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Abstract—We propose Phecda, a new framework to produce
quantum-resistant transparent zkSNARKs in the Random Or-
acle Model. Phecda features a novel multi-linear polynomial
commitment scheme and a novel VOLE-in-the-Head zero-
knowledge argument, offering a versatile solution for verifying
many real-world computations. In particular, we invent a novel
AES verification circuit, which, combined with Phecda, allows
to verify 1024 blocks of AES in the counter-mode in 10ms
using a single-thread program running on a Linux PC.

1. Introduction

Zero-Knowledge Proof (ZKP) is an important enabling
primitive underpinning many critical infrastructures such as
remote authentication, electronic voting, cryptocurrency and
decentralized finance. ZKPs are often made non-interactive
and transparent (i.e., requiring no trusted setup) to meet
even more real-world needs. As a potential game-changer
for ensuring security and privacy in the cyberspace, sig-
nificant research effort and industrial investment have been
dedicated to developing concretely faster and smaller NIZK
proofs.

Many state-of-the-art zero-knowledge proof systems [1],
[2], [3], [4], [5] (Table 1) were built on top of GKR [6], a
seminal randomized protocol that translates the validity of a
layered circuit computation into exponentially fewer (and
mostly linear) polynomial constraints. The crucial differ-
ences of those protocols mainly stem from their methods
to prove the resulting polynomial constraints. Hyrax [2]
used Elliptic Curve Cryptography (ECC) based homomor-
phic commitments to commit the witnesses and prove the
polynomial constraints over them; Libra [1] used random
masking polynomials to commit the witnesses and prove the
constraints using an ECC-based zero-knowledge verifiable
polynomial delegation. Due to the inherent limitation of
ECC, these protocols are computationally expensive and
cumbersome to support many application circuits over fields
where the discrete-log assumption does not hold. Later,
Virgo [3] proposed to use Fast Reed-Solomon Interactive
(FRI) proof of proximity [7] based verifiable polynomial
delegation protocol, which offers faster prover and makes
it transparent. Recently, Dubhe [5] combined Fully Lin-
ear PCP (FLPCP) [8] with a simplified MPC-in-the-Head
(MPCitH) protocol [9] to prove all remaining polynomial

constraints. Dubhe offers faster prover and high flexibility
in supporting different fields required by target applications.
Its verification time and proof size, however, grow linearly
with the length of witnesses.

We extend this line of research by investigating new
methods to more efficiently handle the polynomial con-
straints resulted from the GKR transform. As the GKR trans-
form has been steadily improved [1], [4], [10], [11], the cost
of finishing the rest of the proof has become increasingly
dominant in these protocols. Take AES computation as an
example, MPCitH’s verifier time and proof size consist of
95% and 62% of the overall costs of Dubhe, which com-
bined GKR with MPCitH. It is therefore crucial to address
these new performance bottlenecks. To this end, we develop
(1) a transparent Polynomial Commitment (PC) protocol
specialized to succinctly prove the multi-linear constraint
produced by GKR for the input layer, and (2) an efficient
VOLE-in-the-Head (VOLEitH) based protocol to prove all
linear relations resulted from GKR and FLPCP transforma-
tions. Through experiments, we demonstrate our approach
produces transparent zkSNARKs that outperform their best
existing counterparts. We further use our zkSNARK to
realize an efficient publicly verifiable AES protocol.

1.1. Contribution

We propose Phecda, an efficient zero-knowledge proof
system based on GKR, FLPCP, PC and VOLEitH-based
ZKP. ZK proofs produced by Phecda are succinct, trans-
parent (hence publicly verifiable), and plausibly quantum-
resistant. Phecda matches the asymptotic efficiency of Virgo
but offers more competitive concrete efficiency than state-of-
the-art post-quantum proof systems. Source code of Phecda
can be found at github.com/zkPrfs/phecda.

We propose a new transparent multi-linear polynomial
commitment scheme that fits especially well with the need of
GKR in succinctly verifying polynomial computation over
potentially lengthy witnesses. It features a novel integration
of ideas from FRI and Gemini [12], which allows to directly
verify an n-variate multi-linear polynomial. In contrast to
Virgo’s polynomial commitment (called zkVPD in Virgo’s
terminology), ours eliminates the need of the GKR on
public inputs, and is concretely more efficient. Moreover,
our implementation directly supports binary extension fields.

github.com/zkPrfs/phecda


TABLE 1: Representative GKR-based Zero-Knowledge SNARK Systems

Libra [1] Hyrax [2] Virgo [3] Virgo++ [4] Dubhe [5] Phecda

P O(C + w) O(C logC + w) O(C + w logw) O(C + w logw) O(C + w) O(C + w logw)

V O(d logC + logw) O(d logC +
√
w) O(d logC + log2 w) O(d logC + d2 + log2 w) O(d logC + w) O(d logC + log2 w)

|π| O(d logC + logw) O(d logC +
√
w) O(d logC + log2 w) O(d logC + d2 + log2 w) O(d logC + w) O(d logC + log2 w)

Not Transparent Transparent

Not Quantum-Resistant Plausible Quantum-Resistant

C: circuit size by gates; d: circuit depth; w: witness length. C ≥ w. GKR allows to reduce d to a small constant using extra witnesses.

Our new VOLE-in-the-Head-based ZKP is specialized
for committing and efficiently proving linear constraints
produced by GKR and FLPCP, though its generic version
can directly handle any polynomial constraints, thus may be
of independent interest. It combines the transparent, GGM-
tree-based, VOLE generation from SoftSpokenOT [13]. As
shown in Table 2 and Table 8, our VOLEitH ZKP asymp-
totically and concretely outperform the MPCitH-based ZKP
which we aim to replace.

We propose a novel AES verification circuit that works
better with GKR and PC based succinct proof systems. The
new circuit allows to emulate the mix of byte field and
byte ring operations in AES using a larger binary extension
field. Comparing to previous AES verification circuits, the
number of gates and the number of witnesses in our circuit
are significantly smaller. Combined with Phecda, it exhibits
unprecedented performance and scalability in proving par-
allel computation of many AES blocks. E.g., for 128-bit
security, our zkSNARK of 1024 AES blocks has 576KB
proof size and only takes 10ms verification time (Figure 7).

1.2. Related Work

Phecda shares some high-level design with Dubhe [5],
but improved it in several important aspects. First, Phecda
uses PC to replace MitH in verifying the evaluation of
the secret multi-linear polynomial at a public point. This
makes Phecda proof succinct in the witnesses while Dubhe
was not. However, this change also calls for fundamentally
new circuit design for some computations such as AES
and SHA3 in order for GKR to efficiently handle (almost)
all gates. Second, Phecda replaces Dubhe’s MPCitH with
VOLEitH for proving all the linear constraints. This change
lends Phecda extra asymptotic and concrete performance
advantages (see Section 5.2 and Section 7.3).

Like Gemini [12] and HyperPlonk [14], we commit and
prove multi-linear polynomials through their corresponding
univariate counterparts. However, their focus was scenarios
with trusted setup, hence used bilinear maps over specific
elliptic curve fields, whereas ours are based on novel batched
Low Degree Test (LDT). As a result, our protocol is trans-
parent, quantum-resistant, and supports a wider range of
finite fields including binary extension fields and many more
prime fields.

FAEST [15] is a recent post-quantum signature scheme
that combines SoftSpokenOT’s VOLE generation [13] and
Quicksilver [16]’s polynomial verification. Comparing to
FAEST, which emphasizes on proving small quadratic cir-
cuits, such as AES, over small fields using replication
code, our construction focuses on efficiently proving linear
relations over large fields using linear Maximum Distance
Separable (MDS) codes.

2. Preliminaries

Notation. Given a non-negative integer n, [n] denotes the
set {0, 1, . . . , n − 1}. We use “a = b” to denote equality
and use “:=” to denote deterministic assignment. We use
boldface uppercase letters, such as A,U, to denote matrices,
and boldface lowercase letters, such as d, to denote vectors.
We denote the degree of a polynomial by d (in slanted
font), while using d (in regular math font) for other context-
dependent things, e.g. depth of circuit or VOLE receiver’s
choice element.

2.1. Interactive Proofs and Arguments

Let P , V be two interactive Turing machines, and
⟨P,V⟩(λ, x) be the transcript, i.e., concatenation of all
communications, of running P , V over public input x using
public security parameter λ. We use (P,V)(λ, x) to denote
V’s acceptance bit after interacting with P on input x and
λ. We say an NP-relation R defines an NP-language L if
x ∈ L⇔ ∃w,R(w, x) = 1.

A protocol (P,V) for an NP-relation R is an interactive
proof if it is both complete (i.e., ∀w, x,R(w, x) = 1 ⇒
(P(w),V)(λ, x) = 1) and sound (i.e., ∀x, R(w, x) ̸= 1 ⇒
Pr[(P ′(w),V)(λ, x) = 1] is negligible in λ for any P ′).
An interactive proof is a proof of knowledge if for every
efficient P ′ there exists an efficient extractor εP

′
such that,

Pr[(P ′,V)(λ, x) = 1 ∧ R(w, x) ̸= 1 | w ← εP
′
(λ, x)] is

negligible in λ. An interactive proof is Honest-Verifier Zero-
Knowledge (HVZK) if for any prover P ′ and the honest
verifier V , there exists an efficient simulator S such that
⟨P ′,V⟩(λ, x) is indistinguishable from S(x), i.e., the output
of running S over x.

A protocol (P,V) is considered n-round if it starts
with an initial message a0 from the P , and continues with
n challenge-response message pairs (e1, a1), . . . , (en, an)



where ei’s are uniform challenges from V and ai’s are the
P’s responses, and finalizes with V outputs 1-bit indicating
whether it accepts. The protocol is said to be public-coin
if all ei’s are public coin tosses independent of previous
responses.

An n-round HVZK proof can be compiled to an efficient
NIZK in the random oracle model using the Fiat-Shamir
transform [17]. In this setting, the soundness is defined only
with respect to bounded probabilistic polynomial time P ′.
Computationally-secure proofs are sometimes more specif-
ically called arguments instead of proofs.

