budget of the pool,
using the process explained below.

Determine Cut-and-choose Bucket Size. Given statistical param-
eter s and pool size p, the parties want to find the most efficient
bucket size B to bound the failure rate by 2−s .

In ΠScalable
aAND , every faulty leaky-aAND will be detected with prob-

ability 1/2. Additionally, every leaky-aAND can be checked but also
later combined with other randomly picked B − 1 leaky-aAND to
form a secure aAND. Let PB (p,b) be the probability of a successful
attack throughout the lifetime of a pool of size p and bucket-size B
provided that at most b faulty leaky-aAND have ever been success-
fully inserted into the pool. The security of ΠScalable

aAND is guaranteed
if a single leaky-AND in each bucket is honestly-generated. So we
have the following recurrence for PB (p,k):

PB (p,k) =
B−1∑
i=0

(p−k
B−i

) (k
i
)(p

B
) PB (p,k − i) +

(k
B
)(p

B
) , ∀ k ≥ B;

PB (p,k) = 0, ∀ k < B.

Protocol ΠScalable
abit (n)

Input: P1’s input is ∆ and P2 has no input.
Output: P1 gets (up to) infinitely many uniform Ki where Ki ∈ {0, 1}n ;
P2 gets (up to) infinitely many uniform random (bi , Mi) where Mi ∈

{0, 1}n such that Mi = ∆ ⊕ bi · Ki for all i .
Side-effect: Both parties use constant space.

(1) P1 generates uniform rank-n matrixA ∈ {0, 1}n×(n+s) and uniform
∆′ ∈ {0, 1}n+s subject to A × ∆′ = ∆. P1 commits A.

(2) P1 uses ∆′ to run FLeaky-RCOT(n + s, s) with P2 so that P1 gets
{K′∗i }i∈[s] and P2 obtains {(b

∗
i , M

′∗
i)}i∈[s].

(3) P1 opens A to P2. P1 computes K∗i B A × K′∗i for all i ∈ [s]. P2
computesM∗i B A ×M′∗i for all i ∈ [s].

(4) To obtain every subsequent batch of p authenticated bits,
(a) P1 regenerates uniform rank-n matrix A ∈ {0, 1}n×(n+s) and

uniform ∆′ ∈ {0, 1}n+s subject to A × ∆′ = ∆. P1 commits A.
(b) P1 uses the refreshed ∆′ to run FLeaky-RCOT(n + s, p + s) (with

P2) so P1 learns {K′i }i∈[p+s] and P2 learns {(bi , M′i)}i∈[p+s].
Then P1 opens the refreshed A to P2. For every i ∈ [p + s], P1
computes Ki B A × K′i and P2 computesMi B A ×M′i .

(c) Repeat the following check s times (for i ∈ [s]),
(i) P2 sends b∗i ⊕ bp+i to P1.
(ii) P1 computes K̂ = K∗i ⊕ Kp+i ⊕ (b∗i ⊕ bp+i)∆ whereas P2

computes M̂ = M∗i ⊕Mp+i . P1 and P2 invoke FEqual using
K̂ and M̂, respectively. They abort if FEqual returns unequal.

(d) To refresh
{
(K∗, b∗, M∗)

}
i∈[s], for every i ∈ [s],

(i) P1 sets K∗i B Kp+i .
(ii) P2 sets b∗i B bp+i , M∗i B Mp+i .

(e) P1 outputs {Ki }i∈[p]. P2 outputs
{
(bi , Mi)

}
i∈[p].

Figure 8: Scalable abit protocol using FLeaky-RCOT, FEqual and Fcom.

Protocol ΠScalable
aAND (s, p)

Public parameters: Security parameter s , pool size p .
Input: P1 and P2 each has ⊥.

One-time pool-initialization: P1 and P2 invoke WRK’s original leaky
aAND protocol to generate p leaky aAND triples, which form the pool.
Both parties use the public parameter search algorithm to compute cut-
and-choose bucket size B from (s, p).

Online steps:
(1) P1 and P2 run WRK’s original leaky aAND protocol to generate p

leaky aAND triples that form a buffer.

(2) P1 and P2 collaboratively select B random leaky ANDs from the pool
and use WRK’s original combining algorithm to form a fully-secure
aAND triple.

(3) They move B leaky aAND triples from the buffer to fill the pool. If
there is not enough leaky aANDs in the buffer, go to step (1).

Figure 9: Scalable aAND from a pool of leaky-aANDs.

