
Revisiting Virgo: A Study of Vulnerabilities,

Limitations, and Optimizations

Abstract

This paper revisits Virgo, a well-known transparent zero-knowledge proof system
that has been used in many subsequent studies. Through our analysis, we uncover
previously overlooked limitations and several exploitable security vulnerabilities
within Virgo’s zkVPD protocol design and implementation. We subsequently
address these issues and improve Virgo’s zkVPD protocol. Our improvements fea-
ture simplified but more efficient VPD and zkVPD algorithms, offering enhanced
support for computations over binary fields and their extension fields.

Keywords: ZK proof, transparent zkSNARK, polynomial commitments (zkVPD)

1 Introduction

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zkSNARK) is a
useful cryptographic primitive that finds many real-world applications. A transparent
zkSNARK further offers public verifiability, allowing anyone to verify the validity of a
statement without any a priori setup, thus making it most attractive. In this paper,
we revisit Virgo [1], a state-of-the-art zkSNARKs system, identifying a number of
issues in its design and implementations. We provide improved versions of their Zero-
Knowledge Verifiable Polynomial Delegation (zkVPD) and prove the security of the
improved protocols. The improved zkVPD schemes are simpler, faster, and support
broader range of finite fields than Virgo, thus more flexible to be used for real-world
applications.

Virgo advocated for using fields modulo squared large Mersenne primes due to
favorable performance. This inherent field constraint within Virgo has historically
evaded comprehensive scrutiny, resulting in several overlooked limitations:

(1) Virgo cannot directly support arithmetic computations over most fields in practice
because those fields are not modulo squared Mersenne primes. Even if the goal is to
emulate an arithmetic computation defined over the infinite field so a sufficiently
large squared Mersenne prime field Fp2 could be used, it is crucial to add necessary
range-checks to ensure all input values are actually elements in Fp rather than
Fp2 . Otherwise, as we will see in a later example in Section 4.1, the prover can
exploit this negligence to easily prove any false statements. Unfortunately, such

1

range-checks are expensive: the best-known generic method would require breaking
Fp elements into bits and use an extra circuit per input element to assemble the
bits back into Fp element.1 This can cause a 192× blowup in both witness size
and input gates for the 192-bit Mersenne prime p. Unfortunately, Virgo’s existing
performance evaluation did not account for these costs.

(2) Virgo’s protocols design and implementation are tied to fields with multiplicative
cosets (more on this in Section 2.4), thus facing significant challenges in efficiently
supporting computations over binary extension fields, which are extensively used
in various cryptographic applications like AES. The support for Boolean circuits
within Virgo proves unnecessarily intricate: each XOR gate necessitates emulation
via a single multiplication in Fp2 , further demanding augmentation of the target
circuit with extra range-checks to validate the input witnesses as genuine bit values.

(3) The size of the field crucially impacts the computational security of Virgo proof sys-
tem. Virgo and its current derivative protocols utilize the 61-bit Mersenne prime,
which only provides 90 to 108 bits security guarantee depending on the applica-
tion circuit size. Moreover, this security assurance remains conjectural rather than
provable. Due to the scarcity of suitable Mersenne primes2, it was difficult to tune
up Virgo’s security guarantee without significantly penalizing its performance.

Security Issues. We identified an exploitable vulnerability in Virgo’s zkVPD that
breaks the soundness of Virgo’s proof system. Additionally, we found several imple-
mentation flaws in Virgo’s C++ source code: contrary to the protocol outlined in
their paper, certain costly procedures intended to mask sensitive polynomials were
absent. Left unattended, these implementation flaws pose a genuine threat that will
undermine the zero knowledge property of Virgo proofs.

Potential Impact. Virgo’s zkVPD and its implementation serve as foundational
components in numerous subsequent protocols, including Virgo++ [3], zkCNN [4], a
one-to-many proof system [5], Orion [6], zkBridge [7], Polaris [8] and Pianist [9], etc.
These derivative protocols are susceptible to the identified security vulnerabilities and
underestimated costs.

In this paper, we propose rigorously proven techniques to address the aforemen-
tioned limitations and security concerns. We will delve into a detailed exposition of
these security issues, presenting our comprehensive solutions. Then, we conduct an
experimental evaluation to validate the efficacy of our proposed techniques.

1.1 Contributions

An Improved zkVPD. We identified and fixed several security flaws in both the
design and implementation of Virgo’s zkVPD. We’ve notified Virgo’s authors of our
findings. Building upon the Virgo framework, we have introduced improved VPD and
zkVPD protocols that are simpler and concretely more efficient, Furthermore, our
protocols offer support for not only fields with multiplicative cosets but also those

1Although range-changes could also be done using lattice-based proofs [2], the lattice assumptions typi-
cally impose extra constraints on the fields, reducing flexibility in supporting the target computation and
the rest of the proof system.

2Only five Mersenne primes lie between 232 and 2606. These are 261−1, 289−1, 2107−1, 2127−1, 2521−1.

2

with additive cosets, hence lending more flexibility in efficiently verifying real-world
computations.

Implementation and Experiments. We have implemented our ideas and substan-
tiate our arguments with experiments configured to achieve standard provable 128-bit
security. The source code of our implementation is openly accessible for anonymous
review at https://gitlab.com/zk1252304/zk.

1.2 Related Work

Comparison with Aurora. Aurora [10] also supports fields with additive cosets.
However, they used a different VPD variant that does not work with the Goldwasser-
Kalai-Rothblum (GKR) [11] technique as efficient as ours. In contrast, we devised
several nontrivial improvements (see Section 3.2 for the details): (1) Our zkVPD is
done using a single call to a Low-Degree Test (LDT) on a degree-n polynomial, rather
than a degree-2n polynomial obtained from a random linear combination of several
polynomials as Aurora and Virgo required. (2) We investigated relevant mathematical
tools from [12] and [13] to develop a specialized O(n) polynomial division algorithm
suited for the GKR context. As a result, the FFT and polynomial division (in point-
value representation) used in our protocols are significantly faster than Aurora’s [14],
as we show with experiments in Figure 1 below.

14 16 18 20 22

100

101

102

103

1.8

41.3

812

7.7

190

4.2 s

Time (ms) vs. logN

Ours
Aurora

(a) FFT

14 16 18 20 22

10−1

100

101

102

0.15

2.21

31.0

1.54

26.0

403

Time (ms) vs. logN

Ours
Aurora

(b) Polylnomial Division

Fig. 1: Compare with Aurora (GF(2192)).

Comparison with Binius. In a concurrent independent work, Diamond and Posen
proposed Binius [15, 16] for efficiently committing and proving multilinear polynomials
over binary extension fields. Their approach, based on tensor products and tower of
binary extension fields, focuses on committing binary witnesses in a packed form, while
allowing to prove polynomial evaluations over the original unpacked witnesses, hence
reducing embedding overhead. However, Binius still needs zkVPD as a blackbox, for

3

https://gitlab.com/zk1252304/zk

which they use either Brakedown, hence resulting in square-root complexity in proof
size and verifier time, or FRI [17], which offers poly-logarithmic proof size and verifier
time. In this regard, our findings can be integrated with Binius’ packing technique to
build zero-knowledge protocols that are simpler, more efficient and more flexible to
adjust for security requirements.

2 Preliminaries

Notation. We use P, V to denote prover and verifier, resp., which are modeled as
interactive Turing machines. We use ⟨P,V⟩(λ, x) to denote the transcript, i.e., con-
catenation of all communications, of running P, V over public input x using public
security parameter λ. We use (P,V) (λ, x) to denote V’s acceptance bit after interact-
ing with P on input x and λ. We say an NP-relation R defines an NP-language L if
x ∈ L⇔ ∃w,R(w, x) = 1.

We use d to denote the depth of a circuit and denote the degree of a polynomial
by d . Given a positive integer n, we define [n] to be the set {0, 1, . . . , n− 1}.