2.2. GKR

Multilinear Extension. The multilinear extension of any
function V : {0, 1}ℓ 7→ F is denoted by Ṽ : Fℓ 7→ F, a
polynomial defined as

Ṽ (x0, . . . , xℓ−1)
def
=

∑
b∈{0,1}ℓ

(
V (b)

∏
i∈ℓ

(
(1− xi)(1− bi) + xibi

))
.

Obviously, ∀x ∈ {0, 1}ℓ, Ṽ (x) = V (x). Using multilinear
extension, the validity of all evaluations of V can be
reduced to checking a single uniform random point of Ṽ ,
except for a soundness error of 1/|F|.
SumCheck. The goal of the sumcheck protocol [18] is
to verify the summation of a polynomial f : {0, 1}ℓ 7→ F
on a binary hypercube, i.e.,

∑
bi∈{0,1} f(b1, . . . , bℓ). It is

achieved by reducing a correct summation into evaluating f̃
on a random point, i.e., f̃(r1, . . . , rℓ) with ri ∈ F uniformly
picked by V in each of the ℓ rounds. In the ith round, P
sends polynomial

f̃i(xi)
def
=

∑
bi+1,...,bℓ∈{0,1}

f̃(r1, . . . , ri−1, xi, bi+1, . . . , bℓ)

where r1, . . . , ri−1 are random values picked by V in
previous rounds. Then V checks

f̃i−1(ri−1) = f̃i(0) + f̃i(1) (1)

and sends random ri ∈ F. Overall, V checks ℓ linear
equalities and the validity of f̃(r). The ith SumCheck round
introduces soundness error deg(fi)/|F|.
GKR. Given a d-layer circuit, the GKR protocol [6]
captures the correctness of the ith layer computation with
a multivariate polynomial Vi : {0, 1}si 7→ F defined by

Vi(z) =
∑
x,y

(
addi(x, y, z)

(
Vi+1(x) + Vi+1(y)

)
+muli(x, y, z)Vi+1(x)Vi+1(y)

)
where addi,muli are the predicate functions for addition
and multiplication gates on the ith layer.

The GKR protocol starts from using multilinear
extension to reduce the validity of all outputs of the
circuit to Ṽ0(t0) where t0 is a random point picked by
V . Then, for i from 1 to d − 1, GKR uses SumCheck to
verify Vi−1(ti−1), reducing it to checking the values of
Ṽi(ri), Ṽi(si) and a equality:

Vi−1(ti−1) = ãddi(ri, si, ti−1)
(
Ṽi(ri) + Ṽi(si)

)
+ m̃uli(ri, si, ti−1)Ṽi(ri)Ṽi(si) (2)
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Figure 1: The Phecda System Workflow

where ri, si, ti−1 are random challenges picked by V in
previous SumCheck rounds. Finally, at the initial input
layer, the validity of any evaluation of Ṽd can be established
by interpolating the multilinear polynomial defined by the
circuit’s initial inputs. One concern of this scheme is
that the number of points to check on Ṽi doubles as i
increments. Chiesa-Forbes-Spooner [19] proposed to fix
this issue by combining Ṽi(ri) and Ṽi(si) at each layer
using public-coin random coefficients.

Directly interpolating the multilinear polynomial at the
initial input layer can take V linear time and bandwidth (in
the input length). To make the proof succinct, Hyrax [2]
used homomorphic commitments while Virgo/Virgo+ [3],
[4] combined Merkle-based commitment and low-degree
tests to accomplish the final check on the initial input layer.

2.3. FLPCP

Fully Linear PCP [8] verifies the correctness of a poly-
nomial evaluation in a 3-step randomized process involving
only linear relations. To verify G(w0, . . . , wℓ−1) = 0 where
G : Fℓ → F is an ℓ-variate degree-d polynomial and wi’s
are the inputs, the basic idea is
(1) P encodes each wi (i ∈ [ℓ]) as a random degree-1

polynomial pi, which are sent to V along with the
polynomial pℓ = G(p1, . . . , pℓ) in value representation;

(2) V sends a uniform random element r ∈ F;
(3) P sends pi(r) for all i ∈ [ℓ+1], and V verifies pi(r)’s

are consistent with what can be interpolated using r
from the point values received in Step (1).

The idea can be augmented to prove a batch of degree-d
ℓ-variate polynomial equations more efficient than proving
them individually, but we won’t need this augmented variant
in most applications since the circuits are generally not deep.

3. The Main Protocol

Figure 1 depicts Phecda’s main components and the
workflow between them. Here the GKR and FLPCP pro-
tocols are used to compile complex input constraints into



simpler but statistically-equivalent output constraints, mak-
ing them better-suited for subsequent processing.
GKR takes a layered circuit ( 1 ) that verifies the target

computation, and transforms the validity of the circuit
computation into a set of linear equations ( 2 ) due to
checking Equation (1), d multiplicative equations ( 3 )
due to checking Equation (2), and evaluating one secret
multilinear polynomial over a public point ( 5 ) for the
input layer due to Equation (3). GKR allows to establish
the correctness of a computation between a O(C+w)-time
prover and a O(d logC+w)-time verifier. GKR alone does
not offer zero-knowledge.

FLPCP transforms each multiplicative equation ( 3 ) f = 0
into O(deg(f)) (deg(f) ≤ 2 for all circuits considered
in this paper) secret inputs and O(1) linear equations ( 4 ),
which are fed into the VOLE-in-the-Head module. FLPCP
allows linear prover and verifier but does not offer zero-
knowledge by itself.

PC translates the validity of a multi-linear polynomial eval-
uation into O(κ log n) plaintext equality checks (where
κ is a security parameter and n is the length of the
polynomial) and a FRI-based low degree test. The PC
prover runs in O(n log n) time while the verifier runs in
O(log2 n) time.

VOLE-in-the-Head receives a number of linear equations
involving secrets ( 2 , 4 ) from the GKR and FLPCP
modules, and efficiently proves their validity using our
VOLEitH-based ZKP protocol.

The PC and VOLE-in-the-Head modules combine to guar-
antee Phecda is zero-knowledge. Hence, the four com-
ponents complement each other in terms of security and
performance, allowing Phecda to make the most out of all
four components: obtaining zero-knowledge from VOLEitH,
FLPCP and PC, while achieving superior asymptotic and
concrete efficiency through GKR, PC, and FLPCP.
Protocol Specification and Security. The Phecda protocol
is given in Figure 2. Step (1) augments the original circuit
C with an extra layer of identity gates so that it suffices
to prove one (instead of two) evaluation of the polynomial
determined by the witness. Step (2) extends the witness with
sufficient dummy values to accommodate the leakage due to
the PC: 2κ(log n + 1) dummies for checks inside PC and
one extra for revealing Ṽd(rd). Then P commits its witness
in Step (3). Finally, Step (4) follows the GKR paradigm
to compile the circuit down to probabilistically equivalent
constraints amenable to be handled by VOLEitH (Step (4)a),
FLPCP (Step (4)b), and PC (Step (4)c) schemes. Like
GKR, we use FLPCP as a compiler to turn multiplicative
constraints to probabilistically equivalent linear constraints
eventually handled by VOLEitH.

We state the security of Phecda in Theorem 1, which
can be easily proved based on the security of its component
protocols: GKR, FLPCP, PC, and VOLEitH.

Theorem 1. The Phecda protocol given in Figure 2 is a
zero-knowledge interactive proof of knowledge with sound-
ness (1−EGKR) · (1−EFLPCP) · (1−EVOLEitH) · (1−EPC).

Public Inputs: x and the circuit C verifying R(x,w) = 1.
Input to P: secret witness w.
Protocol:
(1) Augment the circuit C to C′ with a layer of identity gates

for every input wire of C.
(2) Augment the witness w at the augmented input layer into

w′ with enough dummy inputs (which are not involved in
the circuit evaluation) so that the length of w′ is the smallest
perfect power of 2 and |w′| ≥ |w|+ 2κ(logn+ 1) + 1.

(3) P computes and sends comw′ = PC.Com(w′) to V .
(4) Apply the GKR transform to circuit C′,

a) In every SumCheck round, a linear equality Equation (1)
(where ri−1 is a public-coin) is verified using VOLEitH-
based ZKP, so that no fi is leaked for any i.

b) At the end of each layer, the Equation (2), in which
Ṽi−1(ti−1), Ṽi(ri), Ṽi(si) are the only secrets, is com-
piled by FLPCP into several linear constraints, which are
then committed and verified using VOLEitH-based ZKP.

c) At the initial input layer of C′ which consists only of unary
identity gates, P and V call PC to prove

Ṽd(rd) =
∑
i∈[n]

w′
i ·Πj∈[logn]χ(ij , rj) (3)

where Ṽd(rd) was sent in plaintext in the last SumCheck
round (assuming rd is not a point on the binary hyper-
cube), w′

i is the ith part of the witness w′, ij is the jth

bit of i, rj is the jth part of the public-coin rd, and
χ(0, x) = 1− x, χ(1, x) = x.

(5) V accepts if and only if all the checks above have passed.

Figure 2: The Phecda Protocol

Proof. Completeness. Because of the perfect completeness
of GKR, FLPCP, VOLEitH, and PC, it is easy to verify
that for any x and a P knowing the witness w such that
R(x,w) = 1, V will always accept.

Soundness. Phecda’s four components, GKR, FLPCP,
PC, and VOLEitH, are put together in a blackbox way,
i.e., a component interacts with other components only
through explicitly defined input and output. Each of the
four components are proven sound with respective sound-
ness error EGKR, EFLPCP, EVOLEitH, and EPC. Because
Phecda is sound whenever all of the four components are
sound and each public-coin component proof fails indepen-
dent of the others, it is easy to infer Phecda’s soundness
(1 − EGKR)(1 − EFLPCP)(1 − EVOLEitH)(1 − EPC) by the
inclusion-exclusion principle.