Therefore, once p and B are fixed, PB (p, 1), . . . , PB (p,b) can be com-
puted altogether using dynamic programming in O(b) time.

Assuming the bucket size B is a constant, the success rate of the
best attacking strategy is then

max
b

2−b · PB (n,b) (1)

where b can be any positive integer (but is somehow bounded by
s). To find the best B, simply check all possible integer values of B
starting from 2 and stop as soon as a satisfying B is found.

Set t B ∞, b0 B s , B B 2, and repeat the steps below until it
exits from (2):
(1) Use the recurrence above to compute PB (p,k) for all 0 ≤ k ≤

b0.
(2) If maxk ∈{1, ...,b0 } 2

−k · PB (p,k) ≤ 2−s , then output B and
halt; otherwise, set B B B + 1.

(3) If B > p, exit with output ⊥.

Proposition 5.5. Protocol ΠScalable
aAND (s,p) of Figure 9 securely re-

alizes FaAND.

Formal proofs of the two propositions above can be found in the
full version of this paper.

Security of nanoPI. Proposition 5.4, 5.5, and 5.3 together guar-
antee the security of the cryptographic modifications of nanoPI,
while Proposition 5.1 guarantees that the instrumentation we used
preserves the semantics of our modified cryptographic protocol.
Therefore, nanoPI is secure.

6 THE MULTI-PARTY COMPUTATION
SETTING

A clear advantage of WRK is that it is easy to generalize it into a
constant-round securemulti-party computation protocol. In this set-
ting, an n-party authenticated bit of Pi , denoted as [b]i , refers to the
tuple

(
b, {Mj [b]}j,i , {Kj [b]}j,i

)
where Pi holds

(
b, {Mj [b]}j,i

)
and Pj (∀j , i) holds Kj [b] and ∆j so thatMj [b] = Kj [b]⊕b∆j . Sim-
ilarly, an n-party sub-protocol is used to securely compute n-party
authenticated AND triples(
[a1]

1 ⊕ · · · ⊕ [an]
n
)
·

(
[b1]

1 ⊕ · · · ⊕ [bn]
n
)
= [c1]

1 ⊕ · · · ⊕ [cn]
n

where the triple
(
[ai]

i , [bi]
i , [ci]

i
)
denotes the i-th party’s authen-

ticated bit-shares of the AND triple. In the online stage, one of the
parties will execute as the circuit evaluator, collecting the shares
of the garbled table from the rest n − 1 parties and evaluating the
combined garbled circuit.

We first fix the presentation flaw of WRK’s Πmpc so it works in
a hybrid model with ideal F n

abit and F
n
aAND. Then we show how

to efficiently scale up F n
abit and F

n
aAND. For the convenience of the

readers, we copied the definition of WRK’s F n
abit and F

n
aAND below.

Fnabit

Honest case: The box receives (input, i , ℓ) from all parties and picks
random bit-string x ∈ {0, 1}ℓ . For each j ∈ [ℓ], k , i ,the box picks ran-
dom Kk [x j], and computes

{
Mk [x j] B Kk [x j] ⊕ x j∆k

}
k,i , and sends

them to parties. That is, for each j ∈ [ℓ], it sends
{
Mk [x j]

}
k,i to Pi

and sends Kk [x j] to Pk for each k , i .
Corrupted parties: A corrupted party can choose their output from the
protocol.

FnaAND

Honest case: Generate uniform [r i1]
i , [r i2]

i , [r i3]
i such that

(⊕
i r

i
1

)
∧(⊕

i r
i
2

)
=
⊕

i r
i
3 .

Corrupted parties: A corrupted party can choose their output from the
protocol.

6.1 Fixing WRK’s Πmpc

The multi-party authenticated garbling protocol Πmpc [45, Figure 2,
Figure 3] also needs two alignment operations per AND. Similarly,
we replace step (4a) of WRK’s Πmpc with the following:
(4) (a) All Pi (1 ≤ i ≤ n) jointly invoke FaAND so that Pi receives

[x i1]
i , [x i2]

i , [x i3]
i where

(⊕
i x

i
1

)
∧

(⊕
i x

i
2

)
=
⊕

i x
i
3. Pi

securely aligns
⊕

i x
i
1 with

⊕
i r

i
α , and securely aligns⊕

i x
i
2 with

⊕
i r

i
β . Finally, Pi sets r

i
σ B x i3 thus

⊕
i r

i
σ =

λα ∧ λβ .
Note that the secure alignment becomes a multi-party operation
over two secret bits a, b, each of which is divided into n shares,
e.g. ai (1 ≤ i ≤ n) and bi (1 ≤ i ≤ n). The alignment is done by
letting Pi broadcast [ai ⊕ bi]i . This allows them to check whether⊕

i (a
i ⊕ bi) = 0 which is equivalent to

⊕
i a

i =
⊕

bi . If the
equality doesn’t hold, then P1 flips a1 while every Pi (2 ≤ i ≤ n)
settingK1[a1] B K1[a1]⊕∆i . Since x11 and r

1
α are uniform, revealing

x11 ⊕ r
1
α won’t leak any information on x11 or r1α .

