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ABSTRACT
This paper considers the problem of running a long-term on-demand
service for executing actively-secure computations. We examined
state-of-the-art tools and implementations for actively-secure com-
putation and identified a set of key features indispensable to offer
meaningful service like this. Since no satisfactory tools exist for the
purpose, we developed Pool, a new tool for building and executing
actively-secure computation protocols at extreme scales with nearly
zero offline delay. With Pool, we are able to obliviously execute, for
the first time, reactive computations like ORAM in the malicious
threat model. Many technical benefits of Pool can be attributed to
the concept of pool-based cut-and-choose. We show with experi-
ments that this idea has significantly improved the scalability and
usability of JIMU [38], a state-of-the-art LEGO protocol.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols;

KEYWORDS
scalable actively-secure computation

1 INTRODUCTION
Secure computation has long been speculated to be a key tech-
nology for safely utilizing sensitive data owned by two or more
distrustful parties. Towards this goal, a number of theoretical and
implementational breakthroughs have significantly advanced the
practicality of secure computation. In the honest-but-curious model,
convenient programming tools [20, 28, 34] have enabled not only
benchmark applications such as AES and PSI, but also a range of
challenging applications with complex logic [31, 37], or handling
large-scale sensitive data [7, 23, 32]. Recent progresses have shown
that, with surprisingly small added cost, these protocols can be
executed even in presence of active adversaries [6, 19, 25, 27, 35],
at hundreds of thousands logical-gates per second.
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Following this exciting trend, we consider the problem of run-
ning actively-secure computation protocols as an on-demand ser-
vice between two “cautious” collaborating parties. Suppose two
standing servers are established that receive an everlasting sequence
of dynamically-supplied requests,

(f1,x1,y1), (f2,x2,y2), . . . ,

then securely compute them on-the-fly, and finally return the results

z1 B f1(x1,y1), z2 B f2(x2,y2), . . .

to the designated output receiver. Example scenarios of this ser-
vice can be that two credit card issuers collaboratively mine their
ever-growing databases of personal transactions using a secure
computation protocol to better identify credit card frauds; or that
two medical research institutions conduct secure cross-database
queries over their sensitive medical records, which potentially in-
volves private computations in the RAM-model.

First, we expect the security guarantee withholds across the life-
time of the everlasting secure computation service. Second, like
many other computing services, it would be natural and vital for
the service to be scalable. Here, good scalability implies being able
to efficiently handle functions that would (1) involve a large number
of inputs/outputs, (2) use arbitrarily many gates, and (3) need to be
dynamically-defined on-the-fly, and (4) be reactive sense like pri-
vately indexing a RAM. For the service to prosper, it is also expected
to offer convenient programming interfaces to allow non-crypto-
expert application developers to create innovative applications to
utilize the cryptographic marvels. We summarize a list of valuable
features for realizing such a service in Table 1.

Unfortunately, after a closer examination of existing tools in this
domain, we discover that none of them is satisfactory for running
such a service. For instance, the WMK protocol recently developed
by Wang et al. [35] offers very efficient gate execution and pro-
vides good programming support through emp-toolkit [34]. How-
ever, it couldn’t efficiently handle certain reactive computations,
such as RAM-based computation, against active adversaries (we
will discuss reactive computations in more detail in Section 2.2).
In the offline/online setting, protocols by Rindal-Rosulek [27] and
Lindell-Riva [19] enjoy very short amortized time but require know-
ing the target function well in advance, in addition to requiring
a substantial offline processing stage. It is neither clear how they
could be practically applied to RAM-based computations. Recent
works of JIMU [38] and NST [25] have revitalized much interest
in practical LEGO protocols. Nevertheless, applied naïvely, these
protocols will incur a prohibitive amount of time and memory in
offline processing, thus do not scale well to large computations.
Moreover, existing BatchedCut (a technique that batches the cut-
and-choose procedures across many computation instances) pro-
tocols [19, 25, 27, 38] require carefully selecting some protocol

1

https://doi.org/10.1145/3133956.3134070


Table 1: Comparison of Representative Implementations for Actively-Secure Computation Protocols.

Secure over
Infinite

Executions

Efficient
gate

processing

Efficient
input/output
processing

Short offline
delay for big

circuits

Reactive
computations1

(e.g., ORAM)

Memory-
efficient
Scaling

Blackbox
programming

APIs

KSS [17] ✓ ✓ ✓

WMK [35] ✓ ✓ ✓

JIMU [38]
NST [25] ✓ ✓

LR [19]
RR [27] ✓

WRK [36] ✓ ✓ ✓

This
Work ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 We discuss reactive computations in more detail in Section 2.2.

parameters (such as bucket size and check rate) based on circuit
size and security requirement (e.g. 2−40 statistical security), but
did not provide a general, systematic procedure that can efficiently
scale up to arbitrary circuit-sizes and security requirements. Last
but most importantly, all existing protocols only guarantee security
for executing individual or a predefined (finite) number of instances,
hence are bound to fail if the service keeps running indefinitely.
Table 1 compares the state-of-the-art actively-secure computation
protocols.

In this work, we aim at building an actively-secure computation
framework that offers all those desirable features discussed above.
We adopt the same rationale behind the works on amortizing se-
cure computations, but go one step further by envisioning running
actively secure computations as an on-demand long-term service
between two mutually-distrusted organizations. Our starting point
is a BatchedCut protocol such as [36, 38]. But instead of always
beginning with garbling “sufficiently” many gates for a predefined
function f and then depleting all garbled-gates in the end, we opt
to always maintain a pool of garbled entries and always do cut-
and-choose within the pool. This seemingly simple idea allows
us to reap most of the benefit of BatchedCut without periodically
suffering from long delays and huge storage demands due to offline
processing, thus promising to offer a more secure, reliable, and
consistent service using moderate hardware resources.

1.1 Contribution
New Techniques. We propose a pool technique to efficiently run

batched cut-and-choose protocols at an unprecedented scale. As
a result, we are able to achieve competitive online efficiency with
nearly zero offline cost per execution. A security advantage of our
approach is that, without much extra costs, it carries over the sta-
tistical security guarantee of secure computation from a single
instance to infinitely many computation instances. We formally
analyze the security of the pool mechanism and give an efficient
algorithm to automatically identify the best parameters for running
pool-based cut-and-choose protocols. The main price of our scheme

is to build and maintain a pool, though our experiments show that
building and maintaining the pool is inexpensive in practice (see
Table 3) and the costs can be amortized over infinitely many exe-
cutions. Our approach can be applied to two underlying protocols,
JIMU [38] and WRK [36].

We also propose a more efficient way to realize actively-secure
multiplexers (MUX). The basic idea is to use a separate pool for
MUXCORE, a special gadget that is generated and checked indepen-
dently of ANDs and can then be used to implement MUX. While wire
processing accounts for roughly 60–70% of the cost of the underly-
ing LEGO protocols, our technique reduces the number of wires
of MUX by roughly 1/3. Overall, this optimization is able to boost
the performance by 30% for MUX and 6–23% for several benchmark
applications. (Section 7.2)

NewTool. Wedeveloped Pool, a software framework for building
pool-based actively secure computation protocols. Pool offers a
succinct set of APIs designed for creating future actively-secure
computations. We evaluated our approach over several applications
including Circuit ORAM, which were challenging to build and run
in the malicious threat model. To the best of our knowledge, this
is the first implementation of secure computation of ORAM in the
standard malicious model. To demonstrate the scalability of our
approach, we have run two single-threaded server programs for
actively-secure computations executing about 278M logical-AND
gates per hour, totaling at 47.3 billion logical-ANDs in seven days.
The service can continue to execute even more gates if we did not
interrupt and shutdown the servers. The source code of Pool is
made available at https://github.com/jimu-pool to stimulate future
exploration of related areas.