Knowledge Soundness. In Phecda, GKR along with
FLPCP probabilistically compiles the original NP relation
R into a multilinear polynomial constraint R1 (to be proved
by PC) and a set of linear constraints R2 (to be proved by
VOLEitH). This compiler’s soundness error is ECompiler ≤
EGKR+EFLPCP. The original witness is committed by PC,
whose knowledge soundness error is at most ϵPC. Thus,
the knowledge extractor for Phecda can simply call PC’s
knowledge extractor to obtain a w. Because Phecda and
its sub-protocols are sound, for any efficient P ′ and a w
extracted via PC, Pr[(P ′,V)(x) = 1 ∧ R(w, x) = 0]
must be negligible. More formally, let (P ′

1,V1, x1) (resp.



(P ′
2,V2, x2)) be the prover, verifier and public input as-

sociated with the PC (resp. the VOLEitH) sub-protocol.
So Pr [R1(w, x1) = 1 ∧R2(f(w), x2) = 1|R(w, x) = 0] ≤
ECompiler where f is a public function fixed by GKR and
FLPCP. With a w extracted from PC, Phecda’s knowledge
soundness error ϵ ≤ ϵPC + ECompiler + EVOLEitH because

ϵ = Pr[(P ′,V)(x) = 1 ∧R(w, x) = 0]

=Pr

 (P ′,V)(x) = 1
R1(w, x1) = 0
R(w, x) = 0

+ Pr

 (P ′,V)(x) = 1
R1(w, x1) = 1
R(w, x) = 0

 , while

Pr

 (P ′,V)(x) = 1
R1(w, x1) = 0
R(w, x) = 0

 ≤ Pr

 (P ′
1,V1)(x1) = 1

R1(w, x1) = 0
R(w, x) = 0


≤Pr

[
(P ′

1,V1)(x1) = 1
R1(w, x1) = 0

]
= ϵPC, and

Pr

 (P ′,V)(x) = 1
R1(w, x1) = 1
R(w, x) = 0

 ≤ Pr

 (P ′
2,V2)(x2) = 1

R1(w, x1) = 1
R(w, x) = 0


≤Pr

[
(P ′

2,V2)(x2) = 1
R1(w, x1) = 1

∣∣∣R(w, x) = 0

]

=Pr

 R(w, x) = 0 :
(P ′

2,V2)(x2) = 1
R1(w, x1) = 1

R2(f(w), x2) = 1

+ Pr

 R(w, x) = 0 :
(P ′

2,V2)(x2) = 1
R1(w, x1) = 1

R2(f(w), x2) = 0


≤Pr

 R(w, x) = 0 :
R1(w, x1) = 1

R2(f(w), x2) = 1

+ Pr

[
(P ′

2,V2)(x2) = 1
R2(f(w), x2) = 0

]
≤ECompiler + Pr [(P ′

2,V2)(x2) = 1 | R2(f(w), x2) = 0]

=ECompiler + EVOLEitH.

Honest-Verifier Zero-Knowledge. GKR and FLPCP only
transform the circuits using public randomness, leaving
nothing on Phecda’s transcript other than their public-coins.
Phecda’s transcripts are actually produced by VOLEitH and
PC, both being honest-verifier zero-knowledge. Also note
that the distribution of VOLEitH’s transcript is independent
of PC, as they are produced with independent randomness.
Therefore, it is easy to prove Phecda HVZK by constructing
a simulator for Phecda that calls the simulators from the
HVZK proofs of VOLEitH and PC then concatenates the
resulting transcripts. The indistinguishability proof also di-
rectly follows the HVZK property of VOLEitH and PC.

Support More Fields. Unlike Virgo/Virgo++, Phecda works
with both multiplicative and additive cosets of finite fields.
This feature lends Phecda greater flexibility to efficiently
prove many computations, including some cryptographic
ciphers such as AES and SHA3, as well as emulating
arithmetic operations of the infinite ring of integers.
Comparison with Dubhe [5]. Dubhe was built by com-
bining GKR, FLPCP and MPCitH. In comparison, Phecda
replaces Dubhe’s MPCitH with PC and VOLEitH. As a
result, Phecda allows proof verification to be succinct in the
length of the secret witness thanks to PC, while reducing

the concrete costs in proving, verifying, and communication.
However, to achieve strong succinctness, we need fresh
circuit designs to handle computation over the potentially
lengthy witness using GKR. In contrast, Dubhe allows com-
putation over the witness also be processed by MPCitH. As
an example, Section 6 describes a redesigned AES circuit
that is fully compatible with GKR.
Comparison with Virgo/Virgo++. Our approach differs
from Virgo/Virgo++ in three aspects: (1) We use a new PC
protocol to directly handle the check at the input layer of
GKR; (2) We use VOLEitH to provide zero-knowledge for
GKR, whereas they relied on random polynomials masks;
(3) Our implementation directly supports operations over
F2k , which fits better to many useful computations including
AES and SHA3.

4. Multilinear Polynomial Commitment

Virgo viewed the input layer equality check of Equa-
tion (3) as verifying the dot product of a secret coefficient
vector and a public vector properly computed from verifier’s
challenges. However, in order to ensure the public vector
is correctly computed from the challenges, their approach
pays substantial costs to run an extra GKR. In contrast,
we directly commit the multilinear polynomial Ṽd, and
prove/verify Equation (3) on the public point rd, hence
eliminating the extra GKR.

Definition 1. Let w = (w0, . . . , w2n−1) and f : Fn 7→ F
be a multi-linear polynomial,

f(x0, . . . , xn) =
∑

i∈[2n]

wi

∏
j∈[n]

χ(ij , xj)

where χ(0, x) = 1 − x, χ(1, x) = x, and ij denotes
the jth bit of i. A polynomial commitment scheme with
security parameter λ for f consists of three algorithms
(Com,Prove,Verify) such that

comw ← Com(1λ,w): Commit the length-2n multi-linear
polynomial f whose coefficients are w.

b← (Prove(w),Verify(comw)) (1λ, r, v): On input r, v, V
(with input comf ) interacts with P (with secret w), and
outputs b = 1 if and only if f(r) = v.

for which the following properties hold:

Completeness: For all w, r, and comw ← Com(1λ,w),

(Prove(w),Verify(comw)) (1λ, r, f(r)) = 1.

where f is the multi-linear polynomial defined by w.
Soundness: For all w,x, y, and any probabilistic polyno-

mial adversary A, com← Com(1λ,w), if f(x) ̸= y where
f is the multi-linear polynomial defined by w, then

Pr
[
(A,Verify(com)) (1λ,x, y) = 1

]
= negl(λ)



Notation: Given any i-variate (∀0 ≤ i ≤ n) multi-linear polynomial fi, we use f̌i(x) to denote the unique
degree-(2i − 1) polynomial satisfying f̌i(x) = fi

(
Z

(i)
0 (x), Z

(i)
1 (x), . . . , Z

(i)
i−1(x)

)
where

{
Z

(i)
j

}
j∈[i]

are defined as

follows:

• On large-prime power fields, Z(i)
j (x)

def
= x2j .

• On binary extension fields, Z(i)
j (x)

def
= Π

a∈H(i)
j

(x − a) where H(i)
j is the linear space of 2i field elements from F,

spanned by basis
{
γ
(i)
k

}
k∈[j]

where lift (i)
(
γ
(i)
k+1

)
= γ

(i−1)
k .

For every u ∈ L(i), let û ∈ L(i) denote the conjugate element of u in L(i), i.e., lift (i)(u) = lift (i)(û) where
lift (i)(x)

def
= x2 for large prime power fields; and for binary extension fields, lift (i)(x) def

= x ·
(
x+ γ

(i)
0

)
.

Premise: 2κ(n+ 1) out of the 2n coefficients of f are dummy secret values.

• comf ← PC.Com(f ;L(0))

(1) P outputs comf = MT.Com(f̌ ;L(0)), where MT.Com(f̌ ;L(0)) denotes the Merkle tree commitment of f̌ over the
domain L(0).

• b← PC.Prove(comf , f, (z0, . . . , zn−1), y;L(0))

(1) ∀i ∈ {1, . . . , n− 1}, fi(x0, . . . , xi−1)
def
= f(z0, . . . , zn−i−1, x0, . . . , xi−1). P sends comfi = MT.Com(f̌i;L(i)).

(2) P and V run Figure 4 protocol mLDT((f̌1, . . . , f̌n−1), (comf1 , . . . , comfn−1
), (1, . . . , n−1)) to ensure deg(f̌i) < 2i.

(3) Let
{(

u
(i)
j , f̌i

(
u
(i)
j

))}
i∈[n]/{0},j∈[κ]

be the set of points on f̌i opened during the mLDT call above. P opens{(
û
(i)
j , f̌i

(
û
(i)
j

))}
i∈[n]/{0},j∈[κ]

. V verifies

f̌i−1

(
u
(i−1)
j

)
=
u
(i)
j f̌i

(
û
(i)
j

)
− û

(i)
j f̌i

(
u
(i)
j

)
u
(i)
j − û

(i)
j

+ zn−i

f̌i

(
u
(i)
j

)
− f̌i

(
û
(i)
j

)
u
(i)
j − û

(i)
j

, ∀i ∈ {2, . . . , n}, j ∈ [κ] (4)

y =
u
(1)
j f̌1

(
û
(1)
j

)
− û

(1)
j f̌1

(
u
(1)
j

)
u
(1)
j − û

(1)
j

+ zn−1

f̌1

(
u
(1)
j

)
− f̌1

(
û
(1)
j

)
u
(1)
j − û

(1)
j

, ∀j ∈ [κ] (5)

Figure 3: The Multilinear Polynomial Commitment Protocol

Knowledge Soundness: For all x, y, and any probabilistic
polynomial adversary A, there exists εA such that for
every w ← εA(1λ,x, y) and com← Com(1λ,w)

Pr

[
f(x) ̸= y

(A,Verify(com))
(
1λ,x, y

)
= 1

]
= negl(λ)

where f is the multi-linear polynomial defined by w.
Zero-Knowledge: For all w,x, com ← Com(1λ,w), and

for any computationally bounded adversary A, there exists
an efficient simulator S such that

⟨Prove(w),A(com)⟩
(
1λ,x, f(x)

)
≈ S

(
1λ,x, f(x)

)
where the left-hand side is the distribution of the protocol
transcript and “≈” indicates the distributions on the two
sides are indistinguishable.