6.2 Efficiently Scalable ΠScalable,n
abit (s,p)

WRK [45]’s F n
abit is built from the two-party Fabit. So we can scale

up their Πn
abit protocol by instantiating every call to Fabit in their

Πn
abit using our Π

Scalable
abit .

Note that ΠScalable
abit (s, ℓ) in Figure 10 guarantees that each Pi uses

consistent choice bits across corresponding instances Fabit. Fabit
guarantee that a consistent ∆ is used between different executions.

6.3 Efficiently Scalable ΠScalable,n
aAND (s,p)

The efficient scalability of our multi-party ΠScalable,n
aAND protocol is de-

rived from the same idea of employing pool-based cut-and-choose.
The multi-party ΠScalable,n

aAND is the same as the two-party ΠScalable
aAND ,

except that it uses the multi-party version of the procedures to
generate leaky-aANDs, produce random cut-and-choose choices,
and combine several leaky-aANDs into a full-secure aAND, which
were detailed in [45]. The security analysis of the pool-based cut-
and-choose remain identical to that for the two-party setting.

7 EVALUATION
Experimental Setup. Unless specified otherwise, we used Amazon

EC2 compute-optimized instances c5.large to run most of our
experiments. The c5.large virtual machines are equipped with 2
vCPU and 4 GB memory, running Ubuntu 18.04 and costing only
¢8.5/hour. We measured the LAN setting to be roughly 2 Gbps with
0.2 ms latency; and the WAN setting roughly 200 Mbps with 40ms
round-trip latency.

All experiments were configured to achieve 128-bit computa-
tional security and 40-bit statistical security. When no specific

Protocol ΠScalable,n
abit (s, ℓ)

Public parameters: Security parameter s , batch size ℓ.
Input: Pi (1 ≤ i ≤ n) has ⊥.

(1) Set ℓ′ B ℓ + s . Pi uniformly picks x ∈ {0, 1}ℓ′ and a random seed
Si .

(2) Each Pi runs an instance of Fabit with every Pk where k ,
i using batch size ℓ′. As a result, Pi as the OT receiver gets{{
xk, ι, Mk [xk, ι]

}
ι∈[ℓ′]

}
k∈[n],k,i

and every Pk as an OT sender

gets
{
Kk [xk, ι]

}
ι∈[ℓ′].

(3) For every ι ∈ [ℓ′], Pi picks a uniform xι and aligns all the values of
xk, ι with xι . The alignment is done by first revealing whether xk, ι =
xι to every Pk , then leaving xk, ι unchanged if the equality holds;
while flipping xk, ι (with Pk refreshing Kk [xk, ι] B Kk [xk, ι] ⊕ ∆k)
otherwise.

(4) (Consistency Checks) For j ∈ [s], run the following steps:
(a) All the parties collaborate to toss a random ℓ′-bit string r .
(b) For every distinct i, k ∈ [n], Pi and Pk perform:

(i) Pi computes and broadcasts X j =
⊕ℓ′

ι=1 rιxι , then com-
putes

{
Mk [X j] =

⊕ℓ′

ι=1 rιMk [xι]
}
k,i

.

(ii) Pk computes
{
Kk [X j] B

⊕ℓ′

ι=1 rιKk [xι]
}
k,i

.
(iii) Pi sends Mk [X j] to Pk who verifies its validity.

(5) All parties return the first ℓ objects.

Figure 10: The protocol ΠScalable,n
abit realizing F n

abit

application is mentioned, experiments are run over a random cir-
cuit of 25% ANDs and 75% XORs, with speeds measured over a
period of at least 10 minutes. Experimental comparisons with re-
lated work were made by running reference implementations in
the same hardware and network environment.