2 CRYPTOGRAPHIC BACKGROUND
This section briefly introduces the basic ideas of garbled circuits,
the cut-and-choose paradigm, and LEGO protocols.

https://github.com/jimu-pool


2.1 Garbled Circuits
Garbled circuits allow two parties holding inputs x and y, respec-
tively, to evaluate an arbitrary function f (x ,y) without leaking
any information about their inputs beyond what is implied by the
function output. The basic idea is that one party (the circuit gar-
bler) prepares an “encrypted” version of a circuit computing f ; the
second party (the circuit evaluator) then obliviously computes the
output of the circuit without learning any intermediate values.

Starting with a Boolean circuit for f (agreed upon by both parties
in advance), the circuit generator associates two random crypto-
graphic keysw0

i ,w
1
i (also known as wire-labels) with each wire i of

the circuit (w0
i encodes a 0-bit and w

1
i encodes a 1-bit). Then, for

each binary gate д of the circuit with input wires i, j and output
wire k , the generator computes ciphertexts

Enck
wbi
i ,w

bj
j

(
w
д(bi ,bj )
k

)
for all inputs bi ,bj ∈ {0, 1}. The resulting four ciphertexts, in
random order, constitute a garbled gate. The collection of all garbled
gates forms the garbled circuit that is sent to the evaluator. In
addition, the generator reveals the mappings from output-wire
keys to bits.

The evaluator must also obtain the appropriate keys (that is,
the keys corresponding to each party’s actual input) for the input
wires. The generator can simply sendwx1

1 , . . . ,w
xn
n , the keys that

correspond to its own input where each wxi
i corresponds to the

generator’s ith input bit. The parties use oblivious transfers [13, 14,
22, 26] to enable the evaluator to obliviously obtain the input-wire
keys corresponding to its own inputs. Given keyswi ,w j associated
with both input wires i, j of some garbled gate, the evaluator can
compute a key for the output wire of that gate by decrypting the
appropriate ciphertext. Thus, given one key for each input wire of
the circuit, the evaluator can compute a key for each output wire
of the circuit. With the mappings from output-wire keys to bits
provided by the garbler, the evaluator can learn the actual output
of f .

Free-XOR Technique. If the circuit garbler keeps a global secret
label ∆ and dictates that for every wire i in the circuit with 0-
label w0

i , its 1-label w
1
i is always defined as w1

i B w0
i ⊕ ∆; and

further, for every XOR gates with input wires i, j and an output
wire k , the garbler always sets w0

k B w0
i ⊕ w

0
j , then XOR can be

securely computed by the evaluator alone through XOR-ing the
two input wire-labels it got from evaluating previous gates. This
idea first appeared in BMR [2] for the multi-party setting and was
reinvigorated by Kolesnikov and Schneider [16] in the two-party
setting.

2.2 Dealing with Active Adversaries
Active Adversaries. The garbled circuit protocol as described

above only works for passive adversaries who always follow the
protocol specification. However, this adversary model can be too
weak in practice as an adversary doesn’t have to follow the protocol
and can actually deviate from the protocol in arbitrary ways. For
example, a malicious garbler could plant garbage entries into a
garbled gate and infer plaintext signals on intermediate wires by
observing the evaluator’s response. Following the seminal work of

Canetti [3, 4], security of secure computation protocols in presence
of active adversaries is defined and proved with respect to an ideal
model execution where a trusted party exists to help compute the
desired functionality. Our work considers protocols against these
strong active adversaries.

The Cut-and-Choose Paradigm. The cut-and-choose paradigm is
a popular and efficient mechanism for ensuring that the garbled
circuit sent by the garbler is constructed correctly. The basic idea
is that the circuit generator produces and sends several garbled
circuits; the circuit evaluator checks a random subset of these, and
evaluates the rest to determine the final result. Existing cut-and-
choose protocols fall roughly into three categories: (1) MajorityCut,
whose security holds as long as a majority of the evaluated cir-
cuits are correct; (2) SingleCut, which guarantees security as long
as at least one of the evaluated circuits are correctly generated;
and (3) BatchedCut, where the parties batch the cut-and-choose
procedure either across multiple instances of an application or at
the gate level. Zhu et al. [39] have formalized these mechanisms
into zero-sum games and considered their cost-aware equilibrium
solutions in certain circumstances.

Reactive Functionalities. Certain reactive functionalities, such as
RAM-based secure computations, are especially cumbersome to
handle by some cut-and-choose mechanisms [1]. For example, let
f M (x ,y) be a RAM-based computation that has access to a chunk
of (encrypted) memoryM , through a randomized ORAM scheme.
In essence, the execution of f M (x ,y) can be divided into a series
of smaller circuits f M1

1 , . . . , f
Mn
n such that:

v1 B f M1
1 (x ,y; addresses1),

v2 B f M2
2 (x ,y;v1, addresses2),

v3 B f M3
3 (x ,y;v2, addresses3),
. . .

vn B f Mn
n (x ,y;vn−1, addressesn).

where addressesi is the set of (random) indices revealed by the
ORAM mechanism to access the memory. Should the cut-and-
choose mechanism be naïvely applied over individual f Mi

i , the
encrypted memoryMi will also need to be replicated. For cut-and-
choose purposes, we could treat the memory as a part of the whole
circuit f M and duplicate this giant circuit with memory M . This
strategy, however, is only of theoretical interest due to prominent
scalability issues. Alternatively, we can decouple the memory from
the circuit and treat each f Mi

i as a small circuit but replicatingMn
40 times (e.g. for 40-bit statistical security) would requireM1 to be
replicated 40n times becauseMn is a state that depends onMi for
every i < n. Therefore, the LEGO approach has become a preferred
candidate to deal with reactive functionalities such as RAM-based
secure computations. We further note that these f Mi

i circuits typ-
ically involve a large number of gates to realize the underlying
ORAM mechanism, thus can incur an intolerable offline latency if
existing BatchedCut protocols [6, 19, 25, 27, 38] are naïvely applied.



2.3 LEGO Protocols
LEGO protocols [8, 9, 24, 25, 38] are typical BatchedCut protocols.
State-of-the-art LEGO schemes are compatible with the free-XOR
technique using either XOR-Homomorphic commitments [8, 9, 25]
or XOR-Homomorphic IHashes [38]. With these protocols, it suf-
fices to focus on how to treat ANDs, since all XORs can be securely
computed locally without extra treatment to ensure honest behav-
ior.