2.1 Interactive Proofs

Definition 1 (Public-coin IP). (P,V) is an n-round public-coin interactive proof (IP)
for an NP language LR = {x|∃w,R(x,w) = 1} if it has

• Completeness: ∀x, x ∈ LR ⇒ ∃w, (P(w),V)(λ, x) = 1.
• Soundness: ∀x, x ̸∈ LR ⇒ Pr[(P ′,V)(λ, x) = 1] is negligible in λ for any P ′.

If P ′ is restricted to be probabilistic polynomial-time algorithms, the soundness is
said to be computational, as opposed to statistical.

• n rounds: After P’s initial message a0, each time V sends a uniform random
message ei independent of P’s messages, P replies with ai, ∀i ∈ {1, . . . , n}. V
accesses {ai : i ∈ {1, . . . , n}} through an oracle and outputs one bit to indicate if
the proof is accepted.

Some IPs may have additional properties:

• Proof of Knowledge (or knowledge soundness). For every efficient P ′, there
exists an efficient extractor εP

′
such that the knowledge error is negligible in λ,

i.e.,

Pr[(P ′,V)(λ, x) = 1 ∧R(w, x) ̸= 1 | w ← εP
′
(λ, x)] = negl(λ).

• Honest-verifier ZK. There exists an efficient simulator § which has oracle access
to an honest V, such that R(w, x) = 1 implies the transcript ⟨P(w),V⟩(λ, x) is
indistinguishable from §V(x).

Definition 2 (Tree of Transcripts). A (k1, . . . , kn)-tree of transcripts for a n-round

public-coin interactive oracle protocol, is a set of
n∏

i=1

ki transcripts organized in a tree

structure such that,

4

• Each edge in the tree represents a challenge sent by V.
• Each node at depth i (1 ≤ i ≤ n) in the tree represents a response from P to answer

the ith challenge from V. This node has exactly ki+1 children, corresponding to
ki+1 distinct challenges from V.

• Each full transcript corresponds to a path of challenge-response messages from the
root to a leaf.

Definition 3 ((k1, . . . , kn)-Special Soundness). An n-round protocol is said to have
(k1, . . . , kn)-special soundness if there exists an efficient algorithm that, given any
(k1, . . . , kn)-tree of accepting transcripts, outputs a witness w for R(w, x) = 1.

Theorem 1. ([18, Theorem 1]) Let n, k1, . . . , kn ∈ N be such that K =
∏n

i=1 ki can
be upper bounded by a polynomial. Let (P,V) be a (k1, . . . , kn)-special sound (2n+1)-
move interactive protocol for relation R, where V samples the ith challenge uniformly
at random from a challenge set of size Ni. Then (P,V) is knowledge sound with
knowledge error ∏n

i=1 Ni −
∏n

i=1(Ni − ki + 1)∏n
i=1 Ni

≤
n∑

i=1

ki − 1

Ni
.

2.2 Merkle Tree

Merkle Tree (MT) is a (typically binary) tree data structure in which every leaf node
stores a cryptographic hash of a data block, whereas every internal node stores a
cryptographic hash of the node’s child nodes [19]. Merkle trees are widely used for
efficiently assuring data integrity. To demonstrate the integrity of any data block to
someone who holds the root of the tree, it suffices to send and verify the pre-images
of hashes on the path from the data block up to the root of the tree. In the random
oracle model, Merkle trees can be used as cryptographic commitments that allow
efficiently de-committing any individual data block. Like Aurora [10] and Virgo [1], our
protocol used Merkle trees to commit polynomials, by storing the hash of a polynomial
evaluation in each leaf node. Modeling the cryptographic hash as random oracles,
Merkle tree offers computational hiding and binding.

In this work, we assume Merkle tree offers the following calls:

comp ← Com(p): Given an input polynomial p, it evaluates p over all points in a
domain D (|D| ≫ deg(p)), whose hashes are stored as leaves of a Merkle tree. The
Merkle tree’s root is returned as the commitment of p.

y ← Decom(comp, x): Given comp (a commitment of a polynomial p) and an element
x within the range of p’s committing domain, it reveals y = p(x) and proves that
y is consistent with comp.

2.3 Reed-Solomon Proof of Proximity

Given only oracle access to a function f : D 7→ F, a Reed-Solomon (RS) proxim-
ity test [20] is a bounded-error probabilistic polynomial-time algorithm that decides

5

whether f corresponds to a codeword of RS[F,D, N, ρ], i.e., RS code with code length
N and code rate ρ. In other words, it gives good confidence that f is a polynomial of
degree no more than ρN . In this work, we used FRI [17], an efficient interactive oracle
proof of RS proximity inspired by the Fast Fourier Transform (FFT). Let D be a coset
whose size is a power of 2, FRI reduces the proximity test of f (i) : D(i) 7→ F (where
f (0) = f , D(0) = D) to that of f (i+1) : D(i+1) 7→ F where the domain D(i) shrinks
by a factor of l(i) to D(i+1), like that of FFT. FRI offers a linear prover and a loga-
rithmic verifier, both in |D|. If f is a codeword of RS[F,D, N, ρ], FRI verifier accepts
with probability 1. If f is δ-far (by relative Hamming distance) from any codeword
of RS[F,D, N, ρ], it is conjectured in [17] that the FRI verifier, using a set X of query
points, will accept f with probability at most

2 log2 |D|
ϵ|F|

+ (1− δ · (1− ϵ))
|X|

, for any ϵ > 0.

However, as of today, the best provable soundness error [21] of an r-round FRI is

(m+ 1/2)7|D|2

2ρ1.5|F|
+

(2m+ 1)(|D|+ 1)
√
ρ

∑r−1
i=0 l(i)

|F|
+

(
√
ρ

(
1 +

1

2m

))|X|

where m can be any integer no less than 3. So the provable soundness is significantly
worse than the conjectured soundness.

Given a polynomial f , FRI’s LDT will reveal κ log(ρN) evaluations of the com-
mitted polynomials. However, it is easy to make it zero-knowledge by committing a
degree-(ρN −1) random polynomial g and proving that g+f , instead of f , has degree
no more than ρN [1]. Thus, FRI is able to provide the following interfaces:

comf ← Com(f): Given a secret polynomial f , output the commitment of f . Specifi-
cally, comf is simply MT.Com(f).

b← zkLDT(f, comf , d): Given a polynomial f , its commitment comf , and an integer
d , outputs 1 if f matches comf and f ’s degree is ≤ d ; or 0 otherwise.

2.4 Multiplicative and Additive Cosets

Let F be a finite field and G be a cyclic multiplicative subgroup of F with order a
perfect power of 2. We also assume G can be recursively split into even and odd
powers, a structure enabling quasilinear time evaluation of a degree-n polynomial f
on all points in G. Specifically, because

f(x) = fe(x
2) + x · fo(x2)

f(−x) = fe(x
2)− x · fo(x2)

where fe and fo are of degree n/2, made of the even and odd power terms, respectively,
the n evaluations of f can be obtained in O(n log n) time. Let a ∈ F, the multiplicative

6

coset with respect to a and G is

aG = {a · g | g ∈ G}

In FRI, a polynomial can be committed using a Merkle tree whose leaves are
evaluations of the committed polynomial at points in multiplicative cosets.

However, the idea will not work for binary extension fields since they are of char-
acteristic 2, i.e., x+ x = 0 for all x. For fast evaluation of polynomials, one can use a
“lift” function other than squaring to recursively shrink the domain. In particular, let
(β1, . . . , βlogn) be a basis spanning the n elements vector space Gn over binary coef-
ficients, two conjugate elements x and x + β1 in G are mapped to the same element
lift(x) = x · (x+ β1) in the next subgroup, called Gn/2. This domain shrinking idea is
then recursively applied until the domain size becomes a constant. Consequently, the
notion of additive cosets with respect to a ∈ F and G is defined as

a+G = {a+ g | g ∈ G}

To conveniently deal with computations over binary extension fields, not only a variant
of FRI suitable for additive cosets should be used, the Virgo protocol itself needs also
to be adapted at a higher level, which we will describe in Section 3.2.