7.1 Scalability
nanoPI can efficiently run circuits at unprecedented scales. Table 5
shows several benchmark computations we tested, none of which
were ever possible to run using prior techniques. Most notably, we
have tested nanoPI on building a multi-party actively-secure logis-
tical regression and run it over realistic datasets like MNIST [24].
Followed the observation of SecureML [30], we chose statistical
gradient descend (SGD) approach of training, used RELU to ap-
proximate the logistic function, and handled decimal arithmetics
using 24-bit fixed-point number system. Still, the resulting circuit
is gigantic, consisting of 4.7 billion ANDs and 8.9 billion XORs,
assuming a two-pass scan of a 1K records dataset is involved in
SGD training.

We have also tested nanoPI on running long-term actively-
secure multi-party computation services, executing a random cir-
cuit. The experiments were run on n1-standard-1 machines pro-
vided by Google Compute Engine connected with LAN, executing
40.8 billions ANDs in 16 days in the four-party setting.

7.2 Performance
As is evidenced from the benchmark applications (Table 5), our
two-party protocols executed at fairly consistent speeds: roughly

46K AND/s on LAN and 15.8K AND/s on WAN. In four-party sce-
narios, the speeds reduce to roughly 31.6K AND/s and 10K AND/s,
respectively. The bandwidth overhead is about 759 bytes per AND
gate varying a little over different applications. Also note that the
bandwidth cost of ΠScalable

abit and ΠScalable
aAND combined is about 5 times

that of authenticated circuit garbling, which matches well with our
theoretical analysis.

Figure 11 shows how increasing memory helps speedup our
protocol. In the LAN setting, we observe a seemingly linear correla-
tion between memory budget and protocol execution speed when
memory budget is less than 50MB. Once over 200MB memory is
available, the speed stays roughly the same, mainly because when
the batch size is large enough, time spend on computation will
dominate other factors including round-trip latency. For the WAN
setting, the linear correlation continues until ∼500MB memory is
available, since now the latencies are close to two orders of mag-
nitude larger than LAN. Our approach scales with the number of
parties much like WRK (see Figure 12).

7.3 Comparison with Related Work
Table 6 shows how the performance of this work compares with two
closest pieces of work,WRK and Pool-JIMU, in the two-party setting.
We considered three kinds of memory budgets in combination with
three types of network environments.

Compared with Pool-JIMU, our protocol and WRK will outper-
form Pool-JIMU’s speed by 1.4–3.5x in low bandwidth network.
This is mainly because Pool-JIMU is 6–8x more costly in bandwidth.
But if the network bandwidth is high Pool-JIMU can be 50–130%
faster than both our work and WRK due to its more efficient lo-
cal computation. However, Pool-JIMU doesn’t work in the general
MPC setting (Figure 13).

Compared with WRK, performance of our protocols is only
slightly cutback if memory budget is 200MB or greater. When mem-
ory budget is low, although our approach runs slower than WRK,
ours can still run arbitrarily large circuits whereas WRK can only
run small circuits that fits in the available memory. Interestingly, in
the setup with 200MB memory and a (200Mbps, 40ms) WAN, WRK
runs 86% faster than ours while either reducing or boosting the
network performance allows our approach to catch up with WRK.
This is because switching from (200Mbps, 40ms) to (20Mbps, 40ms)
network, the speed bottleneck of WRK and our protocol will shift
from roundtrip latency to network transmission; while switching
from (200Mbps, 40ms) to (2Gbps, <1ms) network, the bottleneck
will shift from roundtrip latency to computation. This shows that
the drawback of our approach is only evident in limited scenarios
when latency cost dominates both computation and transmission.

8 CONCLUSION
Round and space complexity are two conflicting but equally im-
portant goals in designing actively-secure MPC protocols. We gave
an effective programming technique to scale WRK protocols up
to arbitrary-size circuits. The programmatic and cryptographic
transformations discussed in this paper is integrated into nanoPI,
a toolchain opensourced on github to semi-automate the devel-
opment and deployment of extreme-scale actively-secure MPC
applications.

ACKNOWLEDGMENTS
We thank Xiao Wang and Weixi Ma for helpful comments and
discussions. We thank Rob Henderson for pointers on obtaining
and managing a cluster of experiment machines. We appreciate
the generous free credits from Google for using the Google Cloud
Platform. This work is supported by NSF award #1464113 and NIH
1U01EB023685-01.

REFERENCES
[1] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. 2014. Non-

interactive secure computation based on cut-and-choose. In EUROCRYPT.
[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-

ers: Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[3] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The round complexity
of secure protocols. In STOC.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness
theorems for non-cryptographic fault-tolerant distributed computation. In STOC.