For a Boolean circuit C of N logical AND gates, the high-level
steps of a LEGO protocol to compute C are,
(1) Generate. P1 generates a total of T garbled AND gates.
(2) Evaluate. P2 randomly picks B · N garbled-ANDs (where B is

the bucket size) and groups them into N buckets. Each bucket
will realize an AND in C . P2 evaluates every bucket by first
translating wire-labels on the bucket’s input-wires to wire-
labels on individual garbled gate’s input-wires, evaluating every
garbled gates in the bucket, and then translating the obtained
wire-labels on the garbled gates’ output-wires back to a wire-
label on the bucket’s output-wire. (The wire-label translation,
also called wire-soldering, is explained in more detail below.)

(3) Check. P2 checks each of the rest T − BN garbled AND gates
for correctness. If any of these gates is found faulty, P2 aborts.
Though, depending on the specific schemes, P2 may not always
be able to detect an error when given a faulty gate.

(4) Output. P1 reveals the secret mapping on the circuit’s final
output-wires so that P2 is able to map the final output-wire
labels into plaintext values.

Wire-soldering. Every gate bucket realizes a logical gate, thus
has input and output wires like the logical gate it maps to. Thus, in
order to evaluate an independently generated garbled gate assigned
to this bucket, an input-wire of the bucket (with wire-labelsw0

bucket
andw1

bucket = w
0
bucket ⊕ ∆ denoting 0 and 1) needs to be connected

to the corresponding input-wire of a garbled gate inside the bucket
(with wire-labels w0

gate and w1
gate = w0

gate ⊕ ∆). This is done by
requiring P1 to send d = w0

bucket ⊕ w0
gate and P2 to xor d with

the bucket wire-label (eitherw0
bucket orw

1
bucket) he obtained from

evaluating the previous bucket. In order to prevent a malicious
P1 from sending a forged d , XOR-Homomorphic commitments (or
i-hashes) can be used to let P1 “commit” both w0

bucket and w0
gate,

with which P2 can verify the validity of d without learning any
extra information about eitherw0

bucket orw
0
gate, as the commitment

(or i-hash) of d = w0
bucket ⊕w

0
gate can be derived homomorphically.

3 APPROACH OVERVIEW
Figure 1 illustrates the high-level idea of our approach. Recall that
any function f can be computed using just a set of AND and
XOR gates. While XOR can be securely computed without inter-
action [16], AND gates need to be garbled. Executing the whole
circuit can be viewed as a sequential traversal of all the logical AND
gates in a topological order. With LEGO protocols, every logical
AND gate will be realized by a bucket (of garbled ANDs randomly
drawn from the pool). Thus, we represent f as a stream of buckets
shown on the right part of Figure 1.

Our approach assumes that both servers have access to the same
pool of garbled AND gates. The pool needs to be built only once

throughout the lifetime of the two servers. To build the pool from
scratch, the fill_pool procedure below is repeated until the pool is
completely filled:

fill_pool:
(1) The garbler generates a garbled AND gate д.
(2) Based on a random bit with bias rc (i.e., the bit turns

out 1 with probability rc (0 < rc < 1); and 0 with
probability 1 − rc ), the parties decide whether to verify
д for correctness (happening with probability rc ) or to
place д into the pool (with probability 1 − rc ).

(3) A honest party aborts if д is found to be faulty.

Note that it is not necessary that every faulty gate can be detected
faulty when being checked, i.e., the detection rate rd ≤ 1. The size
of the pool, n, is a parameter configurable based on the trade-off
between performance and budget. We note that, for the purpose
of security proof, the randomness used at step 2 comes from a
collaborative coin-tossing protocol, hence is unpredictable to the
garbler.

Assume the bucket size is B. In order to execute a logical AND
gate in the stream, the parties run exec_bucket:

exec_bucket:
(1) B garbled ANDs are randomly picked from the pool and

put into the bucket.
(2) The underlying LEGO protocol’s bucket evaluation pro-

cedure is called to evaluate all the gates in this bucket
to derive the bucket’s output wire-label.

(3) Call fill_pool repeatedly until the pool is again com-
pletely filled.

Note that the pool is always full before and after executing a logical
AND gate. Again, for the purpose of security proof, the randomness
used at step 1 comes from a collaborative coin-tossing protocol,
hence is unpredictable to the garbler.

For an adversarial garbler, the only way to succeed in attack-
ing our pool-based cut-and-choose mechanism is first successfully
slipping some number of faulty gates into the pool without being
detected, then hoping that enough faulty gates are simultaneously
picked from the pool to be placed in the same bucket. The ex-
act definition of “enough” will depend on the security premise of
the underlying LEGO protocol. For example, using a bucket-level
MajorityCut-able protocol [8] requires B/2 gates in a bucket to be
faulty whereas a bucket-level SingleCut-able protocol [38] requires
all B gates in a bucket to be faulty in a successful attack.

Although this pool idea can generally be applied to many LEGO-
style protocols, our discussion in the rest of the paper assumes
either JIMU [38] or WRK [36] is used as the base protocol since they
offer better cut-and-choose properties that significantly simplify
the security analysis. .

Security. We assume the underlying LEGO protocol is secure.
Note that the only thing we change about the underlying LEGO
protocol is the cut-and-choose mechanism. Thus, to show our ap-
proach secure, it suffices to prove that a cut-and-choose failure
(i.e. enough bad gates entering the same bucket) happens with a
bounded probability, ε . Our formal analysis in Section 4 provides
security assurance for our approach.



Check?Check

Abort if a faulty
gate is found.

0. [One-time setup] Form
a pool by generating and
checking enough garbled
gates.

2. [Concurrent with step 1] For
every garbled gate drawn out of
the pool, generate enough new
gates to fill the pool.

1. To execute a bucket, fill it
by randomly picking garbled
AND gates from the pool.

Every garbled gate will be
checked at a constant rate.
Only those unchecked gates
enter the pool.

· · ·

Public Circuit represented
as a stream of buckets.

Each party stores a
copy of the pool.

Figure 1: Approach Overview

Notations. Table 2 summarizes some variables used throughout
this paper. Note that parameters in the upper-table (i.e., ε,n, rd ) are
supposed to be set by the protocol users, whereas those listed in
the lower-table (i.e., rc ,B) can be automatically calculated based on
the parameters in the upper-table.

Table 2: A Summary of Variables.

ε
Probability of a successful attack throughout the life-
time of the pool.

n Size of the pool.

rd

Probability of a checked faulty gate being detected.
(This is a constant determined by the underlying
LEGO protocol.)

rc
Probability of a freshly generated garbled gate being
checked.

B Bucket size.

4 POOL ANALYSIS FOR POOL-JIMU
We adopt the LEGO scheme of Zhu et al. [38] where an attack to
the cut-and-choose mechanism succeeds only if a bucket contains
B faulty gates. Our goal is to bound the probability of an ever
successful attack to the cut-and-choose mechanism by a preset
threshold ε , throughout the lifetime of the pool.

First, as the guard of the pool, we assume every garbled-gate is
always selected to be checked with a constant probability rc . Under
this assumption, the best strategy for a malicious garbler is to try
inserting allb bad gates into the pool from the very beginning (when
the pool is initially setup). This is because: (1) the attacker will take
exactly the same risk of being detected when b bad gates eventually
slip into the pool; however, (2) getting the b bad gates into the pool
earlier always leads to better chance of a successful attack because,
in absence of successful attacks, drawing gates from the pool to fill

the buckets will only consume (the limited number of) bad gates in
the pool, hence reducing the probability of a successful attack.