Basic Ideas. We leverage the one-to-one correspondence be-
tween an i-variate multi-linear polynomial fi and its corre-
sponding degree-2i univariate polynomial f̌i. The correspon-
dence is defined by univariate polynomials

{
Z

(i)
j (x)

}
j∈[i]

.

To commit fi, it suffices to commit f̌i using a Merkle
tree with leaves containing f̌i(x) for all x ∈ L(i) with

L(i) a sufficiently large subset of f̌i’s domain. Note that
{L(i)}i∈[n] is a hierarchy of Fast Fourier Transform (FFT)-
friendly sets, i.e., |L(i+1)| = 2|L(i)| and ∀x ∈ L(i), there
exists x̂ ∈ L(i) called the conjugate of x such that x̂ ̸= x
but lift (i)(x̂) = lift (i)(x) ∈ L(i−1) where lift (i) is a function
that lifts any element of L(i) to one in L(i−1), hence able
to support protocols like FFT and FRI.

Given a public point z = (z0, . . . , zn−1) and y, to prove
f(z) = y, we use a series of multi-linear polynomials fi
specialized by partially evaluating f on the first n− i parts
of z. By re-grouping the terms, for all i ≤ n the i-variate
multi-linear polynomial fi can be written as

fi(x0, . . . , xi−1) = hi(x1, . . . , xi−1) + x0h
′
i(x1, . . . , xi−1)

with multi-linear polynomials hi, h
′
i uniquely defined by

fi. The prover will commit fi through its corresponding
univariate polynomial f̌i. The validity of f(z) = y can
thus be verified by checking the validity of the polynomials{
f̌i
}
i∈[n]

. Since f̌i’s are committed through their evalua-
tions on the hierarchical domains L(i), it suffices to verify
FFT-like equalities of f̌i (i.e., Equation (4) and Equation (5)
in Figure 3) on sufficiently many randomly sampled points.



Premise: ∀i ∈ [n], fi is a degree-2i univariate polynomial that is committed over L(i). {L(i)}i∈[n] is a hierarchy of
FFT-friendly domains.

• b← mLDT((f1, . . . , fn), (comf1 , . . . , comfn), (1, . . . , n))

(1) Let gn = fn. For i ∈ {n, . . . , 2},
a) Use gi(x) to define gi,o(x), gi,e(x) such that gi,e(lift (i)(x)) + x · gi,o(lift (i)(x)) = gi(x).
b) V sends random αi, βi ∈ F to P . Let gi−1(x)

def
= gi,e(x) + αigi,o(x) + βifi−1(x). P sends comgi−1

=
MT.Com(gi−1;L(i−1)) to V .

(2) V sends random α1 ∈ F to P . Since g0(x)
def
= g1,e(x) + α1g1,o(x) is a constant polynomial, P opens g0 directly.

(3) V sends random
{
u
(n)
j ∈ L(n)\W(n)

}
j∈[κ]

where W(n) =
{
u
∣∣∣ (Z(n)

0 (u), . . . , Z
(n)
n−1(u)

)
∈ {0, 1}n

}
. P opens

gn on points
{
u
(n)
j

}
j∈[κ]

. For i from n down to 2,

a) P opens
{
gi

(
û
(i)
j

)}
j∈[κ]

and opens fi−1, gi−1 on points
{
u
(i−1)
j

}
j∈[κ]

where u
(i−1)
j = lift (i)

(
u
(i)
j

)
.

b) V verifies ∀j ∈ [κ], gi−1

(
u
(i−1)
j

)
− βi · fi−1

(
u
(i−1)
j

)
=

u
(i)
j gi

(
û
(i)
j

)
− û

(i)
j gi

(
u
(i)
j

)
u
(i)
j − û

(i)
j

+ αi ·
gi

(
u
(i)
j

)
− gi

(
û
(i)
j

)
u
(i)
j − û

(i)
j

.

V verifies ∀j ∈ [κ], g0 =
u
(1)
j g1

(
û
(1)
j

)
− û

(1)
j g1

(
u
(1)
j

)
u
(1)
j − û

(1)
j

+ α1 ·
g1

(
u
(1)
j

)
− g1

(
û
(1)
j

)
u
(1)
j − û

(1)
j

.

Figure 4: The Special Batched LDT Protocol

Conditioned on the fact that the degrees of
{
f̌i
}
i∈[n]

are
all properly bounded (by LDT), checking Equation (4) and
Equation (5) on sufficiently many points guarantees that all
f̌i are honestly computed except for a negligible probability.

If realized naively, this would require n separate poly-
nomial LDTs. This is especially true in case of binary
extension fields where L(i) does not necessarily contain
L(i−1), so the trick of committing and testing a random
linear combination of properly lifted f̌i will not work. To
cope with this challenge, we propose a protocol (Figure 4) to
batch execute these n special LDTs at a cost comparable to
a single one. The idea is to committing f̌i and gi over L(i)

where gi is a degree-2i univariate polynomial constructed
from a random combination of fi−1 and the “odd” and
“even” parts of gi+1 (see Step (1)b). In the end, it is
trivial to prove g0 is a constant. Our batched LDT does
not invoke FRI but uses similar ideas as FRI: the verifier
checks the FFT-like relations among gi, fi, gi−1, fi−1 on κ
random points (see Step (3)b).

Our polynomial commitment protocol, along with the
batched LDT subroutine, will reveal 2κ(n+1) points during
their equality checks. Each of these point will reveal a linear
equation involving the original witnesses. To make sure it
is zero-knowledge, we require that the input polynomial f
contains at least 2κ(n + 1) dummy secret coefficients, so
the process leaks nothing about the rest 2n − 2κ(n + 1)
witnesses.

The above ideas work for both fields with multiplicative
cosets (e.g., large prime modulus fields and their extensions)
and binary extension fields which require additive cosets.
The differences stem from the definitions of the basis poly-
nomials Z

(i)
j (x) and the hierarchical sets L(i). We give a

field-agnostic presentation of our polynomial commitment
protocol in Figure 3, where Z

(i)
j (x)’s are defined for the

two different types of fields.
Specification and Security Proofs. The PC protocol is fully
specified in Figure 3, with the special batched LDT protocol
given in Figure 4. We state and prove the security of our
polynomial commitment scheme as Theorem 2 below.

Theorem 2. The protocol given in Figure 3 is an honest-
verifier polynomial commitment scheme.

Proof. Completeness. Since fi is multi-linear, there exist
unique multi-linear polynomials hi, h

′
i such that

fi(x0, x1 . . . , xi−1) = hi(x1, . . . , xi−1) + x0h
′
i(x1, . . . , xi−1)

Hence,

f̌i(u)

=hi

(
Z

(i)
1 (u), . . . , Z

(i)
i−1(u)

)
+ Z

(i)
0 (u) · h′

i

(
Z

(i)
1 (u), . . . , Z

(i)
i−1(u)

)
=hi

(
Z

(i)
1 (u), . . . , Z

(i)
i−1(u)

)
+ u · h′

i

(
Z

(i)
1 (u), . . . , Z

(i)
i−1(u)

)
=hi

(
Z

(i−1)
0 (v), . . . , Z

(i−1)
i−2 (v)

)
+ u · h′

i

(
Z

(i−1)
0 (v), . . . , Z

(i−1)
i−2 (v)

)
where v = lift (i)(u). The 3rd equality is based on Lemma 1.

Similarly, for û such that lift (i)(û) = lift (i)(u) = v,

f̌i(û) =hi

(
Z

(i−1)
0 (v), . . . , Z

(i−1)
i−2 (v)

)
+ û · h′

i

(
Z

(i−1)
0 (v), . . . , Z

(i−1)
i−2 (v)

)



Therefore, we can solve h and h′,

hi

(
Z

(i−1)
0 (v), . . . , Z

(i−1)
i−2 (v)

)
=

ûf̌i(u)− uf̌i(û)

û− u
,

h′
i

(
Z

(i−1)
0 (v), . . . , Z

(i−1)
i−2 (v)

)
=

f̌i(u)− f̌i(û)

u− û
.

Finally, by definition,

fi−1(x0, . . . , xi−2)

=fi(zi, x0 . . . , xi−2)

=hi(x0, . . . , xi−2) + zih
′
i(x0, . . . , xi−2)

∴ f̌i−1(v) = hi

(
Z

(i−1)
0 (v), . . . , Z

(i−1)
i−2 (v)

)
+ zih

′
i

(
Z

(i−1)
0 (v), . . . , Z

(i−1)
i−2 (v)

)
∴ f̌i−1(v) =

ûf̌i(u)− uf̌i(û)

û− u
+ zi

f̌i(u)− f̌i(û)

u− û
,

hence all the checks should pass.
Soundness. In our analysis below, we ignore collisions

on the hashes since they occur with negligible probability.
Let ∆(·, ·) be the relative Hamming distance between two
vectors, and ∆(·, RS[L, ρ]) be the minimum distance be-
tween a vector and a codeword of the RS code. For every
vector f̂i committed by the prover, let Fi be the set of closest
codewords to f̂i in RS[Li, ρ] by Hamming distance. Let Mi

be the bijective mapping from a univariate polynomial f̌i to
its corresponding i-variate multi-linear polynomial fi where
the correspondence is as given in Figure 3. Define

ChkPi : Equation (4) holds on a particular i for all j;
ChkPn−1 : Equation (5) holds;
mLDTP : mLDT checks passed;

LD(δ) : max
i∈[n+1]

∆(f̂i, RS[Li, ρ]) = δ;

Bi : ∀hi ∈ Fi, hi+1 ∈ Fi+1,

hi(x) ̸= hi+1,e(x) + zn−i−1hi+1,o(x)

where hi+1,e(lift
(i)(x)) + x · hi+1,o(lift

(i)(x)) = hi+1(x)

B : ∀hn ∈ Fn, y ̸= (Mn(hn))(z0, . . . , zn−1)

Gn : true;
Gi : Gi+1 ∧ ¬Bi.