[5] Henry Carter, Charles Lever, and Patrick Traynor. 2014. Whitewash: Outsourcing
garbled circuit generation for mobile devices. In ACSAC.

[6] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin Butler. 2016. Secure
outsourced garbled circuit evaluation for mobile devices. Journal of Computer
Security 24, 2 (2016), 137–180.

[7] David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty uncondi-
tionally secure protocols. In STOC.

[8] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel Smart. 2013. Practical covertly secure MPC for dishonest majority–or:
breaking the SPDZ limits. In ESORICS.

[9] Jack Doerner, David Evans, and Abhi Shelat. 2016. Secure Stable Matching at
Scale. In ACM CCS.

[10] Tore Frederiksen, Thomas Jakobsen, Jesper Nielsen, Peter Nordholt, and Claudio
Orlandi. 2013. Minilego: Efficient secure two-party computation from general
assumptions. In EUROCRYPT.

[11] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. 2017.
Actively Secure Garbled Circuits with Constant Communication Overhead in
the Plain Model. In TCC.

[12] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. 2017. Low cost constant
round MPC combining BMR and oblivious transfer. In ASIACRYPT.

[13] Yan Huang, Peter Chapman, and David Evans. 2011. Privacy-Preserving Applica-
tions on Smartphones.. In HotSec.

[14] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure
Two-Party Computation Using Garbled Circuits. In USENIX Security Symposium.

[15] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex
Malozemoff. 2014. Amortizing garbled circuits. In CRYPTO.

[16] Peter Z Ingerman. 1961. A way of compiling procedure statements with some
comments on procedure declarations. Commun. ACM 4, 1 (1961), 55–58.

[17] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious
transfers efficiently. In CRYPTO.

[18] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively secure OT
extension with optimal overhead. In CRYPTO.

[19] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: faster mali-
cious arithmetic secure computation with oblivious transfer. In CCS.

[20] Vladimir Kolesnikov, Jesper Nielsen,Mike Rosulek, Ni Trieu, and Roberto Trifiletti.
2017. DUPLO: Unifying Cut-and-Choose for Garbled Circuits. In ACM CCS.

[21] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved garbled circuit: Free
XOR gates and applications. In ICALP.

[22] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. 2012. Billion-Gate Secure
Computation with Malicious Adversaries. In USENIX Security Symposium.

[23] Peter J Landin. 1964. The mechanical evaluation of expressions. Comput. J. 6, 4
(1964), 308–320.

[24] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. AT&T Labs. Available: http://yann.lecun.com/exdb/mnist (2010).

[25] Yehuda Lindell. 2016. Fast cut-and-choose-based protocols for malicious and
covert adversaries. Journal of Cryptology 29, 2 (2016), 456–490.

[26] Yehuda Lindell and Benny Pinkas. 2002. Privacy preserving data mining. Journal
of Cryptology 15, 3 (2002).

[27] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai. 2015. Efficient
constant round multi-party computation combining BMR and SPDZ. In CRYPTO.

[28] Yehuda Lindell and Ben Riva. 2015. Blazing fast 2pc in the offline/online setting
with security for malicious adversaries. In ACM CCS.

[29] Chang Liu, XiaoWang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015. Oblivm: A
programming framework for secure computation. In IEEE Symposium on Security
and Privacy.

Table 5: Experiments on selected applications

AES
(1024 cipher blocks)

Sorting
(5K 32-bit integers)

DNA Edit-distance
(2000-nucleotides seq.)

Logistic Regression
(1K-row, 784-column MNIST dataset)

Gate Count (#AND, #XOR) (6.9M, 25.9M) (11.4M, 39.6M) (340M, 880M) (4.7B, 8.9B)
Number of Parties 2 4 2 4 2 4 2 4

T
im

e LAN (minutes) 2.57 3.83 4.17 6.07 123 179 1676 2218
WAN (minutes) 7.62 11.83 12.03 18.85 359 559 82 hours 129 hours

B
an

dw
id
th
†

ΠScalable
abit ,ΠScalable

aAND (GB) 4.44 26.66 7.19 43.15 214.69 1288.14 2969.32 17815.94

ΠScalable
mpc (GB) 0.89 5.35 1.46 8.73 43.53 261.16 602.00 3611.99

† Bandwidth numbers are the sum of the outgoing traffic of all parties during a specific application.