Let b be an upper-bound on the number of bad gates that has
ever passed through the guard and entering the pool before a suc-
cessful attack. Let PB (n,b) be the probability of a successful attack
throughout the lifetime of a pool of size-n and bucket-size-B pro-
vided that at most b bad gates are ever successfully inserted into
the pool. Once we know how to compute PB (n,b) for every n and
b, it is easy to upper-bound the success rate of the best attacking
strategy by

max
b
(1 − rcrd )b · PB (n,b) (1)

for a fixed n, rc and any positive integer b (it is easy to see that it
suffices to consider integer b that is no larger than ⌊log1−rc rd ε⌋,
since this is the maximum number of bad gates that could ever
be successfully inserted into the pool without being caught with
probability larger than ε).

Next, we derive a recurrence that allows us to compute PB (n,b).
Assume there are k bad gates left in the pool. On every draw of B
gates, the probability that i bad gates are picked is

(n−k
B−i

) (k
i
) / (n

B
)
.

If i < B, then i bad gates are consumed so a future attack will
succeed with probability PB (n,k − i). If i = B, which happens
with probability

(k
B
) / (n

B
)
, an attack succeeds. Thus, P(n,k) can be

written as a weighted sum of {PB (n, i)}ki=k−B where the weights
are the probabilities that exactly i bad gates are selected:

PB (n,k) =
B−1∑
i=0

(n−k
B−i

) (k
i
)(n

B
) PB (n,k − i) +

(k
B
)(n

B
) , ∀ k ≥ B;

PB (n,k) = 0, ∀ k < B.

Note that when k < B, there is less than B bad gates in the pool,
so at least one good gate will appear in each bucket from that
point on, hence PB (n,k) = 0. Therefore, once n and B are fixed,
PB (n, 1), . . . , PB (n,b) can be computed using dynamic program-
ming altogether in O(b) time.



How to efficiently find the best (rc ,B)
Input: ε,n.
Output: rc ,B, which minimize B/(1 − rc ) and satisfy
Form (1)≤ ε .

Set t B ∞, r0 B 0.01, b0 B ⌊log1−r0rd ε⌋, B B 2, and
repeat the steps below until it exits from Step 5:
(1) Use the recurrence above to compute PB (n,k) for all

0 ≤ k ≤ b0.
(2) Solve the inequality

max
k ∈{1, ...,b0 }

(1 − rcrd )k · PB (n,k) ≤ ε

for the smallest possible rc . If no viable rc can be found
through solving the inequality, go to Step 5.

(3) If rc < r0, set r0 B r0/2, b0 B ⌊log1−r0rd ε⌋, B = 2, and
go to Step 1.

(4) If t ≥ B/(1 − rc ), then t B B/(1 − rc ), r∗c B rc , B∗ B B.
(5) Set B B B + 1. If t < B, then exit with output (r∗c ,B∗).
(6) If B > n, exit with output ⊥.

Figure 2: Parameter Search for Pool-Jimu

Automated parameter selection. In existing BatchedCut proto-
cols [19, 25], picking good cut-and-choose parameters for a partic-
ular circuit size and security parameter often requires considerable
human intervention in making heuristic guesses. Such ad hoc pro-
cedures are obviously incompatible with the expectation of running
dynamically-supplied functions on-the-fly! Next, we show how in-
troducing a pool simplifies the process and enables full automation.

Here we want to pick (rc ,B) such that Form (1) ≤ ε holds while
B/(1− rc ) is minimized, because B/(1− rc ) gates are expected to be
garbled per bucket. Approached naïvely, this would require solving
a complex non-linear optimization. However, we propose an effi-
cient search algorithm to identify the best (rc ,B) for any fixed (ε,n)
below (see Figure 2). The basic idea is to consider every possible
integral B in an increasing order. When examining each potential
B value, we first find the smallest rc that allows the security con-
straint Form (1)≤ ε to hold. Recall that the security constraint was
derived assuming rc > r0, hence if a smaller rc is obtained at Step 2,
we will discard this rc and decrease r0 by 1/2 and recalculate rc
until rc > r0 is satisfied. Then in Step 4, we record the resulting
B/(1−rc ) value if it is smaller than the by-far smallest cost indicator
t . We stop examining bigger Bs and exit at Step 5 if (t < B) because
there is no hope to find any smaller achievable target t values (see
remark point (4) below). If the input (ε,n) is not securely achievable
at all, our search algorithm will exit at Step 6.

We further make several remarks about our search algorithm:
(1) It suffices to start the search from B = 2 as B = 1 degenerates

to semi-honest garbled circuit protocol thus will not offer an
interesting result.

(2) Any (r ,B) satisfying the inequality of Step 2 is a security-wise
viable parameter, but we would like to find the smallest rc (for
that B) satisfying this constraint to minimize B/(1−rc ). This can
be accomplished efficiently through a binary search between
r0 and 1, because the left-hand-side of the inequality strictly
decreases when rc grows.

(3) In Step 3, if r0 is found to be greater than rc , then we cannot
be sure that the rc obtained is the smallest possible (for that B)
satisfying the constraint in Step 2; otherwise, we are sure that
rc is optimal for the current B.

(4) If the search exits at Step 5 with t < B, then we know t must also
be smaller than B/(1 − rc ) for any non-negative rc . Therefore,
searching further can’t yield any smaller target value t , hence
the output (r∗c ,B∗) must be optimal.

(5) A search could also terminate from Step 6, which indicates n is
too small to ever achieve ε statistical security at all.

(6) Initiating r0 to 0.01 is arbitrary as r0 can be initiated to any
decimal between 0 and 1. But in practice, setting r0 B 0.01
alleviates us from resetting r0 and restart the search (Step 3) for
every n we have ever tried (assuming ε = 2−40).

Optimal strategy? In fact, the pool-based cut-and-choose game
could be framed as a general cost-aware zero-sum game (the utility
is each party’s winning odds). Our analysis above is by no means
the optimal strategy as it unnecessarily restricts the honest party to
a particular set of strategies, i.e., using a constant rc and constant B.
We only claim that the solution described above is optimal under
the premise of using constant rc and B. It is entirely possible to
guarantee an ϵ-bounded failure rate with even less costly strategies.
We leave it as an interesting open question to seek the most cost-
effective strategy to this pool-based cut-and-choose game.

Using additional pools. Because any Boolean circuit can be com-
puted using AND and XOR gates and secure XOR can be realized
without garbling, it suffices to just have a single pool of garbled
AND gates to realize any function. However, we discovered that
sometimes it may be beneficial to have pools of other types of
garbled gadgets when those gadgets, treated as a whole, can be
realized more efficiently than composed from individual AND gates.
In these circumstances, the servers can maintain multiple pools,
each with a different type of garbled gadgets. The security analysis
remains the same for additional pools. We will soon see an example
of exploiting a second pool for realizing MUX 30% more efficiently.

Costs. These include the time for initializing the pool, the storage
for storing the pool, and the time for replenishing the pool. The
time to initialize the pool is essentially the pool size n multiplied by
Rд/(1 − rc ) where Rд is the speed of garbled-gate generation and
rc is determined by n and ε in a way described earlier. See Table 3
for concrete numbers about pool initialization. We stress that the
pool only need to be generated once in the lifetime of running the
servers. Likewise, the non-amortizable time required to replenish
the pool is merely B × Rд/(1 − rc ) per gate in the target Boolean
circuit.