By definition, the soundness error

ε = Pr

mLDTP ∧ ∧
i∈[n]

ChkPi

∣∣∣∣∣∣ B


≤ max

Pr

mLDTP ∧ ∧
i∈[n]

ChkPi | B ∧ Gn−1

 ,

Pr

mLDTP ∧ ∧
i∈[n]

ChkPi | B ∧ Bn−1


≤ max

Pr

mLDTP ∧ ∧
i∈[n]

ChkPi | B ∧ Gn−2

 ,

Pr

mLDTP ∧ ∧
i∈[n]

ChkPi | B ∧ Gn−1 ∧ Bn−2

 ,

Pr

mLDTP ∧ ∧
i∈[n]

ChkPi | B ∧ Bn−1


≤ max

i∈[n]

Pr

mLDTP ∧ ∧
j∈[n]

ChkPj | B ∧ G0

 ,

Pr

mLDTP ∧ ∧
j∈[n]

ChkPj | B ∧ Gi+1 ∧ Bi


= max

i∈[n]

Pr

mLDTP ∧ ∧
j∈[n]

ChkPj

∣∣∣∣∣∣ B ∧ G0 ∧ ∃k, |Fk| ≥ 2

 ,

Pr

mLDTP ∧ ∧
j∈[n]

ChkPj | B ∧ Gi+1 ∧ Bi


≤ max

i∈[n]

{
Pr[mLDTP ∧ ChkPi | B ∧ G0 ∧ |Fi| ≥ 2],

Pr[mLDTP ∧ ChkPi | B ∧ Gi+1 ∧ Bi]
}

≤ max
i∈[n];δ

{
Pr[mLDTP ∧ ChkPi | B ∧ G0 ∧ |Fi| ≥ 2 ∧ LD(δ)],
Pr[mLDTP ∧ ChkPi | B ∧ Gi+1 ∧ Bi ∧ LD(δ)]

}
= max

i∈[n];δ

{
Pr[ChkPi | mLDTP ∧ B ∧ G0 ∧ |Fi| ≥ 2 ∧ LD(δ)]
· Pr[mLDTP | B ∧ G0 ∧ |Fi| ≥ 2 ∧ LD(δ)],

Pr[ChkPi | mLDTP ∧ B ∧ Gi+1 ∧ Bi ∧ LD(δ)]
· Pr[mLDTP | B ∧ Gi+1 ∧ Bi ∧ LD(δ)]

}
≤ max

i∈[n];δ

{(
2i(1 + 2ρδ)

|Li|

)κ

,

(
2i(1 + 3ρδ)

|Li|

)κ}
· εmLDT(δ)

≤ max
δ

(
1

ρ
+ 3δ

)κ

· εmLDT(δ)

Let j be the last mLDT round where ∆(f̂j , RS[Lj, ρ]) =
δ. To maximize ϵmLDT, the prover will maintain
∆(f̂i, RS[Li, ρ]) = 0, i.e., f̂i = f̌i for all i < j. Therefore,
the mLDT protocol from round j to the end is the same as
the batched FRI protocol of [20] except that in each round
our target polynomial has an additive term βi+1f̌i. Since the
soundness of batched FRI only depends on the target poly-
nomials’ distances to the RS code and adding βi+1f̌i has
no impact on these distances, we have ϵmLDT(δ) ≤ ϵFRI(δ),
which has been proven negligible in [20].

Knowledge Soundness. Thanks to the extractability of
Merkle tree, given the root hash used for committing a
degree-d polynomial, the knowledge extractor can rewind
the prover to learn O(d) distinct paths of a Merkle tree to
fully reconstruct all leaves. This further allows to recover
with high probability the committed secret polynomial,
through decoding the RS code. Because our protocol is
sound, the probability that a prover convinces the verifier
while evaluating the extracted polynomial at (z0, . . . , zn−1)
does not equal y has to be negligible.

Honest-Verifier Zero-Knowledge. Each opened point on



fi and gi can be seen as a linear combination of the
original 2n coefficients of f . There are a total of 2κ points
opened for each fi (i ∈ [n + 1]) and gi i ∈ [n] (recall
that f

def
= fn and f0 = y), while half of the points on

gi and fi are interdependent with each other, constrained
by Equation (4). Therefore, at most 2κ+ 2κn independent
linear combinations are actually revealed. Thus, a simulator
can be constructed as follows:
(1) Pick uniform g0, α1.
(2) Pick linear polynomials f̌1, g1 such that f̌1(zn−1) =

y, g1(α1) = g0. Pick κ uniform points in L1 and eval-
uate f̌1, g1 on these points and also the corresponding
conjugate points.

(3) ∀i ∈ {2, . . . , n}, pick uniform αi, βi ∈ F. And for
each of the previous picked κ points u

(i−1)
j , randomly

choose u
(i)
j such that lift (i)(u(i)

j ) = u
(i−1)
j .

For each distinct u
(i−1)
j , pick uniform value for

f̌i(u
(i)
j ), and gi(u

(i)
j ).

If for some j, k, u(i−1)
j = u

(i−1)
k and u

(i)
j = u

(i)
k , pick

the same value for both f̌i(u
(i)
j ) and f̌i(u

(i)
k ), and same

value for both gi(u
(i)
j ) and gi(u

(i)
k ).

If for some j, k, u(i−1)
j = u

(i−1)
k and u

(i)
j ̸= u

(i)
k , thus

u
(i)
k = û

(i)
j , pick a value for f̌i(u

(i)
j ) and set value of

f̌i(u
(i)
k ) using Equation (4),

(4) For each of the κ points above, compute its conjugate
point. Determine the values of f̌i at these conjugate
points using Equation (4) and Equation (5); determine
the values of gi at these conjugate points using the two
equations in Step (3)b.

(5) Output the 2κ(n+1) random points, {αi, βi}i∈[n], and
the Merkle tree opening messages as the transcripts.

It is easy to verify that the output of the simulator and the
legitimate transcripts are identically distributed.

Lemma 1. Z
(i+1)
j+1 (x) = Z

(i)
j

(
lift (i+1)(x))

)
Proof. We prove this equality for both large prime power
fields and binary extension fields.

Large prime power fields. In this case,

Z
(i+1)
j+1 (x) = x2j+1

= (x2)
2j

= Z
(i)
j

(
x2
)
= Z

(i)
j

(
lift (i+1)(x)

)
Binary extension fields. Recall that

Z
(i)
j

def
=

∏
a∈H(i)

j

(x− a),

where

H(i)
j

def
=

{
j−1∑
k=0

bkγ
(i)
k

∣∣∣∣(b0, . . . , bj−1) ∈ {0, 1}j
}

=

{
j−2∑
k=0

bkγ
(i)
k

}
∪

{
γ
(i)
j−1 +

j−2∑
k=0

bkγ
(i)
k

}

with linear-independent
{
γ
(i)
k ∈ F

}
k∈[j]

over binary coeffi-

cients.
Therefore, Z(i)

j (x) = Z
(i)
j−1(x)Z

(i)
j−1

(
x+ γ

(i)
j−1

)
.

H(i−1)
i−1 =

{
lift (i)(x) | x ∈ H(i)

i

}
=

{(
i−1∑
k=0

bkγ
(i)
k

)(
i−1∑
k=0

bkγ
(i)
k + γ

(i)
0

)∣∣∣∣b ∈ {0, 1}i
}

=


(

i−1∑
k=0

bkγ
(i)
k

)2

+

(
i−1∑
k=0

bkγ
(i)
k

)
γ
(i)
0

∣∣∣∣b ∈ {0, 1}i


=

{(
i−1∑
k=0

b2k

(
γ
(i)
k

)2)
+

i−1∑
k=0

bkγ
(i)
k γ

(i)
0

∣∣∣∣b ∈ {0, 1}i
}

=

{
i−1∑
k=0

bk

(
γ
(i)
k

)2
+

i−1∑
k=0

bkγ
(i)
k γ

(i)
0

∣∣∣∣b ∈ {0, 1}i
}

=

{
i−1∑
k=0

bkγ
(i)
k (γ

(i)
k + γ

(i)
0 )

∣∣∣∣(b0, . . . , bi−1) ∈ {0, 1}i
}

=

{
i−1∑
k=1

bkγ
(i)
k (γ

(i)
k + γ

(i)
0 )

∣∣∣∣(b1, . . . , bi−1) ∈ {0, 1}i−1

}

Therefore, by defining γ
(i−1)
k

def
= γ

(i)
k+1(γ

(i)
k+1 + γ

(i)
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k ∈ [i− 1], we can ensure H(i−1)
i−1 is a linear space spanned
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k }k∈[i−1].

Now we can prove the lemma by induction. When j = 0,
by definition Z
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(i+1)
0 )

)
· Z(i)

k−1

(
x(x+ γ
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=Z
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Z
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=Z

(i)
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(
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= Z

(i)
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(
lift (i+1)(x)

)

5. Transparent VOLE-in-the-Head ZKP

In this section, we present a VOLE-in-the-Head proto-
col that allows a prover P to commit some secret w =
[w1, . . . , wn] ∈ Fn

p , and later prove in zero-knowledge that
public constants a ∈ Fn

p and b ∈ F, linear constraints like
a ·w = b hold.



Goal: P holding a secret X proves in zero-knowledge to
V that A ◦ X + a = 0 for public A ∈ Fℓ×m

p , a ∈ Fp,
where ◦ : Fℓ×m

p × Fℓ×m
p → Fp computes the sum of

element-wise products of two matrices.
Offline preparation: (before X,A, a are known)
P commits n GGM trees. Each tree has N leaves.
Treat the kth leaf of the jth tree as seed seed j,k.
∀i ∈ [2ℓ], j ∈ [n], k ∈ [N ], P computes ti,j,k :=
PRG(i, seed j,k) ∈ Fp, and

ui,j :=

N−1∑
k=0

ti,j,k, vi,j := −
N−1∑
k=0

skti,j,k

where {sk ∈ Fp}k∈[N ] are distinct public values. Let
U ∈ F2ℓ×n

p ,V ∈ F2ℓ×n
p be matrices whose entries are

ui,j and vi,j , resp. P sets
[
U1

U2
C

]
:= UT−1, where

T =

[
G
R

]
∈ Fn×n

p is a public full-rank matrix and

G ∈ Fm×n
p is the encoding matrix of an MDS code,

R = [0 I] ∈ F(n−m)×n
p (0 is the (n − m) × m zero

matrix and I is the (n−m)× (n−m) identity matrix)
U1,U2 ∈ Fℓ×m

p , C ∈ F2ℓ×(n−m)
p . P sends C to V .