10 15 20 25 30 35 40 45 50

0

10K

20K

30K

40K

Memory (MB)

Sp
ee
d
(A
N
D
/s
)

150 200 250 300 350 400 450 500
0

10K

20K

30K

40K

50K

60K

Memory (MB)

Sp
ee
d
(A
N
D
/s
)

Figure 11: Memory’s impact on performance
(⊗ for LAN, + for WAN)

2 3 4 5 6 7 8 9 10 11 12

0

10K

20K

30K

40K

Number of parties

Sp
ee
d
(A
N
D
/s
)

Figure 12: Scale up with # of parties
(⊗ for LAN, + for WAN)

Table 6: Comparing to Pool-JIMU and WRK in executing two-party random circuits (B refers to cut-and-choose bucket size.)

Memory
Budget 20 MB 200 MB 2 GB

Protocol This Work
(B = 4)

Pool-JIMU
(B=6)

WRK
(only if

|Cf | ≤ 3.8K)

This Work
(B=3)

Pool-JIMU
(B = 4)

WRK
(only if
|Cf | ≤ 38K)

This Work
(B = 3)

Pool-JIMU
(B = 4)

WRK
(only if

|Cf | ≤ 500K)

Sp
ee
d
(A
N
D
/s
) 20 Mbps

40 ms 795.03 561 1.73K 2.73K 787.72 2.75K 3.12K 925.04 3.23K

200 Mbps
40 ms 825.18 4.12K 2.76K 6.94K 6.21K 12.94K 20.94K 7.20K 22.38K

2 Gbps
<1 ms 20.27K 46.6K 20.53K 46.66K 69.77K 46.84K 49.34K 88.01K 50.64K

Bandwidth
(Byte/AND) 505 3.3K 504 380 2.2K 504 379 1.8K 378

AES
(2 Party)

AES
(4 Party)

AES
(8 Party)

SHA256
(2 Party)

SHA256
(4 Party)

SHA256
(8 Party)

0

2

4

6

0.08

1.03

0.25 0.31 0.49

2.09

2.88

5.33

0.14 0.2
0.46

1.94

2.69

6.25

Ti
m
e
(s
)

Pool-JIMU
WRK
This work

Figure 13: Application-specific performance comparisons. (Pool-
JIMU was run with 2.6M pool, B = 4, and check rate rc = 3%. This work was run with
479K pool, B = 3, and stage of 128K AND.)

[30] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preservingmachine learning. In IEEE Symposium on Security and Privacy.

[31] Benjamin Mood, Lara Letaw, and Kevin Butler. 2012. Memory-efficient garbled
circuit generation for mobile devices. In International Conference on Financial
Cryptography and Data Security. Springer, 254–268.

[32] Greg Morrisett, Matthias Felleisen, and Robert Harper. 1995. Abstract Models
of Memory Management. In Proceedings of the Seventh International Conference
on Functional Programming Languages and Computer Architecture (FPCA). ACM,
New York, NY, USA, 66–77.

[33] Moni Naor and Benny Pinkas. 2001. Efficient oblivious transfer protocols. In
SODA.

[34] Kartik Nayak, Xiao Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and Elaine
Shi. 2015. GraphSC: Parallel secure computation made easy. In IEEE Symposium
on Security and Privacy.

[35] Jesper Nielsen, Peter Nordholt, Claudio Orlandi, and Sai Burra. 2012. A new
approach to practical active-secure two-party computation. In CRYPTO.

[36] Jesper Nielsen, Thomas Schneider, and Roberto Trifiletti. 2017. Constant Round
Maliciously Secure 2PC with Function-independent Preprocessing using LEGO.
In NDSS.

Protocol Π2pc

Inputs: the parties agree on a function f : {0, 1} |I1 | × {0, 1} |I2 | → {0, 1} |O| . P1 holds x ∈ {0, 1} |I1 | and P2 holds y ∈ {0, 1} |I2 | .
Function-independent preprocessing:
(1) P1 and P2 send init to FPre, which sends ∆1 to P1 and ∆2 to P2.
(2) For each wire w ∈ I1 ∪ I2 ∪W whereW denotes the set of internal wires, P1 and P2 send abit to FPre. In return, FPre sends (rw , M[rw], K[sw]) to P1

and (sw , M[sw], K[rw]) to P2. Define λw = sw ⊕ rw . P1 picks a uniform κ-bit string L0w and sets L1w B L0w ⊕ ∆1.
Function-dependent preprocessing:
(3) For each gate G = (α, β, γ , ⊕), P1 computes (rγ , M[rγ], K[sγ]) B (rα ⊕rβ , M[rα] ⊕M[rβ], K[sα] ⊕K[sβ]), and sets L0γ B L0α ⊕L

0
β and L1γ B L0γ ⊕∆1.