The storage costs of the pool can depend on n but also the role of
a server, since the garbler remembers wires whereas the evaluator
only need to store the (shorter) i-hashes of wires. Table 4 provides
exact numbers. We also note that the evaluator can even hash every
garbled gate it receives and organize all the hashes with a Merkle
tree. Thus, at a logarithmic cost of operating the Merkle tree, only
a single root hash needs to be stored on the evaluator side.

Round-trips. Our approach requires linear rounds but we will
discuss how a simple buffering trick can avoid most of the round-
trip overhead in Section 6.



5 MORE EFFICIENT SECURE MULTIPLEXERS
MUX is a frequently used component circuit in many computations
such as private set intersection and ORAM. An ℓ-bit MUX takes two
ℓ-bit inputs (say, x0 and x1), a 1-bit choice signal c , and outputs an
ℓ-bit output xc . Conventional approach implements an ℓ-bit MUX
by repeatedly calling a 1-bit MUX ℓ times:

ℓ-MUX(x[ℓ], y[ℓ], c) {
for i from 1 to ℓ

ret[i] ← 1-MUX(x[i], y[i], c);
return ret;

}

Since every 1-MUX can be realized using a single AND as
1-MUX(x, y, c) {

return c∧(x⊕y)⊕y;
}

an ℓ-bit MUX only needs ℓ AND gates.
However, recall that with LEGO protocols, the dominating cost

is actually due to the expensive wires (i.e., the input and output
wires of garbled AND gates) instead of the garbled-tables. Existing
implementation of ℓ-bit MUX requires ℓ AND gates thus involving 3ℓ
wires. Below, we show an optimization that enables more efficient
multiplexers by reducing roughly 1/3 of the wires.

Our approach. We note that the ℓ AND gates in an ℓ-bit MUX share
a common input bit, i.e., the selection bit of the MUX. To exploit this
observation, our key idea is to base our optimized ℓ-bit MUX on a
single special (ℓ + 1)-input ℓ-output circuit gadget, which we call
MUXCORE, and a few XOR gates. Our MUXCORE can be realized as
below:

MUXCORE(a[ℓ], c) {
for i from 1 to ℓ

ret[i] ← a[i]∧c;
return ret;

}

Then, let ⊕ be an ℓ-way parallel XOR (⊕), so ℓ-MUX can be simply
realized as

ℓ-MUX(x[ℓ], y[ℓ], c) {
return MUXCORE(x⊕y, c) ⊕ y;

}

The new implementation will still use ℓ AND gates which are all
wrapped in the MUXCORE gadget, however, since MUXCORE has only
2ℓ + 1 wires, the total number of expensive wires in a ℓ-bit MUX can
thus be reduced from 3ℓ + 1 to 2ℓ + 1 if we treat MUXCORE as a basic
gadget for cut-and-choose.

Checking MUXCORE. To check a garbled MUXCORE gadget, the cir-
cuit evaluator simply uses ℓ + 1 randomly sampled input bits to
obtain the corresponding ℓ + 1 input wire-labels, evaluates the
ℓ AND gates and verifies that the outcomes are consistent with
the commitments/i-hashes (just like the way garbled ANDs are
checked in the underlying LEGO protocol). Note that because every
garbled AND gate inside the MUXCORE gadget is checked with uni-
formly picked inputs, so any faulty AND gates in MUXCORE are still
detected with the same probability rd offered by the underlying
LEGO protocols.

class Party {
public:

/* Encode an input bit of garbler. */
virtual wire** garblerIn(bool* b, int len)=0;
virtual wire** garblerIn(int len)=0;

/* Encode an input bit of evaluator. */
virtual wire** evaluatorIn(bool* b, int len)=0;
virtual wire** evaluatorIn(int len)=0;

/* Reveal an output bit to garbler. */
virtual bool garblerOut(wire* w)=0;

/* Reveal an output bit to evaluator. */
virtual bool evaluatorOut(wire* w)=0;

/* Basic binary gates */
virtual wire* and(wire* l, wire* r)=0;
virtual wire* xor(wire* l, wire* r)=0;

/* APIs for RAM accesses using ORAM */
wire** initRAM(int nBlk , int sz);
wire** accessRAM(wire** mem , wire** rORw ,

wire** index , wire** data);

/* Run the computation specified by the
function `f' using `ws '. */

wire** exec((wire **)f(wire **), wire** ws);

/* Run the computation specified in the
circuit file `f' using `ws '. */

wire** exec(File* f, wire** ws);
}

class Garbler: public Party {
public:

wire** garblerIn(bool* b, int len) { ... }
wire** garblerIn(int len) { ... }
wire** evaluatorIn(bool* b, int len) { ... }
wire** evaluatorIn(int len) { ... }
bool garblerOut(wire* wire) { ... }
bool evaluatorOut(wire* wire) { ... }
wire* and(wire* l, wire* r) { ... }
wire* xor(wire* l, wire* r) { ... }

}

class Evaluator: public Party {
public:

wire** garblerIn(bool* b, int len) { ... }
wire** garblerIn(int len) { ... }
wire** evaluatorIn(bool* b, int len) { ... }
wire** evaluatorIn(int len) { ... }
bool garblerOut(wire* wire) { ... }
bool evaluatorOut(wire* wire) { ... }
wire* and(wire* l, wire* r) { ... }
wire* xor(wire* l, wire* r) { ... }

}

Figure 3: A succinct set of APIs offered by Pool

6 DESIGN AND IMPLEMENTATION
Design. We have designed and developed Pool, with the goal

of making it easier for non-crypto-expert developers to create and
run future secure computation services against active adversaries.
Thanks to the combination of the pool technique and the LEGO-
based cut-and-choose, we are able to encapsulate the sophisticated
cryptography into a list of application programming interfaces
(API) described in Figure 3.

The APIs include eight basic functions, four of which handle
function inputs (garblerIn, evaluatorIn) and two of which han-
dle outputs (garblerOut, evaluatorOut) while the rest two (and,



xor) handle AND and XOR gates, respectively. Note that there are
two overloaded version of garblerIn, supposed to be invoked si-
multaneously by the garbler and the evaluator, respectively. So are
the overloaded functions evaluatorIn. Since the behaviors of these
eight functions depend on their calling party’s role (either garbler
or evaluator), we define them as virtual functions in the base class
Party but provide concrete implementations in the sub-classes
Garbler and Evaluator. We stress that since the data structures
to represent wires are different on each side, the implementations
of wire also differ between the Garbler and the Evaluator.

Pool provides two different ways to specify and execute com-
putations, which are overloaded under the same function name
exec. The first reads the circuit description from a circuit file (with
the SHDL format used by Fairplay [21] and many other existing
works [25, 29, 35]) and runs the circuit over the wire encodings
supplied as the second argument to exec. Our second way allows
to specify computations as normal C functions (passed to exec as
a function pointer f). We assume the function f only calls AND
and XOR, which will be bound to the implementations of and and
xor functions Pool provides. To facilitate specifying functions in
this manner, Pool offers a library of circuits such as multiplex-
ers and basic arithmetic circuits like many other programming
tools [10, 33, 34] do.