Online com(X)← Com(X): (X is known, A, a are not)
P sends X′ := X−U1 to V .

Online b← Prove(X, comX,A, a): (X,A, a are ready)
(1) P sends hA◦U2

:= Hash(A ◦U2) to V .
(2) V samples α← Fp and sends it to P .

(3) Let
[
V1

V2

]
= V where V1,V2 ∈ Fℓ×n

p . P sends

S := αU1 +U2 and hαV1+V2
:= Hash(αV1 +V2)

to V .
(4) V samples d = (d0, . . . , dn−1) where di ← [N ] and

sends d to P . V sets D := diag
(
{sdj
}j∈[n]

)
.

(5) ∀j ∈ [n], P opens the jth GGM-tree except its dj
th

leaf.
(6) ∀i ∈ [2ℓ], j ∈ [n], k ∈ [N ]\{dj},V computes

ti,j,k := PRG(i,seedj,k) and qi,j :=

N−1∑
k=0

(sdj
− sk) ·

ti,j,k. Let Q ∈ F2ℓ×n
p be the matrix whose entries

are qi,j . V computes
[
Q1

Q2

]
:= Q − CRD where

Q1,Q2 ∈ Fℓ×n
p . V aborts if any of the following

equality checks fail:

hαV1+V2
= Hash(αQ1 +Q2 − SGD) (6)

hA◦U2
= Hash(αa+A ◦ (S+ αX′)) (7)

V outputs 1 if and only if all checks above pass.

Figure 5: VitH ZKP for Linear Relations on Large Fields
“Large fields” implies: (1) p ≥ N so all sk are distinct values of
Fp; (2) p is sufficiently large to offer meaningful soundness (see
the proof of Theorem 3 for more details on this).

5.1. Basic Ideas

A properly distributed random VOLE du+v = q where
P holds u,v ∈ Fn and V holds d ∈ F,q ∈ Fn such that q
can be viewed as a commitment of P’s random vector u to
V . Given such a random VOLE and a secret vector w, it is
easy for P to commit w by sending w′ := w − u while V
setting q′ := dw′ + q and holding d,q′ as a commitment
of w because dw + v = q′. Note that this commitment is
linear-homomorphic over F, so given the commitment of w,
it is straightforward to prove any linear function f of secret
w, which is exactly what we needed to finish proving the
linear constraints in Phecda.

It is not hard to generate properly distributed random
VOLE (u, v; d, q). Let N be an integer security parameter.
P picks uniform {tk ∈ F}k∈[N ] and sets

u :=
∑
k∈[N ]

tk; v := −
∑
k∈[N ]

sk · tk

where {sk ∈ F}k∈[N ] are public distinct non-zero field
elements, among which V randomly pick one, say sd, as
its secret. If V could somehow learn all {tk}k ̸=d, then she
can compute

q =
∑
k ̸=d

(sd − sk) · tk =
∑
k∈[N ]

(sd − sk) · tk = sd · u+ v.

As P doesn’t know d while V doesn’t know u and v due
to td, a VOLE tuple would be properly distributed to P and
V , except that a malicious P has 1/N chance to correctly
guess V’s sd and cheat accordingly (we will come back to
this with a satisfactory prevention mechanism soon).

Observe that even before V learns {tk}k ̸=d and q, P
can use u, v to commit secret values by applying u as an
additive mask to the value being committed. In addition,
the revelation of {tk}k ̸=d can be delayed until later proving
constraints about the committed values, at which point V
simply picks a uniform d ∈ [N ] and reveals it to P , who
then sends back {tk}k ̸=d for V to compute q, as well as
checking P’s integrity in preparing {tk}k∈[N ].

In fact, P can derive {tk}k∈[N ] from a single seed using
a GGM tree so that it costs only O(logN) bandwidth to
reveal {tk}k ̸=d [13]. In the vectorizing form, this procedure
is repeated n times to generate sd ∗ u+ v = q where d =
{di ∈ [N ]}i∈[n], sd = {sdi

}i∈[n] ∈ Fn, u = {ui}i∈[n],
and “∗” denotes element-wise product. Hence (sd,q) can be
held as a commitment of the vector u. Since linear relations
involving the n secrets are just dot-products of a public
vector and the secret vector, it is easy to prove them given
the commitment of the secret vector.

Recall that (sd,q) as a commitment of u has 1/N bind-
ing error because if P guessed any entry of sd correctly, the
commitment can be opened to (u′,v′) ̸= (u,v). To improve
soundness, P can commit an error correction code u ·G of
u where G is a public encoding matrix. In particular, we
use linear MDS codes, which offer maximal code distance
possible given their codeword and message lengths. If the
minimal distance of the MDS code is δ symbols, then now



the binding error is reduced to 1/N δ because a malicious P
who tampers u has to correctly guess at least δ entries of sd
to remain undetected. However, since a uniform random u
is not necessarily a codeword, P needs to send δ correction
symbols in the beginning to coerce it to a valid codeword.
Also, V will check a masked codeword in the end to make
sure a valid codeword was indeed committed earlier.

While the secret witness w can be long, one expects
the encoding matrix G to produce relatively-short fixed-
length codewords. To this end, we treat w as an ℓ × n
matrix U where the number of columns (each correspond-
ing to a GGM-tree) n can be a small constant whereas
ℓ = |w|/n. For all i ∈ [ℓ], ti,j,k can be easily generated
as PRG(i, seed j,k) where seed j,k is stored in the kth leaf of
the jth tree. Now the MDS code encodes every row of U
by computing UG. This decouples the length of the secret
from the length of the codewords.

However, two additional challenges arise: (1) since d is
a vector, it can only form VOLE relation with columns of
the witness matrix but not the whole witness matrix; (2) a
linear relation that involves all entries of a matrix of secrets
may not always be expressible as matrix multiplications.
Instead, what we need is a “◦” operator such that A ◦ X
denotes the sum of products between corresponding entries
of a public coefficients matrix A and the secret witness
matrix X. To cope with these challenges, we are inspired
by [15] to generate a second VOLE of same-size matrices
U2,V2,Q2 so that the correctness of both VOLEs can be
verified by checking a random combination (through α) of
(U1,V1,Q1) and (U2,V2,Q2).

Putting things in matrix form, let U,D,V,Q be as

defined in Figure 5, specifically U =

[
U1

U2
C

] [
G
R

]
. So

the equation UD+V = Q can be re-written as[
U1

U2
C

] [
G
R

]
D+

[
V1

V2

]
= Q (8)

where C is the correction matrix, G ∈ Fm×n
p is the MDS

encoding matrix, and R ∈ F(n−m)×n
p can be set to

[
0 I

]
where 0 is the (n − m) × m 0-matrix and I is the (n −
m) × (n − m) identity matrix, so that

[
G
R

]
∈ Fn×n

p is

a public full-rank matrix. If Equation (8) does not hold,
then it will be detected with probability 1 − 1/|F| when
V checks Equation (6), which is essentially the top row
of Equation (8) multiplied by a uniform α chosen by V and
added to the bottom row.

Otherwise, Equation (8) holds. Let S = αU1 +U2 be
the linear combination received by V . Then, unless α = 0,
checking linear constraint A ◦X + a = 0 is equivalent to
checking

0 = α(A ◦X+ a) = αA ◦ (X′ +U1) + αa

= αA ◦X′ + αA ◦U1 + αa

= αA ◦X′ +A ◦ (S−U2) + αa

= αA ◦X′ +A ◦ S+ αa−A ◦U2

which is essentially what Equation (7) in Figure 5 verifies.

5.2. The Protocol

Specification. Our full protocol, specified in Figure 5, con-
sists of an offline preparation and an online phase. The
interfaces provided in the online phase include: (1) comX ←
Commit(X), where X is the secret witnesses involved in
a set of linear constraints to be proved later; and (2) b ←
Prove(X, comX,A, a), which proves a committed X satisfy
A ◦ X + a = 0, where function ◦ : Fℓ×m

p × Fℓ×m
p → Fp

computes the sum of element-wise products of two matrices.
Unlike [15], our protocol does not rely on Fl

p-hiding
ϵ-almost universal family of hashes, and has fewer checks
and uses fewer rounds, hence need a fresh proof of security.
We use a [n,m, p] linear MDS code that encodes m-symbol
messages to n-symbol codewords (m < n) where symbols
are Fp elements. In practice, this can be efficiently realized
with Reed-Solomon codes.

To save bandwidth, we simply check the hashes (rather
than preimage matrices) on both sides of Equation (6)
and Equation (7). This strategy is especially helpful because,
in practice, often many constraints over the same set of
committed secrets need to be proved. That is, we need to re-
alize Prove (comX, {A0, . . . ,AM−1}, {a0, . . . , aM−1}) for
some large integer M , to prove Ai ◦X+ ai = 0,∀i ∈ [M ].
To this end, we need to replicate Equation (7) M times,
one for each Ai, ai. However, the M equalities can be
checked via sending a single hash of the concatenation of
all “Ai ◦U2”s. Finally, as Equation (6) remains unchanged,
its cost can be amortized over proving M constraints.

Although our discussion was concentrated on proving
linear relations, the above ideas can be easily generalized to
prove arbitrary degree polynomials over committed secrets.
Assume a vector x of secrets is committed via VOLE, i.e.,
dx + v = q with P knows x, v and V knows d, q. As
suggested by Quicksilver [16], one can prove any equation
f(x) = 0 where f is a n-variate degree-d polynomial for
an x ∈ Fn committed earlier, through checking∑

h∈[d+1]

gh(q) · dd−h =
∑
h∈[d]

ah · dh (9)

where {gh}h∈[d+1] are the degree-h monomials of f such
that f(x) =

∑
h∈[d+1] gh(x), and {ah}h∈[d] are efficiently

computable by P from the coefficients of f and u,v. After
P sends ah masked by random VOLEs, V can compute both
sides of Equation (9) and verify the equality.
Security. The security of our VOLE-in-the-Head protocol
is stated and proved as Theorem 3 below.