2.5 Zero-Knowledge VPD

A zero-Knowledge verifiable polynomial delegation (zkVPD) protocol allows a prover
to commit to the secret coefficients of a (possibly multivariate) polynomial so that the
polynomial can be later opened at any point chosen by a verifier.

Definition 4. A zero-knowledge Verifiable Polynomial Delegation (zkVPD) scheme
with security parameter n consists of three algorithms (Com,Prove,Verify):

comf ← Com(1n, f): Given an input polynomial f , computes a commitment comf that
binds the polynomial f .

b← (Prove(f),Verify(comf)) (1
n, x, y): On input x, y, Verify (with input comf) inter-

acts with Prove (with secret input f), and outputs b = 1 if and only if f(x) =
y.

such that the following properties hold:

(Completeness) For all f , x, and comf ← Com(1n, f),

Pr [(Prove(f),Verify(comf)) (1
n, x, f(x)) = 1] = 1.

(Soundness) For all f, x, y, and any computationally bounded adversary A, com ←
A(1n, f),

y ̸= f(x)⇒ Pr [(A,Verify(com)) (1n, x, y) = 1] = negl(n)

7

(Knowledge Soundness) For all x, y, and any computationally bounded adversary A,
there exists an efficient extractor EA such that

Pr

[
f ← EA(1n, x, y), com← A(1n, f) :

(A,Verify(com)) (1n, x, y) = 1 ∧ y ̸= f(x)

]
= negl(n)

(Zero-Knowledge) For all f, x, comf ← Com(f), and for any computationally bounded
adversary A, there exists an efficient simulator S such that

⟨Prove(f),A(comf)⟩ (1n, x, f(x)) ≈ S(1n, x, f(x))

where the left-hand side is the distribution of the protocol transcript and “≈”
indicates the distributions on the two sides are indistinguishable.

As a useful building block with important applications, many zkVPD protocols
have been proposed and used in zero-knowledge proof systems. These include Bul-
letproofs [22], Hyrax [23], Libra [24], Ligero++ [3], Virgo [1], Brakedown [25], and
Orion [6]. In this paper, we restrict our attention to Virgo, an important transpar-
ent succinct zkVPD protocol that have been used in many subsequent ZK protocols.
Virgo’s zkVPD allows O(n log n)-time prover, O(log2 n)-time verifier and O(log2 n)
communication. Although Brakedown and Orion support linear proving time, Orion’s
offers asymptotically better verification time and proof size than Brakedown. Orion,
however, needs to invoke Virgo as a subroutine.

2.6 GKR

Multilinear Extension. Given a function V : {0, 1}ℓ 7→ F, its multilinear exten-

sion Ṽ : Fℓ 7→ F is defined by,

Ṽ (x0, . . . , xℓ−1)
def
=

∑
b∈{0,1}ℓ

(
V (b)

∏
i∈ℓ

(
(1− xi)(1− bi) + xibi

))
.

It is easy to verify that ∀x ∈ {0, 1}ℓ, Ṽ (x) = V (x).

The SumCheck Protocol [26]. The goal of sumcheck protocol is to verify
the summation of a polynomial f : {0, 1}ℓ 7→ F on a binary hypercube, i.e.,∑

bi∈{0,1} f(b1, . . . , bℓ). It is achieved by reducing a correct summation into evaluating

f̃ on a random point, i.e., f̃(r1, . . . , rℓ) with ri ∈ F uniformly picked by V in each of
the ℓ rounds. In the ith round, P sends polynomial

fi(xi)
def
=

∑
bi+1,...,bℓ∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) (1)

where r1, . . . , ri−1 are random values in F sampled by V in previous rounds, then V
checks

fi−1(ri−1) = fi(0) + fi(1) (2)

8

and sends random value ri ∈ F.
The GKR Scheme. GKR is a seminal method to verify layered circuit computa-
tion [11]. It encodes each layer of circuit computation as a polynomial Vi(x) that maps
wire indices to wire values on the ith layer:

Vi(x) =
∑

a,b∈{0,1}si+1

(
addi(a, b, x)

(
Vi+1(a) + Ṽi+1(b)

)
+muli(a, b, x)Vi+1(a) · Vi+1(b)

)
, (3)

where (a, b) represents hypercube points and addi,muli are the predicate functions
for addition and multiplication gates. That is, addi(a, b, x) = 1 if and only if indices
a, b, x are the left, right, and output indices of an addition gate on the ith layer, so is
muli(a, b, x) similarly defined. Starting from the output layer upwards, GKR invokes

one instance of Lund’s SumCheck protocol [26] per layer, reducing the validity of Ṽi

for a previously random point ti on the hypercube to that of Ṽi+1(ri+1), Ṽi+1(si+1),

which can then be reduced to checking the value of Ṽi+1 at a single point ti+1 through
random linear combination [27].

On the initial input layer, i.e., the dth layer, to verify the validity of Ṽd(rd), Ṽd(sd),

V picks and sends uniform αd, βd and verifies αdṼd(rd) + βdṼd(sd) =
∑

k∈[2sd] ckwk

where wk’s are (potentially secret) inputs to the circuit, and ck’s are public constants
efficiently computable from rd, sd, αd, βd:

ck = αd

∏
i∈[sd]

χ(ki, rd[i]) + βd

∏
i∈[sd]

χ(ki, sd[i])

where ki is the ith bit of k; χ(0, x) = 1 − x and χ(1, x) = x; rd[i], sd[i] are the ith

part of rd, sd, resp. This final check can be accomplished by a variant of verifiable
polynomial delegation protocol that we will describe in Section 3.

• comw ← Com(w): Generate a commitment of the vector w.

• b ← Prove(w, comw, r, s, u, v, α, β): Let ki be the ith bit of k and w =
{wk}k∈[n]. P, holding all inputs to Prove, interacts with V, holding all but w. V
outputs a bit b = 1 if and only if

αu+ βv =
∑
k

ckwk (4)

where ck = αΠiχ(ki, r[i]) + βΠiχ(ki, s[i]) (5)

χ(0, x) = 1− x, χ(1, x) = x

9

• comw ← Com(w)

(1) Let l : F 7→ F be the degree-(n − 1) polynomial satisfying l(hi) = wi for all i
where hi ∈ H ⊂ F, with H a multiplicative coset (of size n) suitable for FRI.

(2) P computes and outputs coml = MT.Com(l).

• b← Prove(comw,w, r, s, u, v, α, β)

(1) Let q : F 7→ F be the degree-(n− 1) polynomial with q(hi) = ci for all i where
hi ∈ H. P divides l(x)q(x) by ZH(x) = Πa∈H(x − a) to obtain the unique
degree-(n− 2) polynomials f, g, and the unique constant γ such that

l(x) · q(x) = γ + x · f(x) + g(x) · ZH(x) (6)

(2) P sends comf := MT.Com(f) and comg := MT.Com(g).
(3) P and V call FRI.LDT(f, comf , n− 2) to ensure deg(f) ≤ n− 2. Let X be a set

of κ non-conjugate random check-points used in the first recursion of FRI.LDT.
(4) For every xi ∈ X, P sends q(xi). They call MT.Decom to reveal

l(xi), f(xi), g(xi) and verify that ∀xi ∈ X,

xi · f(xi) = l(xi) · q(xi)− (αu+ βv) · n−1 − g(xi) · ZH(xi). (7)

(5) P and V call the non-ZK GKR to ensure that all q(xi)’s used in the check
above are honestly computed from α, β, r, s, xi according to Equation (5), the
definition and the interpolation of q.