Finally, Pool’s (initRAM and accessRAM) allow application de-
velopers to exploit the efficiency benefits of RAM-based secure
computation through Circuit-ORAM [30].

Example. Figure 4 shows the use of Pool in developing custom
applications. The example is for developing a secure MUX to select
one of two 8-bit numbers. Note that a developer only needs to
write six lines of code to implement mux and mux8 based on ANDs
and XORs. The rest two main functions are template procedures
to run/test custom-built applications (mux8 in our case). Of course,
common circuits like mux and mux8 are already part of Pool’s library
so developers can use them directly without reinventing the wheel.

Implementation Issues. Implemented naïvely, our protocols will
require one round-trip per bucket for the evaluator to disclose his
random choice of B garbled gates in the pool to place in a bucket,
incurring a significant network round-trip overhead. To alleviate
this issue, our simple strategy is to let the garbler maintain an
additional buffer (of 128K garbled-gates) per pool so that we only
need one round-trip per 128K/B buckets. Thus, empty spots in the
pool will always be refilled with garbled-gates from the buffer;
and whenever the buffer is depleted, the garbler will garble and
commit 128K gates altogether, after which the evaluator refresh
the randomness used to select garbled-gates from the pool till next
round of buffer regeneration. This design choice also helps to exploit
the fact that hardware-assisted AES runs faster in batches.

7 EVALUATION
Evaluation Setup. All performance numbers are measured with

single-threaded programs. We leased Amazon EC2 machines (in-
stance type: c4.2xlarge, Ubuntu Linux 16.04) to conduct all the
experiments. We evaluated our implementation in both LAN (2.5
Gbps bandwidth, < 1 ms latency) and WAN (200 Mbps bandwidth,
20 ms latency) settings. We have implemented Pool-Jimu which

// Common application code
wire* mux(wire* x, wire* y, wire* c) {

return xor(and(c, xor(x,y)), y)
}

wire** mux8(wire** ws) {
wire* x = *ws, y = *ws+8, c= *ws+16;
wire** ret = new wire *[8];

for(int i=0; i<8; i++){
ret[i] = mux(x+i, y+i, c);

}
return ret;

}

// Alice 's main function
void main() {

Garbler alice = new Garbler ();
bool inputA [9] = int2bits (0x01AA);
wire **wsA = alice.garblerIn(inputA , 8);
wire **wsB = alice.evalautorIn (8);
wire **ws = new wire *[17];
for(int i=0; i<8; i++) {

*ws[i ]=*wsA[i];
*ws[i+8]=* wsB[i];

}
*ws[16] = **alice.garblerIn(inputA+8, 1);
wire **os = alice.exec(mux8 , ws);
bool* ret = new bool [8];
for(int i=0; i<8; i++)

evaluatorOut(os[i]);
delete os;

}

// Bob's main function
void main() {

Evaluator bob = new Evaluator ();
bool inputB [8] = int2bits (0xBB);
wire **wsA = bob.garblerIn (8);
wire **wsB = bob.evalautorIn(inputB , 8);
wire **ws = new wire *[17];
for(int i=0; i<8; i++) {

*ws[i ]=*wsA[i];
*ws[i+8]=* wsB[i];

}
*ws[16] = **bob.garblerIn (1);
wire **os = bob.exec(mux8 , ws);
bool* ret = new bool [8];
for(int i=0; i<8; i++)

ret[i] = evaluatorOut(os[i]);
printf("%d", bits2int(ret));
delete os;

}

Figure 4: Example Application using Pool

uses JIMU [38] as the underlying secure computation scheme, thus
rd = 1/2. We set ε = 2−40. Reference performance data are mea-
sured by running implementations provided by their respective
authors in a test environment identical to that of Pool-Jimu.

7.1 The Pool
System Efficiency. As was discussed in Section 4, the pool size

has a decisive impact on the throughput of our system. Figure 5
depicts how the system performance changes as a result of varying
the pool size. Recall that B/(1 − rc ) (the Y-axis in Figure 5a) is the
expected number of garbled AND gates needed to execute a logical-
gate. We also note because the X-axis is on a logarithmic scale, as n
increases, B/(1−rc ) actually drops faster than it appears. Therefore,



most of the cost savings can be reaped with relatively smaller n,
e.g., B/(1 − rc ) ≈ 4 when n = 8M.

Figure 5b shows the relation between the pool size and the actual
time cost per logical-ANDs of Pool-Jimu. Note that the observed
data points in Figure 5b form a curve of similar shape as that of
theoretical estimations in Figure 5a. A graphical ratio of 2 on the
units of the y-axis between the two figures indicates a garbled-gate
processing speed of roughly 500K garbled-gates/second, which
coincides well with the micro-benchmark of the underlying JIMU
protocol.

Compared to running LEGO protocols without a pool, the ben-
efit of our approach is remarkable. For example, setting n = 220
allows us to execute 100K logical-ANDs/second for circuits of any
sizes, whereas the same speed can only be achieved on running
circuits of more than 100K ANDs using JIMU [38] without a pool.
Note that the actual speed measurements also indicate that most
efficiency advantage of batched cut-and-choose can be harvested
with relatively small pools.
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Figure 5: Relating System Efficiency to Pool Size

Check Rate and Bucket Size. As was described in Section 4, we
calculated the best (B, rc ) values for each fixed pool size to mini-
mize B/(1 − rc ). Figure 6 shows, under that premise, how B and
rc changes as n increases. Note that rc takes continuous values
relatively close to 0, whereas B takes discrete integral values. As n
grows, B will never increase but the check rate rc will periodically
jump up (synchronized with the changes in B) and then gradually
decrease as n increases while B holds the same.
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Time Cost of Pool Initialization. We measured the pool initializa-
tion time for several representative pool sizes and give the timings
in Table 3. Roughly, we observe that Pool can garble and “commit”
500K garbled-ANDs/second and check 850K garbled-ANDs/second.
However, we note that each pool size will favor a particular rc .
Depending on the type of the gadget, pool initialization takes only
seconds to dozens of minutes.

Table 3: Timings for Initializing Pool (seconds)

n 10K 100K 1M 10M

rc 12.2% 5.5% 5.5% 26.5%

AND 0.34 2.94 29.5 411.4

MUXCORE-8 1.92 18.82 188.53 2374.3

Pool Storage. To store each AND gate, the garbler needs to re-
member three wires and a garbled-table whereas the evaluator only
need to remember the commitments/i-hashes of the three wires
and a garbled-table. For MUXCORE gadgets, the number of wires and
garbled tables will depend on the width of the gadget. Table 4 shows
the exact number of bytes needed per AND and per 8-bit MUXCORE.

However, when Pool is optimized for storage in the way dis-
cussed in Section 4, the storage requirements drop to 16 bytes (for
the seed) on the garbler side and 32 bytes (for the root hash) on the
evaluator side.



Table 4: Sizes of Garbled Gate/Gadget (bytes)

Garbler’s Side Evaluator’s Side

AND 288 240

MUXCORE-8 1856 1584

7.2 MUX Optimization
Figure 7 shows the savings in computing oblivious multiplexers due
to the use of MUXCORE gadgets. We are able to reduce the overhead
of MUX of various widths by about 30%, which is largely in line with
our theoretical estimation based on the wire reduction rate and the
fraction of overall overhead (60–70%) spent on processing wires.