Similarly, P2 computes (sγ , M[sγ], K[rγ]) := (sα ⊕ sβ , M[sα] ⊕M[sβ], K[rα] ⊕ K[rβ]). Define λγ = λα ⊕ λβ .
(4) For each gate G = (α, β, γ , ∧):

(a) P1 (resp., P2) sends (aAND, (rα , M[rα], K[sα]), (rβ , M[rβ], K[sβ])) (resp., (aAND, (sα , M[sα], K[rα]), (sβ , M[sβ], K[rβ]))) to FPre. In return, FPre
sends (rσ , M[rσ], K[sσ]) to P1 and (sσ , M[sσ], K[rσ]) to P2, where sσ ⊕ rσ = λα ∧ λβ .

(b) P1 computes the following locally:

(rγ ,0, M[rγ ,0], K[sγ ,0]) B(rσ ⊕ rγ , M[rσ] ⊕M[rγ], K[sσ] ⊕ K[sγ])

(rγ ,1, M[rγ ,1], K[sγ ,1]) B(rσ ⊕ rγ ⊕ rα , M[rσ] ⊕M[rγ] ⊕M[rα], K[sσ] ⊕ K[sγ] ⊕ K[sα])

(rγ ,2, M[rγ ,2], K[sγ ,2]) B(rσ ⊕ rγ ⊕ rβ , M[rσ] ⊕M[rγ] ⊕M[rβ], K[sσ] ⊕ K[sγ] ⊕ K[sβ])

(rγ ,3, M[rγ ,3], K[sγ ,3]) B(rσ ⊕ rγ ⊕ rα ⊕ rβ , M[rσ] ⊕M[rγ] ⊕M[rα] ⊕M[rβ], K[sσ] ⊕ K[sγ] ⊕ K[sα] ⊕ K[sβ] ⊕ ∆1)

(c) P2 computes the following locally:

(sγ ,0, M[sγ ,0], K[rγ ,0]) B(sσ ⊕ sγ , M[sσ] ⊕M[sγ], K[rσ] ⊕ K[rγ])

(sγ ,1, M[sγ ,1], K[rγ ,1]) B(sσ ⊕ sγ ⊕ sα , M[sσ] ⊕M[sγ] ⊕M[sα], K[rσ] ⊕ K[rγ] ⊕ K[rα])

(sγ ,2, M[sγ ,2], K[rγ ,2]) B(sσ ⊕ sγ ⊕ sβ , M[sσ] ⊕M[sγ] ⊕M[sβ], K[rσ] ⊕ K[rγ] ⊕ K[rβ])

(sγ ,3, M[sγ ,3], K[rγ ,3]) B(sσ ⊕ sγ ⊕ sα ⊕ sβ ⊕ 1, M[sσ] ⊕M[sγ] ⊕M[sα] ⊕M[sβ], K[rσ] ⊕ K[rγ] ⊕ K[rα] ⊕ K[rβ])

(d) P1 computes L1α B L0α ⊕ ∆1 and L1β B L0β ⊕ ∆1, and then sends the following to P2:

Gγ ,0 B H(L0α , L
0
β , γ , 0) ⊕ (rγ ,0, M[rγ ,0], L0γ ⊕ K[sγ ,0] ⊕ rγ ,0∆1)

Gγ ,1 B H(L0α , L
1
β , γ , 1) ⊕ (rγ ,1, M[rγ ,1], L0γ ⊕ K[sγ ,1] ⊕ rγ ,1∆1)

Gγ ,2 B H(L1α , L
0
β , γ , 2) ⊕ (rγ ,2, M[rγ ,2], L0γ ⊕ K[sγ ,2] ⊕ rγ ,2∆1)

Gγ ,3 B H(L1α , L
1
β , γ , 3) ⊕ (rγ ,3, M[rγ ,3], L0γ ⊕ K[sγ ,3] ⊕ rγ ,3∆1)

Input processing:
(5) For eachw ∈ I2, P1 sends (rw , M[rw]) to P2, who checks that (rw , K[rw], M[rw]) is valid. If so, P2 computes λw B rw ⊕ sw and sends yw ⊕ λw to P1.

Finally, P1 sends L
yw ⊕λw
w to P2.