Fig. 2: Improved VPD protocol for multiplicative cosets

3 zkVPD

In Virgo’s context, a custom zkVPD is defined to accomplish the final check of the
GKR protocol. The specific task of Virgo’s zkVPD consists of a plaintext evaluation
of n coefficients (Equation (5)) and a dot-product between this vector of coefficients
and the vector of secret witnesses (Equation (4)).

3.1 For Fields with Multiplicative Cosets

Virgo’s zkVPD follows Aurora’s polynomial commitment scheme for multiplicative
cosets. Their scheme mainly targets at computations over finite fields of large prime
modulus or their extension fields with a sufficiently large subset suitable for FRI. To
support computations on the binary field, binary additions (XORs) are emulated by
multiplications in large prime characteristic fields. Upon closer scrutiny, we identified
a number of issues in the design and implementation of their zkVPD.

10

• comw ← Com(w)

(1) Let l : F 7→ F be the degree-(n − 1) polynomial satisfying l(hi) = wi for all i
where hi ∈ H ⊂ F, with H an multiplicative coset (of size n) suitable for FRI.

(2) P masks l(x) by sampling a uniform polynomial l′ : F 7→ F of degree κ− 1. Let

l̂ = l + ZH · l′. P computes and outputs comw := MT.Com(l̂).

• b← Prove(comw,w, r, s, u, v, α, β)

(1) Let q : F 7→ F be the degree-(n− 1) polynomial with q(hi) = ci for all i where

hi ∈ H. P divides l̂(x)q(x) by ZH(x) = Πa∈H(x − a) to obtain the unique
degree-(n−2) polynomial f(x), the unique degree-(n+κ−2) polynomial g(x),
and the unique constant γ such that

l̂(x) · q(x) = γ + x · f(x) + g(x)ZH(x) (8)

(2) P sends comf := MT.Com(f) and comg := MT.Com(g).
(3) P and V call FRI.zkLDT(f, comf , n − 2) to ensure deg(f) ≤ n − 2. Let X be

a set of κ non-conjugate random check-points used by the first recursion of
FRI.zkLDT. We require X ∩H = ∅.

(4) For every xi ∈ X, P sends q(xi). They use MT.Decom to reveal

l̂(xi), f(xi), g(xi) and verify that for all i,

xif(xi) = l̂(xi) · q(xi)− (αu+ βv) · n−1 − g(xi)ZH(xi). (9)

(5) P and V call the non-ZK GKR to ensure that all q(xi)’s used in the check
above are honestly computed from α, β, r, s, xi according to Equation (5), the
definition and the interpolation of q.

Fig. 3: Improved zkVPD protocol for multiplicative cosets

A Soundness Issue in Virgo’s VPD. Given a degree-n univariate polynomial f
and a multiplicative coset H, to prove that

∑
x∈H f(x) = µ, they defined

p(x) =
|H| · f(x)− |H| · ZH(x) · h(x)− µ

|H| · x

where h is the quotient polynomial obtained from dividing f by ZH(x) =
∏

a∈H (x− a)
[1, Page 864, Formula (5)]. Leveraging Lemma 4, the goal of proving

∑
x∈H f(x) =

µ can be reduced to proving polynomials f, h, p are of degree less than n, n − |H|,
and |H| − 1, respectively. However, when invoking the Low Degree Test (LDT), they
suggested combining the three individual LDT proofs into one with the maximum
degree bound n by “multiplying h and p with appropriate monomials” [1, page 864,
left column, last paragraph, second sentence], i.e., x|H| and xn−|H|+1, respectively.

11

We note that this introduces an easily exploitable vulnerability since the term x in
the denominator of p can be canceled with the “x” in the monomial, hence cannot
guarantee the divisibility of p’s numerator by its denominator, directly compromising
the soundness of their VPD protocol.

ZK Issues in Virgo’s Implementation. their implementation did not match with
their paper specification: (1) Their implementation did not generate and commit the
degree-(2n − 1 + κ) masking polynomial s and apply it to hide polynomial l′ · q,
as described by their Protocol 3, step 3) and 5); (2) Their implementation did not
combine polynomials l′ · q, h, p into a degree-(2n − 1 + κ) polynomial and feed it to
LDT to ensure l′ · q, h, p are all within their respective degree thresholds, as specified
in step 6) of their Protocol 3. Instead, their LDT was only run on a degree-(n − 2)
polynomial. It is not hard to fix these security issues, but according to our experiments,
the costs of their zkVPD prover will increase by more than 90% due to the inverse
FFT and other missing polynomial operations.

Improved VPD and zkVPD. Our improved VPD and zkVPD protocols for fields
with appropriate multiplicative cosets are described in Figure 2 and Figure 3, respec-
tively. Similar to Virgo, the high-level idea is to convert the validity of polynomial
evaluation to low degree tests and equality check of a polynomial equation at κ ran-
dom points. However, our key observation is that the equational constraint to check
can be written without using divisions and it suffices to invoke LDT on a single poly-
nomial, f , to establish the soundness of the secret polynomial evaluation. Moreover,
the polynomial on which we invoke LDT is of degree ≤ (n− 2), whereas Virgo tries to
bound the degrees of three polynomials l′ · q, h, p whose degrees are up to (2n+κ−1),
hence more than 2× slower.

The changes to upgrade our VPD to a zkVPD protocol is highlighted in red
in Figure 3: (1) l is masked by a degree-(κ − 1) polynomial l′ so that the κ
revealed evaluations of l in Step (4) leak no information about the witness. (2) The

degree-(2n+κ− 2) polynomial l̂ · q (instead of l · q) is divided by ZH to yield f, g since

it is the masked polynomial l̂ that was committed. For the same reason, the κ points
equality check is also on l̂ and freshly defined f, g. (3) In Step (3), zkLDT, instead of
LDT, is used with X ∩H = ∅, so that all the polynomial evaluations revealed during
LDT leak no information about the witness. We stress that even if the LDT was not
carried directly on l(x), l(x) is fully fixed by f(x), whose degree is upper bounded
by the LDT, because l(x)q(x) = γ + xf(x) for all x ∈ H. Therefore, once f(x) is
extracted, evaluations of l(x) on H (i.e., the original witnesses) can be fully recovered.

This optimization allows us to simplify Virgo’s protocols, e.g., reducing their 10-
step zkVPD to our 5-step zkVPD. The run-time cost due to combining polynomials
l′ ·q, h, p and low degree testing of a higher degree polynomial can be cut down substan-
tially. Since our LDT is only applied to the single polynomial f which is not defined
using polynomial divisibility, the ground of Virgo’s security vulnerability (described
earlier in this section)—due to multiplying a monomial with a fractional item whose
denominator could be canceled out—is eliminated altogether.

Next, we state the security of Figure 3 protocol as Theorem 2 and prove it based
on Lemma 4.

12

Theorem 2. The protocol of Figure 3 is a zkVPD.

Proof Completeness. For an honest prover who knows w such that Equation (4) holds,
deg(f) by definition must be ≤ n − 2, so do deg(f̂) (since deg(p′) = κ ≪ n). Therefore, the
FRI low-degree test in Step (3) will pass.

Since V =
∑
k

ckwk =
∑
a∈H

l(a)q(a) =
∑
a∈H

l̂(a)q(a), along with Equation (8) and Lemma 4,

we have

V =
∑
a∈H

l̂(a)q(a) =
∑
a∈H

γ +
∑
a∈H

a · f(a) +
∑
a∈H

g(a)ZH(a)

= γ|H|+ 0 · f(0) · |H|+
∑
a∈H

g(a) · 0 = γ|H| = γn

Therefore,

x · f(x) = l̂(x)q(x)− γ − g(x)ZH(x)

= l̂(x)q(x)− V · n−1 − g(x)ZH(x)

Hence, we know that Equation (9) must hold. So the checks in Step (4) will pass. Following
the definition of q and Equation (5), it is easy to see that the GKR proof of Step (5) will
pass. This completes the proof of completeness.

Soundness. We define the following events:

Eq: x · f(x) = l̂(x) · q(x)− V · n−1 − g(x) · ZH(x).