We have also evaluated the gain of this technique over several
applications that use multiplexers as building blocks. We observe
6–23% improvements (Figure 7b), since the exact savings now will
also depend on the proportion of MUX computation as well as the
widths of the MUXs being used.

7.3 Applications
In this study, our main focus is reactive computations such as
ORAMs that are difficult to realize with existing implementations
of actively-secure protocols. The left half of Table 5 shows the
per ORAM access time and bandwidth costs with either a basic
Circuit-ORAM or a full-blown one with seven recursions. Because
of pooling, we can execute these heavy-weighted computational
tasks without any delay for offline preprocessing. We note that se-
curely computing randomized ORAMs would be feasible with gate-
level BatchedCut protocols like JIMU [38], NST [25], and WRK [36].
However, no prior work of this kind exists, partly due to technical
concerns (such as the lack of well-defined programming interfaces)
and the anticipated high latency due to offline processing.

For comparison purposes, we also evaluated Pool with several
applications, including sort, hamming distance, and edit distance,
scaled at moderate-size circuits. For these applications, we are able
to run implementations provided by WMK [35] and JIMU [38],
whose performance is representative of the state-of-the-art proto-
cols in the malicious adversary model. Compared with the original
JIMU protocols [38], using a smaller pool of 35K garbled gates
already allows to reap almost all the benefit of batched cut-and-
choose. With a bigger pool with 35M garbled gates, we actually ob-
serve 1.6–2.6x improvements in time and bandwidth. The speedup
can also be explained by the significantly reduced memory us-
age thanks to the pool, which indirectly helps to reduce time due
to improved caching and faster memory accesses. Comparing to
WMK [35], Pool-Jimu is more efficient on Hamming Distances be-
cause Hamming Distance is secret-input-intensive while Pool-Jimu
inherits the efficiency of secret-input processing from JIMU [38].
On the other hand, WMK [35] is still more efficient in computation-
intensive applications such as Sort and Edit Distance, though its
cut-and-choose mechanism makes it infeasible to support reactive
computations such as ORAM.

We have also attempted to run these applications with sev-
eral other BatchedCut protocols including NST [25], RR [27], and
LR [19]. Unfortunately, these proof-of-concept implementations
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Figure 7: Efficiency Gain from Optimized MUX. (Applications
were run in the sameway as they weremeasured in Table 5.)

do not provide explicit APIs for users to build applications that
were not already included in their implementation. It is also un-
clear how to efficiently calculate important protocol parameters
such as bucket size and check rates for general circuits. In fact, the
parameter selection procedures suggested in their security analy-
sis requires computing a great number of combinatorial formulas
that involve very big integers, which only worked for determining
parameters for a few specific small-scale scenarios but didn’t scale
up well in general.

Nonetheless, the micro-benchmarks reported in the literature
can still shed some light on the comparison. Researchers [38] have
shown that the performance of NST [25] is very similar to JIMU [38]
which we have included in Table 5. Wang et al. [35] show that



Table 5: Performance of Selected Applications. (Units of the numbers are either seconds or GB.)

Basic C-ORAM1 Recursive C-ORAM2 Sort3 Hamm. Dist.4 Edit Dist.5

Time BW Time BW Time BW Time BW Time BW

W
M
K LAN Hard to Support

(for its cut-and-choose mechanism)
46.2

14.2
44.5

9.2
302.3

93.8
WAN 575.3 381.5 3781.5

JIM
U LAN Never Done Before

(for API and memory scalability issues)
228.4

28.4
40.7

6.04
1677.2

203
WAN 1172.3 244.4 8754

T
hi
s
w
or
k
(P
oo

l-
Jim

u)

n = 35K
(LAN)

46.6
6.38

15.4
1.9

149.3
27.0

36.9
6.42

1247
215

n = 35K
(WAN)

279.6 83.2 1168 268.9 9450

n = 35M
(LAN)

31.4
3.96

11.2
1.08

87.1
15.9

24.9
3.8

741.2
127

n = 35M
(WAN)

174.7 48.0 662.6 160 5333

When n = 35K, we set B = 5, rc = 12.5%; when n = 35M, we set B = 3, rc = 12.3%. Optimized MUXes are used whenever
possible.
1 Accessing an array of 10000 32-bit blocks using Circuit-ORAM without recursion (1.82M ANDs);
2 Accessing an array of 10000 32-bit blocks using Circuit-ORAM with a recursion factor of 8 and a cutoff threshold
of 256 (resulting in 2 levels of recursion totaling at 665K ANDS);

3 Sort 4096 32-bit numbers (10.2M ANDs);
4 Hamming distance between two 1M-bit strings (2.1M ANDs);
5 Edit distance between two 1024-nucleotide DNA (73.3M ANDs).

LR [19] and RR [27] are about 1.5–3x faster than WMK [35], hence
about 2–5x more efficient than Pool-Jimu. Note that LR and RR
require significant function-dependent offline processing, which
would adversely affect their general applicability. In comparison,
Pool-Jimu is able to run all these six applications (and any other
dynamically defined functions) using the same single pool of AND
gates.

We also note that Wang et al. has recently proposed WRK, a
highly efficient, constant-round protocol [36] based on authenti-
cated multiplicative triples and authenticated garbling. Section 8
discusses how the idea of Pool can be adapted to make WRK more
scalable.

Extreme Scales. To evaluate the scalability of Pool-Jimu, we have
run two single-threaded programs on two LAN-connected servers
(Intel Xeon 2.5 GHz) for executing actively-secure computations
with a pool of 16M gates. The service has been up non-stop for
seven days (until we intentionally shut it down), executing 47.3
billion gates at about 278M logical-ANDs/hour.

8 APPLYING POOL TOWRK
The pool idea can also be combinedwithWRK [36], an authenticated-
garbling-based protocol that is by far the fastest actively-secure
two-party computation scheme. We call our WRK-based protocol
Pool-WRK.

A Brief Overview of WRK. WRK is a constant-round two-party
computation protocol based on authenticated multiplicative triples,
i.e., (a1 ⊕a2)∧ (b1 ⊕b2) = c1 ⊕ c2 where a1,a2,b1,b2, c1, c2 ∈ {0, 1}.
The protocol requires a preparation phase to generate a linear (in
the circuit size) number of such triples and distribute them properly
between the two parties. That is, P1 holds three bits a1,b1, c1 and
their authentication tags (127-bit each) ⟨a1⟩, ⟨b1⟩, ⟨c1⟩ that allow
P1 to later prove to P2 the use of authentic values of a1,b1, c1 when
needed; while similarly P2 holds a2,b2, c2 and ⟨a2⟩, ⟨b2⟩, ⟨c2⟩. Using
each authenticated multiplicative triple, the parties will collabora-
tively garble a binary AND gate such that (1) the permutation of
the garbled entries are determined by the authenticated random
bits from both parties; and (2) a honestly garbled entry in the ta-
ble can always be verified upon decryption. As a result, although
a malicious garbler could render some garbled entries invalid, it
cannot gain any information by observing failed gate evaluations
because in the adversary’s perspective the failures always happen
at random places.