Theorem 3. The protocol given in Figure 5 is an honest-
verifier zero-knowledge proof of knowledge for linear rela-
tions A ◦ X + a = 0 where X is P’s secret witness and
A, a are public constants.

Proof. Completeness. It is easy to verify that if A◦X+a =
0, then all checks in the protocol will pass hence an honest
V will accept.



Soundness. We define the following events

Check1Pass : hαV1+V2 = Hash(αQ1 +Q2 − SGD)

Check2Pass : hA◦U2 = Hash(αa+A ◦ (S+ αX′))

B : A ◦X+ a ̸= 0

To keep things simpler, in our analysis below we ignore the
event of collisions on collision-resistant hashes, which only
occurs with negligible probability. The soundness error of
our protocol can be expressed as

ε = Pr[ Check1Pass ∧ Check2Pass | B ]

Let EC, ES, EA◦U2 , EαV1+V2 be the additive differ-
ences between their respective “suppose-to-be” values an
honest prover would have used and those corresponding to
actual messages sent by a potentially dishonest prover. E.g.,
EC = Ĉ−C where C is sent by the honest prover whereas
Ĉ is sent by a potentially cheating prover. In addition,
note that the values are fixed in our protocol in the order:
EC → X′ → EA◦U2 → α→ {ES, EαV1+V2} → D.

Let
[
EC1

EC2

]
= EC for EC1

, EC2
∈ Fℓ×(n−m)

p .

By Claim 1 and Claim 2, unless a collision occurs on the
hash, Check1Pass and Check2Pass are equivalent to the
following two equations:

EαV1+V2 = (−αEC1R− EC2R− ESGC)D (10)
EA◦U2 = αa+ αA ◦X+A ◦ ES (11)

where values of X, EA◦U2 , ES, EαV1+V2 are of the
malicious prover’s choice. By Lemma 2, the attack strategy
given in Figure 6 is optimal for a malicious prover to find
EC, X, EA◦U2 , ES, EαV1+V2 to pass the checks above.

With the optimal strategy, since
[
EC1

EC2

]
R =

[
B1

B2

]
G,

Equation (10) can be rewritten as

EαV1+V2
= (−αB1 −B2 − ES)GCD (12)

The success rate of the optimal strategy can be derived by
a case analysis:
(1) When α′ = α (which occurs with probability 1/p),

the assigned values of EαV1+V2
, ES ensure that Equa-

tion (12), thus Equation (10), will hold, while the
assignment of EA◦U2

ensures Equation (11) will hold.
(2) When α′ ̸= α, it is easy to verify that the way EA◦U2

and ES are picked guarantees Equation (11) will hold,
and that the way EαV1+V2

is picked guarantees Equa-
tion (12), hence Equation (10), will hold if and only if
relevant entries of D′ are guessed correctly.
Note that it should be impossible for a malicious prover
to find an ES such that αB1+B2+ES = 0 while sat-
isfying both Equation (10) and Equation (11), because
otherwise, a malicious prover, who does not know the
witness X such that A ◦X + a = 0 before A and a
are revealed, would be able to learn a witness through
running the optimal attacking strategy above. Specif-

ically, a malicious prover would learn B =

[
B1

B2

]
,

Goal: Attack the Figure 5 protocol as a malicious prover.
That is, without the witness X before knowing some
Ai, bi, find appropriate values of EC, X, EA◦U2

, ES,
EαV1+V2

when they are needed in running the Figure 5
protocol with an honest verifier to pass all verification
checks.

(1) Pick EC so that every row of ECR is a valid
codeword, i.e,. ∃B ∈ Fℓ×m

p , such that ECR = BG.
(2) Pick any X from Fℓ×m

p .
(3) Guess α. Let the guess be α′. Set

EαV1+V2
:= 0

ES := −α′B1 −B2

EA◦U2
:= α′a+ α′A ◦X+A ◦ ES

= α′a+ α′A ◦X+A ◦ (−α′B1 −B2)

where B1 = EC1
R, B2 = EC2

R.
(4) After receiving α, if α′ ̸= α, guess relevant entriesa

of D with respect to the codeword matrix (ES +
α′B1 +B2)G. Let D′ be the guess of D. Pick ES

to satisfy

A ◦ ES = (α′ − α)(a+A ◦X)−A ◦ (α′B1 +B2)

then set

EαV1+V2
:= (−αB1 −B2 − ES)GD′

a. Considering multiplying a matrix M with a diagonal matrix D,
we call the ith entry of D relevant if the ith column of M is non-zero.

Figure 6: Optimal Attack Strategy for a Malicious Prover

X, EA◦U2
= α′c + α′A ◦ X + A ◦ (−α′B1 − B2),

ES = −αB1 −B2 satisfying Equation (11), i.e.,

α′a+ α′A ◦X+A ◦ (−α′B1 −B2) =

αa+ αA ◦X+A ◦ (−αB1 −B2)

hence, (α′ − α)(a+A ◦X) = (α′ − α)A ◦B1. Since
α′−α ̸= 0, therefore A◦(X−B1)+c = 0. Since X and
B1 were sent before ma and c are known, the malicious
prover essentially knows a solution to the equation A◦
X + a = 0, which contradicts to the assumption that
the malicious prover does not know a solution to A ◦
X+ a = 0 before learning A and a.
Now that αB1 +B2 + ES ̸= 0, (αB1 +B2 + ES)G
must have at least δ non-zero columns. Therefore, a
malicious prover has to correctly guess δ entries in D′

to pass the check of Equation (12), an event occurring
with probability at most 1/N δ .

Overall, the success rate of an attacker’s optimal strategy is
at most 1/p+ (1− 1/p)/N δ = 1− (1− 1/p)(1− 1/N δ).

Knowledge Soundness. It is easy to verify that our
protocol is

((
n

n−δ+1

)
+ 1, Nn−δ + 1

)
-special sound: Given

any
((

n
n−δ+1

)
+ 1, Nn−δ + 1

)
-tree of accepting transcripts,

one must be able to efficiently recover the witness X:



(1) Recall from the proof of Lemma 2 that given C,
X′, and EA◦U2

, there are at most
(

n
n−δ+1

)
possible

values of α allowing a malicious prover to pass the
checks. Since the first layer of the transcripts-tree has(

n
n−δ+1

)
+ 1 nodes, at least one node corresponds to

the case d ≥ δ (i.e., the “otherwise” case in the proof
of Lemma 2).

(2) Since for every first-layer node of the transcripts-tree,
there are (Nn−δ +1) second-layer nodes, which allow
to fully recover at least n − δ + 1 GGM-trees. Thus,
the (Nn−δ + 1) second-layer nodes corresponding to
a first-layer node associated with a d ≥ δ case can
guarantee the recovery of U1 (because any n − δ + 1
columns of U1 allows to uniquely decode U1), hence
recovering X.

Therefore, By [21, Theorem 1], the knowledge error of our
protocol is at most

N1N2 −
(
N1 −

(
n

n−δ+1

)) (
N2 −Nn−δ

)
N1N2

=

(
n

n−δ+1

)
N1

+
Nn−δ

N2
−
(

n
n−δ+1

)
Nn−δ

N1N2

=

(
n

n−δ+1

)
p

+
1

Nδ
−
(

n
n−δ+1

)
pN δ

.

Honest-Verifier Zero-Knowledge. Given an arbitrary non-
witness X, it is easy to use a simulator to generate an
accepting transcript as follows:
(1) Pick a uniform α and d.
(2) Compute C, X′, S exactly as specified in our protocol.
(3) Set hαV1+V2

:= Hash(αQ1 +Q2 − SGD).
(4) Set hA◦U2

:= Hash(αa+Ai ◦ (S+ αX′)).
(5) Output (C,X′, hA◦U2

, α,S, hαV1+V2
,d) and the “all-

but-one” opening messages of GGM-trees as transcript.
It is easy to verify that the distribution of transcripts pro-
duced by the simulator is identical to that produced by a
legitimate prover interacting with an honest verifier.

Lemma 2. The strategy given in Figure 6 offers a malicious
prover the optimal success rate in convincing an honest
verifier any false statement using Figure 5 protocol.

Proof. Let d be the number of non-zero columns in
(−αEC1

R − EC2
R − ESG), the matrix to be multiplied

with D in Equation (10). In other words, d is the num-
ber of different columns between ESG and −(αEC1

R +
EC2

R). The probability that a malicious prover P ′ finds
ES, EαV1+V2

(before knowing D) to pass Equation (10)
check is 1/Nd since each entry of the diagonal matrix D is
uniformly picked from N candidate Fp elements.