LD: deg(f) ≤ n− 2.

LdT: FRI.zkLDT(comf , f, n− 2) passes.

EqT: The equality check in Step (4) passes on all κ points.

Pass: LdT ∧ EqT.

Bad: V ̸=
∑

k ckwk.

Awry: ¬LD ∨ ¬Eq.
Next, we will prove Bad ⇒ ¬LD ∨ ¬Eq, that is, Bad ⇒ Awry. This is because

¬(¬LD ∨ ¬Eq) ⇔ LD ∧ Eq

⇔ LD ∧ x · f(x) = l(x) · q(x)− V · n−1 − g(x) · ZH(x)

⇒ LD ∧
∑
x∈H

x · f(x) =
∑
x∈H

(
l(x) · q(x)− V · n−1 − g(x) · ZH(x)

)
⇒ 0 =

∑
x∈H

l(x) · q(x)− V − 0

⇒ V =
∑
x∈H

l(x) · q(x) ⇔ ¬Bad

Note the second implication uses Lemma 4 on x · f(x) and the fact that ZH(x) = 0 for all
x ∈ H.

Second, let D be the subset of points where the polynomials f̂ , l̂, ĝ were committed.
Because LD implies Equation (7) has at most n − 2 roots, if the equation does not hold,

then the κ equality checks in Step (4) will pass with probability at most
(
n−2
|D|

)κ
. That is,

Pr[LdT | LD ∧ ¬Eq] ≤
(
n−2
|D|

)κ
, which is negligible in κ as n ≪ |D|.

13

Now that Bad ⇒ Awry and the completeness implies ¬Bad ⇒ Pass, we can apply Lemma 1
to infer

Pr[Pass|Bad] ≤max(Pr[LdT|¬LD],Pr[EqT|LD ∧ ¬Eq])

=max

(
EFRI,

(
n− 2

|D|

)κ)
where EFRI is the negligible soundness error of the FRI protocol. This completes the proof of
soundness.

Knowledge Soundness. Ignoring the negligible knowledge error of FRI and GKR (i.e.,
assuming FRI and GKR realize ideal proofs of knowledge, which were proven in their respective

works in the literature), our zkVPD is
((n−2

κ

)
+ 1

)
-special sound (Definition 3). This is

because, due to the pigeonhole principle, a
((n−2

κ

)
+ 1

)
transcript tree must reveal n − 1

evaluations of the secret polynomials f , unless a collision is found on the hashes. This allows
to fully recover f . Because ∀x ∈ H, l(x) ·q(x) = γ+x ·f(x) where q(x), γ are constants known
to V, so all the witnesses encoded in l can be recovered through extracting corresponding

points on f . Applying Theorem 1 with ν = 1, k1 =
(n−2

κ

)
+ 1, N1 =

(n/ρ
κ

)
, we know that the

knowledge error of our zkVPD is upper-bounded because

k1 − 1

N1
=

(n−2
κ

)(n/ρ
κ

) <

(
n−2
κ

)κ(
en/ρ
κ

)κ =

(
n− 2

en/ρ

)κ

<
(ρ
e

)κ

where ρ is the code rate, e.g., ρ = 1/16. The first inequality is a result of applying the

bounds of binomial coefficient,
(
n
k

)k ≤
(n
k

)
<

(
en
k

)k
. This completes the proof of knowledge

soundness.

Zero-Knowledge. Our zkVPD is zero-knowledge because all messages sent by P in every
step are uniform random:

Step (1), Step (2) The property of random oracle guarantees the messages (Merkle tree root
hashes) P sent are uniform random.

Step (3), Step (4) P reveals κ points of polynomials l̂, f, g, which are masked by a uniform
random secret polynomial of degree κ−1, thus the revealed κ points are uniform random,
independent of the witness.

Step (5) Messages in this step only involves public data.

Therefore, the transcript of our zkVPD can be generated by an efficient simulator without
knowing the secret witness. This completes the proof of zero-knowledge.

□

Lemma 1. If Bad⇒ Awry and ¬Bad⇒ Pass, then

Pr[Pass|Bad] ≤ max(Pr[LdT|¬LD],Pr[EqT|LD ∧ ¬Eq]).

Proof

Pr[Pass |Bad] = Pr[Pass ∧ Bad]/Pr[Bad]

≤Pr[Pass ∧ Bad] + Pr[¬Bad ∧ Awry]

Pr[Bad] + Pr[¬Bad ∧ Awry]

14

=
Pr[Pass ∧ Bad] + Pr[¬Bad ∧ Awry]

Pr[Bad ∧ Awry] + Pr[¬Bad ∧ Awry]
(10)

=
Pr[Pass ∧ Bad] + Pr[¬Bad ∧ Awry]

Pr[Awry]

=
Pr[(Pass ∧ Bad) ∨ (¬Bad ∧ Awry)]

Pr[Awry]

=
Pr[(Pass ∧ Bad ∧ Awry) ∨ (¬Bad ∧ Awry)]

Pr[Awry]
(11)

=
Pr[(Pass ∧ Bad ∨ ¬Bad) ∧ Awry]

Pr[Awry]

=
Pr[((Pass ∧ Bad) ∨ (Pass ∧ ¬Bad)) ∧ Awry]

Pr[Awry]
(12)

=
Pr[(Pass ∧ (Bad ∨ ¬Bad)) ∧ Awry]

Pr[Awry]

=
Pr[Pass ∧ Awry]

Pr[Awry]

=Pr[Pass |Awry]
=Pr[Pass | (¬LD ∨ ¬Eq)]
=Pr[Pass | (¬LD ∨ (LD ∧ ¬Eq))]
≤max (Pr[Pass | ¬LD],Pr[Pass | (LD ∧ ¬Eq)])
=max (Pr[LdT ∧ EqT | ¬LD],Pr[LdT ∧ EqT | (LD ∧ ¬Eq])
≤max (Pr[LdT | ¬LD],Pr[EqT | LD ∧ ¬Eq])
≤max (Pr[LdT | ¬LD],Pr[EqT | LD ∧ ¬Eq])

Note that Equation (10) and Equation (11) hold because Bad ⇒ Awry, hence Bad = Bad ∧
Awry; Equation (12) holds because ¬Bad ⇒ Pass, hence ¬Bad = Pass ∧ ¬Bad. □

Lemma 2. ∀a, b, c, d > 0,

a/b > c/d =⇒ a/b > (a+ c)/(b+ d).

Proof a/b > c/d =⇒ ad > bc =⇒ ab+ ad > ab+ bc
=⇒ (b+ d) · a > (a+ c) · b =⇒ a/b > (a+ c)/(b+ d). □

Lemma 3. ∀a, b, c, d > 0,

a/b < c/d, a > c, b > d =⇒ a/b > (a− c)/(b− d).

Proof a/b < c/d =⇒ ad > bc =⇒ ab− ad > ab− bc =⇒ (b− d)a > (a− c)b =⇒ a/b >
(a− c)/(b− d). □

15

• comw ← Com(w)

(1) Let l : F 7→ F be the degree-(n − 1) polynomial satisfying l(hi) = wi for all i
where hi ∈ H ⊂ F, with H an additive coset (of size n) suitable for FRI.

(2) P computes and outputs coml = MT.Com(l).