The most significant cost of WRK protocol is due to the prepara-
tion phase (called Fpre) that generates the authenticated multiplica-
tive triples. The improved preparation protocol Wang et al. pro-
posed to realize Fpre is similar to batched style of cut-and-choose,
hence able to achieve asymptotic efficiency similar to LEGO proto-
cols. While the focus of the original WRK paper was on designing
authenticated garbling and proving its security, techniques pro-
vided in our work helps to scale up their scheme to run arbitrary



How to efficiently find the best B
Input: ε,n.
Output: the smallest B that satisfies Form (2)≤ ε .

Set t B ∞, b0 B ⌊− log2 ε⌋, B B 2, and repeat the steps
below until it exits from Step 2:
(1) Use the recurrence above to compute PB (n,k) for all

0 ≤ k ≤ b0.
(2) If maxk ∈{1, ...,b0 } 2

−k · PB (n,k) ≤ ε , then output B and
halt; otherwise, set B B B + 1.

(3) If B > n, exit with output ⊥.

Figure 8: Parameter Search for Pool-WRK

size computations with no preparation delay and limited storage
(independent of the circuit size).

Pool Analysis Adapted to WRK. WRK’s expensive preparation
phase also used the ideas of bucketing and batched cut-and-choose,
except that it not only detects faults in the generation of every
multiplicative triple with probability 1/2, but also allows all checked
triples to be used to form buckets. Thus, to specialize our pool analysis
for WRK, we set rc = 1 (since all triples are checked) and rd = 1/2.
Therefore, assuming the bucket size B is a constant, the success
rate (Form (1) of Section 4) of the best attacking strategy becomes

max
b

2−b · PB (n,b) (2)

where b can be any positive integer (but essentially bounded by
⌊log1−rc rd ε⌋) and the analysis of PB (n,b) is identical to that ap-
peared in Section 4, because like JIMU [38], WRK only requires a
single honestly generated multiplicative triple in each bucket to
guarantee security. As rc is now fixed to 1, the parameter selec-
tion procedure can be significantly simplified to the one described
in Figure 8:

Finally, assuming the bucket size needs to be constant, B calcu-
lated as above is known to be optimal.

Benefits. The main benefit the pool brings to the WRK scheme
is improved scalability. Compared to plain WRK, when executing
large circuits the long stalls and the big storage requirement of
the preparation phase are no longer needed. We have listed the
pool parameters and compared them to the plain WRK (Table 6).
A pool allows us to completely drop the circuit-size constraint for
achieving a particular efficiency level. Also, note that the minimal
pool-sizes needed in our approach are only about 60% of theminimal
circuit sizes required by plain WRK. An intuitive explanation of
this phenomenon is that, as the total number of bad entries used
by an attacker is bound by − log2 ε , the probability of having a bad
bucket has to be smaller than an inverse polynomial of the size of
the pool when a pool is employed. Without a pool, however, that
probability will continually increase as the pre-computed leaky-
ANDs are consumed for evaluating circuits. So it requires fewer
leaky-ANDs in the pool to achieve the same level of efficiency.

9 OTHER RELATEDWORK
Kreuter et al. [17] proposed a technique to run arbitrarily large-
scale secure computations against malicious adversaries. The basic

Table 6: Compare WRK and Pooled WRK in terms of Fpre.

Bucket Size 3 4 5
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WRK

Minimal circuit size1
(by # of logical-ANDs)

280K 3.1K 320

Minimal circuit size2
(by # of leaky-ANDs)

840K 12400 1600

WRK
with
Pool

Minimal pool size3
(by # of leaky-ANDs)

479K 7673 1073

Circuit-size
constraint

No size constraints
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WRK

Minimal circuit size1
(by # of logical-ANDs)

1.2B 780K 21K

Minimal circuit size2
(by # of leaky-ANDs)

3.6B 3120K 105K

WRK
with
Pool

Minimal pool size3
(by # of leaky-ANDs)

1.96B 1963K 68.3K

Circuit-size
constraint

No size constraints
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WRK

Minimal circuit size1
(by # of logical-ANDs)

300B 31M 330K

Minimal circuit size2
(by # of leaky-ANDs)

900B 124M 1650K

WRK
with
Pool

Minimal pool size3
(by # of leaky-ANDs)

501.8B 79.15M 1093K

Circuit-size
constraint

No size constraints

1 These numbers are quoted from WRK [36].
2 Each of these numbers is obtained by multiplying the minimal
number of logical AND gates in the circuit and its corresponding
bucket size.

3 Pool size is measured by the number of leaky-ANDs instead of
logical ANDs because the notion of logical-ANDs is less relevant
until a bucket of leaky-ANDs are picked from the pool.

idea is to use an additional set of oblivious transfers to allow the
evaluator to secretly learn either the seed for verifying a circuit or
the input wire-labels for evaluating the circuit. Although Kreuter
et al.’s original protocol was based on MajorityCut, the idea is later
adopted by Wang et al. in their SingleCut protocol [35], which is
by far the most efficient SingleCut protocol in the single-execution
setting. The heavily optimized WMK [35] is able to process 227K
logical-ANDs per second and roughly 50K input/output wires per
second and seems able to run circuits of any size without signifi-
cant preprocessing. In comparison, Pool executes the gates 1.5–2x
slower but is 2.4x, 24x, and 600x faster in handling the evaluator’s



input, garbler’s input, and outputs, and scales up very well. Finally,
it seems clumsy to use [17, 35] to handle RAM-based secure compu-
tations because their underlying cut-and-choose mechanisms are
not very compatible with reactive computations.

Motivated by the need for secure computation as a commodity
service, researchers have conceived asymptotically more efficient
BatchedCut protocols aiming at efficient iterative execution of a
function with different inputs [12, 18]. Lindell et al. proposed an
efficient symmetric-key operation based input consistency enforce-
ment technique and gave the first implementation of such a pro-
tocol [19]. More recently, Rindal and Rosulek [27] have pushed
Kolesnikov et al.’s work on Dual-Execution protocols [11, 15] into
the offline/online setting with an efficient method for input con-
sistency and a lightweight PSI, both tailored to the dual-execution
paradigm. Both works exploited parallel hardware support for min-
imizing the online and offline times. In contrast, our work aims to
batch the cut-and-choose procedure at the basic-gates level and
focuses on single-thread implementations to minimize the num-
ber of CPU cycles required by our protocol. Unlike our approach,
it would be unrealistic to support RAM-based computation using
these protocols.

Damgård et al. proposed SPDZ [5, 6], a protocol capable of sup-
porting more than two participants in computing arithmetic cir-
cuits. It consists of a somewhat homomorphic cryptosystem-based
constant-round offline stage and a linear-round (in circuit depth)
online stage. These protocols would be useful to compute shallow
circuits in low network latency environments but less competitive
comparing to state-of-the-art constant-round LEGO protocols.

10 CONCLUSION
Running gate-level BatchedCut secure computation protocols with
a pool leads to a number of benefits including consistent, faster ex-
ecution of any-size circuits with nearly zero offline processing. We
instantiated this idea with two state-of-the-art secure computation
schemes and incorporated it into a software framework that offers
several valuable properties for delivering actively-secure computa-
tion as an on-demand service. We hope Pool will help spur interest
in developing and deploying practical secure computation services.
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