(6) For each w ∈ I1, P2 sends (sw , M[sw]) to P1, who checks that (sw , K[sw], M[sw]) is valid. If so, P1 computes λw B rw ⊕ sw and sends xw ⊕ λw and
Lxw ⊕λww to P2.

Circuit evaluation:
(7) P2 evaluates the circuit in topological order. For each gate G = (α, β, γ , T), P2 initially holds (zα ⊕ λα , Lzα ⊕λαα) and (zβ ⊕ λβ , L

zβ ⊕λβ
β), where zα , zβ

are the underlying values of the wires.

(a) If T = ⊕, P2 computes zγ ⊕ λγ B (zα ⊕ λα) ⊕ (zβ ⊕ λβ) and L
zγ ⊕λγ
γ B Lzα ⊕λαα ⊕ L

zβ ⊕λβ
β .

(b) If T = ∧, P2 computes i B 2(zα ⊕ λα) + (zβ ⊕ λβ) followed by (rγ ,i , M[rγ ,i], L0γ ⊕ K[sγ ,i] ⊕ rγ ,i∆1) B Gγ ,i ⊕ H(Lzα ⊕λαα , L
zβ ⊕λβ
β , γ , i). Then

P2 checks that (rγ ,i , K[rγ ,i], M[rγ ,i]) is valid and, if so, computes zγ ⊕ λγ B (sγ ,i ⊕ rγ ,i) and L
zγ ⊕λγ
γ B (L0γ ⊕ K[sγ ,i] ⊕ rγ ,i∆1) ⊕M[sγ ,i].

Output revelation:
(8) For each w ∈ O, P1 sends (rw , M[rw]) to P2, who checks that (rw , K[rw], M[rw]) is valid. If so, P2 outputs zw B (zw ⊕ λw) ⊕ rw ⊕ sw .

Figure 14: The original two-party WRK in the FPre-hybrid model. (excerpted from [44])

[37] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and
Nina Taft. 2013. Privacy-preserving ridge regression on hundreds of millions of
records. In IEEE Symposium on Security and Privacy.

[38] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C Williams. 2009.
Secure two-party computation is practical. In ASIACRYPT.

[39] Peter Rindal andMike Rosulek. 2016. Faster malicious 2-party secure computation
with online/offline dual execution. In USENIX Security Symposium.

[40] University of Virginia Security Research Group. 2015. Obliv-C: A Language for
Extensible Data-Oblivious Computation. https://oblivc.org/

[41] Xiao Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and Diyue
Bu. 2015. Efficient genome-wide, privacy-preserving similar patient query based
on private edit distance. In ACM CCS.

[42] Xiao Wang, Alex Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient
MultiParty computation toolkit. https://github.com/emp-toolkit

[43] Xiao Wang, Alex Malozemoff, and Jonathan Katz. 2017. Faster Secure Two-Party
Computation in the Single-Execution Setting. In EUROCRYPT.

[44] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated garbling
and efficient maliciously secure two-party computation. In ACM CCS.

[45] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-scale secure
multiparty computation. In ACM CCS. ACM.

[46] Glynn Winskel. 1993. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, Cambridge, MA, USA.

[47] Ruiyu Zhu and Yan Huang. 2017. JIMU: Faster LEGO-based Secure Computation
using Additive Homomorphic Hashes. In ASIACRYPT.

[48] Ruiyu Zhu, Yan Huang, and Darion Cassel. 2017. Pool: scalable on-demand secure
computation service against malicious adversaries. In ACM CCS.

https://oblivc.org/
https://github.com/emp-toolkit

	Abstract
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	2.1 Garbled Circuits
	2.2 WRK Protocols
	2.3 Pool-based Cut-and-choose

	3 The Space-Round Dilemma
	4 Diagnosis and Approach Overview
	4.1 Root Causes
	4.2 New Challenges and Key Solution Ideas
	4.3 Putting It All Together

	5 Protocol Details
	5.1 Scalable Authenticated Garbling
	5.2 Fixing 2pc
	5.3 Scalable Generation of abits and aANDs

	6 The Multi-Party Computation Setting
	6.1 Fixing WRK's mpc
	6.2 Efficiently Scalable Scalable, nabit(s , p)
	6.3 Efficiently Scalable Scalable, naAND(s , p)

	7 Evaluation
	7.1 Scalability
	7.2 Performance
	7.3 Comparison with Related Work

	8 Conclusion
	Acknowledgments
	References