• b← Prove(comw,w, r, s, u, v, α, β)

(1) Let q : F 7→ F be the degree-(n− 1) polynomial with q(hi) = ci for all i where
hi ∈ H. P divides l(x)q(x) by ZH(x) = Πa∈H(x − a) to obtain the unique
degree-(n− 2) polynomials f, g, and the unique constant γ such that

l(x) · q(x) = f(x) + γ · xn−1 + g(x) · ZH(x). (14)

(2) P sends comf := MT.Com(f) and comg := MT.Com(g).
(3) P and V call FRI.LDT(f, comf , n− 2) to ensure deg(f) ≤ n− 2. Let X be a set

of κ non-conjugate random check-points used in the first recursion of FRI.LDT.
(4) ∀xi ∈ X, P sends q(xi) and call MT.Decom to reveal l(xi), f(xi), g(xi). With

ξ =
∑

a∈H an−1, V verifies ∀xi ∈ X,

ξf(xi) = ξl(xi)q(xi)− (αu+ βv) · xn−1
i − ξg(xi)ZH(xi). (15)

(5) P and V call the non-ZK GKR to ensure that all q(xi)’s are honestly computed
from α, β, r, s, xi according to Equation (5), the definition and the interpolation
of q.

Fig. 4: Improved VPD protocol for additive cosets

Lemma 4 ([28]). Let H be a multiplicative coset in F, and f : F 7→ F be a polynomial
of degree less than |H|. ∑

a∈H
f(a) = f(0) · |H|. (13)

3.2 For Fields with Additive Cosets

Many computations, such as block ciphers and binary codes, can be more efficiently
represented by circuits over extension fields of the binary field, which was not directly
supported by Virgo. To better support computations over binary extension fields, we
extended Virgo’s zkVPD to work with fields over additive cosets. Our VPD and zkVPD
protocols are given in Figure 4 and Figure 5, respectively. The very high level idea of
these protocols resemble those of the multiplicative coset case. However, the protocols
for additive cosets, which use a very different set of algebraic rules, are distinctive in
many details.

16

• comw ← Com(w)

(1) Let l : F 7→ F be the degree-(n − 1) polynomial satisfying l(hi) = wi for all i
where hi ∈ H ⊂ F, with H an additive coset (of size n) suitable for FRI.

(2) P masks l(x) by sampling a uniform polynomial l′ : F 7→ F of degree κ− 1. Let

l̂ = l + ZH · l′. P computes and outputs comw := MT.Com(l̂).

• b← Prove(comw,w, r, s, u, v, α, β)

(1) Let q : F 7→ F be the degree-(n− 1) polynomial with q(hi) = ci for all i where

hi ∈ H. P divides l̂(x)q(x) by ZH(x) = Πa∈H(x − a) to obtain the unique
degree-(n− 2) polynomials f , the unique degree-(n+ κ− 2) polynomial g, and
the unique constant γ such that

l̂(x) · q(x) = f(x) + γ · xn−1 + g(x) · ZH(x). (16)

(2) P sends comf := MT.Com(f) and comg := MT.Com(g).
(3) P and V call FRI.zkLDT(f, comf , n − 2) to ensure deg(f) ≤ n − 2. Let X be

a set of κ non-conjugate random check-points opened in the first recursion of
FRI.zkLDT. We require X ∩H = ∅.

(4) ∀xi ∈ X, P sends q(xi) and calls MT.Decom to reveal l̂(xi), f(xi), g(xi). With
ξ =

∑
a∈H an−1, V verifies ∀xi ∈ X,

ξf(xi) = ξl̂(xi)q(xi)− (αu+ βv) · xn−1
i − ξ · g(xi)ZH(xi). (17)

(5) P and V call the non-ZK GKR to ensure that all q(xi)’s are honestly computed
from α, β, r, s, xi according to Equation (5), the definition and the interpolation
of q.

Fig. 5: Improved zkVPD protocol for additive cosets

First, the support for additive cosets leverages Lemma 5, which is very different
from Lemma 4.

Lemma 5 ([28]). Let H be an affine subspace (i.e., additive coset) in F, and f : F 7→ F
be a polynomial of degree less than |H| − 1.∑

a∈H
f(a) = 0.

To support additive cosets, we defined the polynomial f differently, focusing on
the (n − 2) lower-degree terms of the remainder (cf. Equation (14) vs. Equation (6),
and Equation (16) vs. Equation (8)). Also, the Equation (17) to be verified involves a
domain H-dependent constant ξ, whereas Equation (9) for multiplicative cosets does

17

not involve any constant like this. Second, the FFT and FRI algorithms require a
completely different definition of H than the one used in the multiplicative case. For
instance, efficiently computing f, g from l̂ requires the novel basis and some additional
optimization, which we will elaborate next.

Polynomial division over novel basis. To compute the polynomial division as
required in Equation (14), one can first apply FFT to convert the point representations
of polynomials l, q and ZH into their coefficient representations, then compute the
polynomial division. However, in order to support fields over additive cosets, if those
steps are carried out over the monomial basis, it is both concretely and asymptotically
slow: FFT takes O(n log n log log n) time and polynomial division takes O(n log n)
time [12]. In our implementation, we adapted the idea from [13] to compute the FFT
and polynomial division steps over the novel basis, which is concretely much more
efficient while allowing O(n log n)-time FFT and O(n)-time special division by ZH(x).

Next, we explain how [13]’s O(n log n) division algorithm can be specialized for our
VPD scenario to reduce the cost of division to O(n) time. Let H be an additive coset of
2m elements, which can be viewed as a linear space spanned by a basis {βi}i∈[m]. Let

Hk be the linear space spanned by {βi}i∈[k]. The vanishing polynomial zi(x) over Hi

is defined as zi(x) =
∏

a∈Hi
(x−a). The novel polynomial basis {Xi}i∈[2k] is defined as

Xi(x) =

∏k−1
j=0 z

ij
j (x)∏k−1

j=0 z
ij
j (βj)

where ij ∈ {0, 1} represents the jth bit of i.
Let the degree-(2n− 2) dividend polynomial l(x) · q(x) has coefficient representa-

tion l(x) · q(x) =
∑2n−3

j=0 ajXj(x). Note our degree-n divisor polynomial ZH(x) in its
coefficient representation over the novel basis is exactly zℓ(x) where ℓ = log n. Since

l(x) · q(x) =
2ℓ−1∑
j=0

ajXj(x) +
2n−3∑
j=2ℓ

ajXj(x)

=

2ℓ−1∑
j=0

ajXj(x) +
zℓ(x)

zℓ(βℓ)

2n−3∑
j=2ℓ

ajXj−2ℓ(x)

=

2ℓ−1∑
j=0

ajXj(x) + zℓ(x)

2n−3−2ℓ∑
j=0

(
aj+2ℓ · p−1

ℓ

)
Xj(x)


where pℓ = zℓ(βℓ). That is, the first 2ℓ coefficients are precisely the coefficients of the
remainder polynomial, while the coefficients of the quotient polynomial can be easily
computed using 2n− 3− 2ℓ + 1 = n− 2 field multiplications.

The security of our zkVPD for additive cosets is stated as Theorem 3 and proved
based on Lemma 5 as follows.

Theorem 3. The protocol of Figure 5 is a zkVPD.

18

Proof Completeness. In an honest execution of the protocol when Equation (4) holds,
deg(f) by definition must be ≤ n− 2. Hence, the FRI.LDT call in Step (3) will pass.

Since V =
∑

k ckwk =
∑

a∈H l(a)q(a), along with Equation (14) and Lemma 5, we have

V =
∑
a∈H

l(a)q(a) =
∑
a∈H

l̂(a)q(a)

=
∑
a∈H

f(a) +
∑
a∈H

γan−1 +
∑
a∈H

g(a)ZH(a) =
∑
a∈H

an−1 · γ = ξγ

Therefore,

ξf(x) = ξ · l(x) · q(x)− ξγ · xn−1 − ξ · g(x) · ZH(x)

= ξ · l(x) · q(x)− V · xn−1 − ξ · g(x) · ZH(x)

Hence Equation (17) must hold. So the checks in Step (4) will pass.
Following the definition of q and Equation (5), it is easy to see that the GKR proof

of Step (5) will pass. This completes the proof of completeness.

Soundness. We begin with defining the following events:

Eq: ξ · f(x) = ξ · l(x)q(x)− V · xn−1 − ξ · g(x)ZH(x).

LD: deg(p) ≤ n− 2.

LdT: FRI.LDT(comf , f, n− 2) passes.

EqT: The equality check in Step (4) passes on all κ points.

Pass: LdT ∧ EqT.

Bad: V ̸=
∑

k ckwk.

Awry: ¬LD ∨ ¬Eq.

Next, we will prove Bad ⇒ ¬LD ∨ ¬Eq, that is, Bad ⇒ Awry. Note

¬(¬LD ∨ ¬Eq) ⇔ LD ∧ Eq

⇔ LD ∧ ξf(x) = ξl(x)q(x)− V xn−1 − ξg(x)ZH(x)

⇒ LD ∧
∑
x∈H

ξf(x) =
∑
x∈H

ξl(x)q(x)− V xn−1 − ξg(x)ZH(x)

⇒ 0 = ξ ·
∑
x∈H

l(x) · q(x)− V · ξ − 0

⇒ V =
∑
x∈H

l(x) · q(x) ⇔ ¬Bad

The last implication depends on the fact that ξ ̸= 0, which can be derived as a corollary of [28,
Theorem 1] (by setting their V = H, α = 0 and pm = n, so their Sh(V ;α) is exactly our ξ).

Second, let D be the subset of points where the polynomials l̂, f, g were committed.
Because LD implies Equation (17) has at most n−2 roots, should Equation (17) not hold, the

κ equality checks in Step (4) will pass with probability at most
(
n−2
|D|

)κ
. That is, Pr[LdT | LD∧

¬Eq] ≤
(
n−2
|D|

)κ
, which is negligible in κ as n ≪ |D|.

Now that Bad ⇒ Awry and the completeness implies ¬Bad ⇒ Pass, we can apply Lemma 1
to infer

Pr[Pass|Bad] ≤max(Pr[LdT|¬LD],Pr[EqT|LD ∧ ¬Eq])

19

4 6 8 10

10−1

100

101

102

P time (s) vs. N

4 6 8 10
100

101

102

103

104

V time (ms) vs. N

4 6 8 10
101

102

103

|π| (KB) vs. N

Fig. 6: Emulate 2N × 2N Infinite Field Matrix Multiplication using Fp.
Ours (192-bit p), Ours (256-bit p), SpartanNIZK, SpartanSNARK

=max

(
EFRI,

(
n− 2

|D|

)κ)
where EFRI is the negligible soundness error of the FRI protocol. This completes the proof of
soundness.

The proofs for knowledge soundness and zero-knowledge are very similar to those for
multiplicative cosets.

□

4 Experiments

We run experiments on a Linux laptop (Intel i9-11900H CPU, 64GB DDR4). We set
protocol parameters to achieve 128-bit provable computational security, except those
for comparing with Orion whose implementation can’t be easily tuned up to align with
ours.

4.1 Matrix Multiplication

Issues in Virgo’s Matrix Multiplication. Matrix multiplication has been a pop-
ular benchmark to evaluate the performance of ZKP systems. However, Virgo’s

20

4 6 8 10

10−1

100

101

102

P time (s) vs. N

4 6 8 10
100

101

102

103

104

V time (ms) vs. N

4 6 8 10
101

102

103

|π| (KB) vs. N

Fig. 7: 2N × 2N Matrix Multiplication on Binary Extension Fields.
F = GF (2192), F = GF (2256)

approach to matrix multiplication, and to arithmetic fields computations in general,
allows security attacks.

Recall that Virgo relies on squared Mersenne prime fields for better performance.
Unfortunately, it has been largely ignored that the intended computations to prove
are often defined on simple prime fields or the infinite integer field (which can be
emulated by a sufficiently large prime field), but not the few squared Mersenne prime
fields Virgo supports. To prove computations over mod-p prime fields, Virgo needs
to be instrumented with expensive range checks to ensure the witnesses are indeed
integers of Zp rather than Zp2 . For instance, Virgo used the prime p = 261 − 1 to
emulate arithmetic operations in the infinite integer ring. Borrowing the notation of
complex numbers, without proper range checking, a malicious prover can prove, e.g.,
103×103 = 1, 000, 001, simply by inserting a 1 and −1 into the imaginary parts of the
multiplicand and the multiplier, making it (103+ i)× (103− i) = 1, 000, 001. For large
prime field like GF(261 − 1), range-checking all the secret inputs will incur significant
performance overhead.

Suggested Fixes and Evaluation. To resolve the issue without expensive range
checking, we suggest using large prime fields that still support FRI. For example, we
used GF(p), with p = 2192 − 15 · 256 + 1 being a 192-bit prime, to guarantee 128-bit

21

18 19 20 21
0

50

100

150

200

7
4

1
3
5

9
6

1
8
3

P time (s) vs. logN

18 19 20 21
1

1.5

2

2.5

2
.0
0 2
.2
1

2
.1
5

2
.5
7

V time (ms) vs. logN

18 19 20 21
400

500

600

5
6
8

6
1
6

5
6
8

6
1
6

|π| (kB) vs. logN

Fig. 8: Compare VPD/zkVPD on GF
(
(2127 − 1)2

)
.

VPD (Ours), VPD (Virgo), zkVPD (Ours), zkVPD (Virgo)

computational security for multiplying matrices of size up to 512×512, and use the 256-
bit prime p = 2256 − 19 · 250 + 1 for matrices of size up to 224×224. Using our improved
zkVPD, along with MPC-in-the-Head technique to handle the linear constraints out
of the SumCheck, the resulting protocol turns out very efficient, using only several
milliseconds verifier time and several hundreds KB proofs for matrices up to 1024 ×
1024. Figure 6 shows our protocol offers concretely more efficient prover and verifier
than Spartan, which uses the Ristretto255 prime-order ECC group. Our protocol is
quantum-resistant and has better memory efficiency (as Spartan run out of memory
when N > 8 on the same hardware). Our proof size is larger but is expected to break
even at N ≥ 7 for SpartanSNARK and at N ≥ 10 for SpartanNIZK. In Figure 7, we
also plotted the costs of matrix multiplication over GF(2192) and GF(2256), which can
indicate the costs of proving some useful computations such as binary coding/decoding
and some lattice-based cryptography. We did not include Virgo in both figures because
it requires substantial changes in Virgo’s implementation to support such fields.

22

18 19 20 21
0

50

100

150

9
0

1
1
0

P time (s) vs. logN

18 19 20 21
1

1.5

2

2.5

2
.0
4 2
.2
2

V time (ms) vs. logN

18 19 20 21
400

450

500

550

600

5
6
8

5
6
8

|π| (kB) vs. logN

Fig. 9: Our VPD/zkVPD on GF(2256) with κ = 75. VPD, zkVPD

4.2 zkVPD

Figure 8 depicts how our VPD and zkVPD protocols perform in comparison with those
of Virgo’s. All protocols are run on fields sufficiently large with the same code rate
ρ = 1/16 and κ = 67 to achieve 128-bit provable security. For 221 secret inputs, our
improved VPD prover and zkVPD prover run 82% and 91% faster, our verifier is 11%
and 20% faster, and proof size is 8% smaller than Virgo’s respective peers. Figure 9
benchmarks our zkVPD on binary extension fields, which are not supported by Virgo.

Figure 10 compares our zkVPD with Orion. Experiments of [6, Figure 3 & Figure 4]
already show that Orion performs preferably as compared to Aurora, Ligero, and the
field-agnostic scheme Brakedown [25]. We note that Orion’s implementation invokes
the original Virgo as a subroutine to handle part of their computations, thus is vul-
nerable to the attacks we described earlier, whereas ours is not. We only compare with
Orion on the squared 61-bit Mersenne prime field that achieves ≈100-bit conjectured
computational security because that is the only field implemented in Orion. We find
Orion’s prover 4.2–16.8 times faster whereas our verifier is 33.6–95.0 times faster, and
our proof size is 27–38.2 times smaller. We note that Orion did not implement sublin-
ear verification, thus their verification time actually grew linearly with the length of
the witness.

23

14 16 18 20 22

100

102

0.23

0.055

4.83

0.30

79.9

4.76

P time (s) vs. N

14 16 18 20 22

100

101

102

0.58

28.8

1.07

35.9

1.39

132

V time (ms) vs. N

14 16 18 20 22
102

103

104

133

5078

211

5699

306

6216

|π| (KB) vs. N

Fig. 10: Compare our zkVPD with Orion on GF((261 − 1)2).
Ours, Orion

5 Conclusion

The utility of Virgo is somewhat restricted due to its reliance on specific cryptographic
fields. Moreover, deficiencies in the design and implementation of Virgo’s zkVPD
protocol introduce exploitable vulnerabilities that can compromise Virgo’s soundness
and zero-knowledge guarantees. We have rectified the security flaws and enhanced its
VPD protocol to accommodate a broader range of computations. Our improvements
also enable more effective support for standard provable (as opposed to conjectural)
security claims in practice.

6 List of abbreviations

ZK zero-knowledge
zkSNARK zero-knowledge succinct non-interactive argument of knowledge
VPD verifiable polynomial delegation
zkVPD zero-knowledge verifiable polynomial delegation
FFT fast Fourier transform
LDT low degree test

24

7 Declarations

Availability of data and materials

The implementation source code is available at https://gitlab.com/zk1252304/zk.

Funding

We received no funding to conduct this research work.

Acknowledgements

We thank the authors of Virgo for email correspondence, answering our questions and
confirming the issues mentioned in the paper.

References

[1] Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: 2020 IEEE Symposium on Security
and Privacy, pp. 859–876 (2020). https://doi.org/10.1109/SP40000.2020.00052

[2] Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge
proofs and applications: Shorter, simpler, and more general. In: Dodis, Y.,
Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 71–101
(2022). https://doi.org/10.1007/978-3-031-15979-4 3

[3] Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang,
Y.: Ligero++: A new optimized sublinear IOP. In: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (eds.) ACM CCS 2020, pp. 2025–2038 (2020). https://doi.org/10.1145/
3372297.3417893

[4] Liu, T., Xie, X., Zhang, Y.: zkCNN: Zero knowledge proofs for convolutional
neural network predictions and accuracy. In: Vigna, G., Shi, E. (eds.) ACM CCS
2021, pp. 2968–2985 (2021). https://doi.org/10.1145/3460120.3485379

[5] Zhang, J., Xie, T., Hoang, T., Shi, E., Zhang, Y.: Polynomial commitment with
a one-to-many prover and applications. In: Butler, K.R.B., Thomas, K. (eds.)
USENIX Security 2022, pp. 2965–2982 (2022)

[6] Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover
time. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol.
13510, pp. 299–328 (2022). https://doi.org/10.1007/978-3-031-15985-5 11

[7] Xie, T., Zhang, J., Cheng, Z., Zhang, F., Zhang, Y., Jia, Y., Boneh, D., Song,
D.: zkBridge: Trustless cross-chain bridges made practical. In: Yin, H., Stavrou,
A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 3003–3017 (2022). https:
//doi.org/10.1145/3548606.3560652

25

https://gitlab.com/zk1252304/zk
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1145/3548606.3560652
https://doi.org/10.1145/3548606.3560652

[8] Fu, S., Gong, G.: Polaris: Transparent succinct zero-knowledge arguments for
R1CS with efficient verifier. PoPETs 2022(1), 544–564 (2022) https://doi.org/
10.2478/popets-2022-0027

[9] Liu, T., Xie, T., Zhang, J., Song, D., Zhang, Y.: Pianist: Scalable zkrollups via
fully distributed zero-knowledge proofs. In: 2024 IEEE Symposium on Security
and Privacy, pp. 1777–1793 (2024). https://doi.org/10.1109/SP54263.2024.00035

[10] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128 (2019). https://doi.
org/10.1007/978-3-030-17653-2 4

[11] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp.
113–122 (2008). https://doi.org/10.1145/1374376.1374396

[12] Gao, S., Mateer, T.: Additive fast fourier transforms over finite fields. IEEE
Transactions on Information Theory (2010)

[13] Lin, S.-J., Al-Naffouri, T.Y., Han, Y.S.: FFT algorithm for binary extension
finite fields and its application to reed–solomon codes. IEEE Transactions on
Information Theory (2016)

[14] Chiesa, A., Wu, A., Ovsiankin, M., Hu, Y., Ward, N., etc., A.R.: Aurora: C++
library for IOP-based zkSNARKs. Accessed in August, 2024. https://github.com/
scipr-lab/libiop

[15] Diamond, B.E., Posen, J.: Succinct Arguments over Towers of Binary Fields.
Cryptology ePrint Archive, Report 2023/1784 (2023). https://eprint.iacr.org/
2023/1784

[16] Diamond, B.E., Posen, J.: Polylogarithmic Proofs for Multilinears over Binary
Towers. Cryptology ePrint Archive, Report 2024/504 (2024). https://eprint.iacr.
org/2024/504

[17] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive
oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14–11417 (2018). https:
//doi.org/10.4230/LIPIcs.ICALP.2018.14

[18] Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory for lattices.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp.
549–579. Virtual Event (2021). https://doi.org/10.1007/978-3-030-84245-1 19

[19] Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO’87. LNCS, vol. 293, pp. 369–378 (1988). https:

26

https://doi.org/10.2478/popets-2022-0027
https://doi.org/10.2478/popets-2022-0027
https://doi.org/10.1109/SP54263.2024.00035
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1145/1374376.1374396
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop
https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2024/504
https://eprint.iacr.org/2024/504
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32

//doi.org/10.1007/3-540-48184-2 32

[20] Rubinfeld, R., Sudan, M.: Self-testing polynomial functions efficiently and over
rational domains. In: Frederickson, G.N. (ed.) 3rd SODA, pp. 23–32 (1992)

[21] Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity gaps
for reed-solomon codes. In: 61st FOCS, pp. 900–909 (2020). https://doi.org/10.
1109/FOCS46700.2020.00088

[22] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bul-
letproofs: Short proofs for confidential transactions and more. In: 2018 IEEE
Symposium on Security and Privacy, pp. 315–334 (2018). https://doi.org/10.
1109/SP.2018.00020

[23] Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926–943 (2018). https://doi.org/10.1109/SP.2018.00060

[24] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733–764 (2019). https:
//doi.org/10.1007/978-3-030-26954-8 24

[25] Golovnev, A., Lee, J., Setty, S.T.V., Thaler, J., Wahby, R.S.: Brakedown: Linear-
time and field-agnostic SNARKs for R1CS. In: Handschuh, H., Lysyanskaya, A.
(eds.) CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 193–226 (2023). https:
//doi.org/10.1007/978-3-031-38545-2 7

[26] Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st FOCS, pp. 2–10 (1990). https://doi.org/10.1109/FSCS.
1990.89518

[27] Chiesa, A., Forbes, M.A., Spooner, N.: A Zero Knowledge Sumcheck and its
Applications. Cryptology ePrint Archive, Report 2017/305 (2017). https://eprint.
iacr.org/2017/305

[28] Byott, N.P., Chapman, R.J.: Power sums over finite subspaces of a field. Finite
Fields and Their Applications (1999)

27

https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/FOCS46700.2020.00088
https://doi.org/10.1109/FOCS46700.2020.00088
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://eprint.iacr.org/2017/305
https://eprint.iacr.org/2017/305

	Introduction
	Contributions
	Related Work

	Preliminaries
	Interactive Proofs
	Merkle Tree
	Reed-Solomon Proof of Proximity
	Multiplicative and Additive Cosets
	Zero-Knowledge VPD
	GKR

	zkVPD
	For Fields with Multiplicative Cosets
	For Fields with Additive Cosets

	Experiments
	Matrix Multiplication
	zkVPD

	Conclusion
	List of abbreviations
	Declarations