Regardless of how P ′ picks EC, X, and EA◦U2 , once
P ′ receives a uniform α, we can analyze P’s attack success
rate by examining two cases below:
(1) There exists an ES such that d ≤ δ − 1: To derive

an upper-bound on the attacker’s success rate, we will
count, for a given d, the number of different α values

that can pass Equation (10) check with probability 1/Nd

while always passing Equation (11).
It is easy to check the following facts are all equivalent:

a) ∃ES :

{
d ≤ δ − 1

EA◦U2
= αa+A ◦ (αX+ ES)

b) ∃π ∈ {(π0, π1, . . . , πn−δ) | πi ∈ [n], πi < πi+1} :{
(ESG)[π] = (−αEC1

R− EC2
R)[π]

EA◦U2
= αa+A ◦ (αX+ ES)

c) ∃π :

{
ES(G[π]) = −α(EC1

R)[π]− (EC2
R)[π]

EA◦U2
= αa+A ◦ (αX+ ES)

d) ∃π :

{
ES = −αM1,π −M2,π

EA◦U2
= αa+A ◦ (αX+ ES)

where M1,π = (EC1R)[π](G[π])−1,
and M2,π = (EC2R)[π](G[π])−1

e) ∃π :

{
ES = −αM1,π −M2,π

EA◦U2
= αa+A ◦ (αX− αM1,π −M2,π)

f) ∃π :

ES = −αM1,π −M2,π

α =
EA◦U2

+A ◦M2,π

a+A ◦ (X−M1,π)

The property of MDS code guarantees that G[π]−1 ex-
ists for any π. Also note that a+A◦(X−MEC1

R) ̸= 0;
otherwise, P ′ would have known a witness to A ◦X+
a = 0 before knowing A and a because in our proto-
col X and EC, hence MECR, are fixed before A, a.
Therefore, once EC is sent, all satisfying M1,π , M2,π ,
and α are fixed, and each selection of the (n − δ + 1)
columns (represented by π) is associated with certain
values for M1,π , M2,π , and α. Let kd,M (resp. kd,α)
be the number of distinct (M1,π,M2,π) pairs (resp. α
values) for a fixed d value. Then,

kd,α ≤ kd,M(
n

n− δ + 1

)
=

δ−1∑
d=0

kd,M

(
n− d

n− δ + 1

)

≥
δ−1∑
d=0

kd,α

(
n− d

n− δ + 1

)
.

Since α and D are selected uniform random, the prob-

ability that P ′ can succeed in this case is
δ−1∑
d=0

kd,α
p

1

Nd
.

(2) Otherwise: There does not exist any ES such that
d ≤ δ − 1. So the probability P ′ succeeds is at most(
1−

(
δ−1∑
d=0

kd,α

)/
p

)
1

Nδ
.

Overall, ε(k0,α, . . . , kδ−1,α), the attack success rate of
P ′, is at most

δ−1∑
d=0

kd,α
p

1

Nd
+

1−

(∑δ−1
d=0 kd,α

)
p

 1

Nδ



where the kd,α’s are constrained by

δ−1∑
d=0

kd,α

(
n− d

n− δ + 1

)
≤
(

n

n− δ + 1

)
(13)

and reflect the attack strategy of P ′. Claim 3 shows this
ε(k0,α, . . . , kδ−1,α) is maximized when kd,α = 0 ∀d < δ−1
and kδ−1,α = 1, which corresponds exactly to the optimal
attack strategy given in Figure 6.

Claim 1. Unless a collision is found on Hash,

Check1Pass⇔ EαV1+V2
= (−αEC1

R− EC2
R− ESG)D.

Proof. In order for a malicious prover to pass the
Check1Pass check, the prover is essentially choosing Ĉ,
αV1 +V2
:

, and S̃ to simultaneously satisfy the following
two equations: [

Q̂1

Q̂2

]
= Q− ĈRD

αV1 +V2
:

= αQ̂1 + Q̂2 − S̃GD

Since αV1 +V2
:

= (αV1 +V2) + EαV1+V2 , so

(αV1 +V2) + EαV1+V2
= αQ̂1 + Q̂2 − S̃GD

Recall that [
U0 C

] [G
R

]
= U

Q = UD+V[
Q1

Q2

]
= Q−CRD

Hence,

Q = (U0G+CR)D+V[
Q1

Q2

]
= (U0G+CR)D+V −CRD

= U0GD+V

=

[
U1

U2

]
GD+

[
V1

V2

]
[
Q̂1

Q̂2

]
= (U0G+CR)D+V − ĈRD

= (U0G+CR)D+V − (C+ EC)RD

= U0GD+V − ECRD

=

[
U1

U2

]
GD+

[
V1

V2

]
−
[
EC1

EC2

]
RD

Hence,

(αV1 +V2) + EαV1+V2
= α(U1GD+V1 − EC1

RD)

+ (U2GD+V2 − EC2
RD)− S̃GD

EαV1+V2 = α(U1GD− EC1RD) + (U2GD− EC2RD)− S̃GD

EαV1+V2
=
(
α(U1G− EC1

R) + (U2G− EC2
R)− S̃G

)
D

Because S̃ = S+ ES = (αU1 +U2) + ES, therefore

EαV1+V2
= (−αĈ1R− Ĉ2R− ESG)D

Claim 2. Unless a collision is found on Hash,

Check2Pass⇔ EA◦U2
= αa+ αA ◦X+A ◦ ES.

Proof. In order for the malicious prover to pass the
Check2Pass check, the prover need to send values of
Ã ◦U2, S̃, X′ to satisfy the equation:

Ã ◦U2 = αa+A ◦ (S̃+ αX′)

Since Ã ◦U2 = A ◦U2 + EA◦U2
, and S̃ = S + ES, the

equation above is equivalent to

A ◦U2 + EA◦U2 = αa+A ◦ (S+ ES + αX′)

Substituting S = αU1 +U2, we obtain

A ◦U2 + EA◦U2
= αa+A ◦ (αU1 +U2 + ES + αX′)

EA◦U2
= αa+A ◦ (αU1 + ES + αX′)

Recall that X = U1 + X′. Therefore, it is equivalent to
picking EA◦U2 , ES, and X such that

EA◦U2
= αa+A ◦ (αX+ ES)

Claim 3. ε(k0,α, . . . , kδ−1,α) is maximized when k0,α =
k1,α = · · · = kδ−2,α = 0 and kδ−1,α = 1, i.e.

ε(k0,α, . . . , kδ−1,α) ≤ ε(0, . . . , 0, 1) =
1

p
+

(
1− 1

p

)
1

Nδ
.

Proof. Because ε =
∑δ−1

d=0
kd,α

p
1

Nd +
(
1−

∑δ−1
d=0 kd,α

p

)
1

Nδ ,

∴ pNδε− p =

δ−1∑
d=0

kd,α
(
Nδ−d − 1

)
∴ pNδε− p =

δ−1∑
d=0

kd,α

(
n− d

n− δ + 1

)
· Nδ−d − 1(

n− d

n− δ + 1

)
Since the function f(d) =

(
Nδ−d − 1

)
/
(

n−d
n−δ+1

)
is strictly

decreasing for all 0 ≤ d < δ < n (Claim 4), so f(d) <
f(0) =

(
Nδ − 1

)
/
(

n
n−δ+1

)
. Combining with the constraint

on kd,α, we have

pNδε− p <

(
n

n− δ + 1

)
· N

δ − 1(
n

n−δ+1

) = Nδ − 1

∴ ε <
1

p
+

(
1− 1

p

)
1

Nδ
.



Claim 4. f(d) =
(
Nδ−d − 1

)
/
(

n−d
n−δ+1

)
is strictly decreas-

ing for all 0 ≤ d < δ < n and N ≥ 2.

Proof. Because f(d) > 0 for the ranges of d, δ, n,N that we
consider, the monotonicity of f(d) can be established from
examining f(d)/f(d+1) for all d ≤ δ−2, i.e., δ−d−1 ≥ 1.

f(d)

f(d+ 1)
=

Nδ−d − 1

Nδ−(d+1) − 1
·
(
n−(d+1)
n−δ+1

)(
n−d

n−δ+1

)
=

Nδ−d − 1

Nδ−(d+1) − 1
· δ − d− 1

n− d

=

(
N +

1

Nδ−(d+2) + · · ·+N + 1

)
· δ − d− 1

n− d

> N · δ − d− 1

n− d
≥ N · 1

n− d
≥ N · 1

n− (δ − 2)

≥ N · 1

n− δ + 2
> N · 1

2
≥ 1.

Costs. Let I be the number of secret witness and M be
the number of constraints. Note that in our protocol I =
O(ℓm) = O(ℓn). We analyze the costs of our VOLE-based
ZKP as follows.
Prover Time. The prover needs O(NI) time to compute U,
V, and C, O(MI) time to compute hA◦U2

, O(I) time to
compute X′ and S, and O(nN) time to generate and reveal
GGM-trees, thus O(NI +MI + nN) overall prover time.
Verifier Time. The verifier needs O(NI) time to compute
Q, O(I) time to compute CRD, O(nN) time to recover the
GGM-trees, O(I) time to verify Equation (6), and O(MI)
time to verify Equation (7). The overall verifier time is also
O(NI +MI + nN).
Communication. Let |h|, σ be the lengths of a hash and a
seed, resp, both of which are small constants. We choose an
MDS code with small code rate c = n/m (e.g., c = 2). So
|π| is

|C|+ |X′|+ |S|+ 2|h|+ (commit and open n GGM-trees)
=(2ℓ(n−m) + 2mℓ) log p+ 2|h|+ (|h|+ nσ logN + nσ)

=2nℓ log p+ 3|h|+ nσ logN + nσ

=2n
I

m
log p+ 3|h|+ nσ logN + nσ

=2cI log p+ 3|h|+ cmσ logN + cmσ

=O(I log p+m logN)

Comparison with KKW-Lin. Dubhe’s KKW-Lin, the best
prior MPC-in-the-Head protocol specialized from [9] to
prove linear constraints, requires O(nN · (I + MI + 1))-
time on both the prover and the verifier, and produces
a proof of length O(n(I + 1) log p + |h| + nσ logN),
to achieve 1 − 1/Nn soundness. We summarize Phecda’s
VOLE-in-the-Head asymptotic advantages over KKW-Lin
in Table 2. When setting n = 2m, Phecda has soundness
error 1/N δ = 1/Nn−m+1 = 1/Nm+1. In this setting,
Phecda’s parameter m is comparable to KKW-Lin’s n.

TABLE 2: Phecda’s VOLE-in-the-Head vs KKW-Lin

KKW-Lin Phecda’s VOLEitH

P , V O(nNI + nNMI + nN)) O(NI +MI +mN)

|π| O(nI log p+ n logN) O(I log p+m logN)

Soundness 1− 1/Nn 1− 1/Nδ

6. Verifiable AES

AES, approved by NIST [22], is one of the most widely
used standard symmetric-key cipher. Efficient zkSNARK for
AES computation promise various useful applications such
as post-quantum digital signatures, verifiable symmetric en-
cryption and verifiable pseudorandom permutation. In this
section, we focus on efficiently proving a large number of
AES blocks, e.g., in the counter mode of operation.

To prove many blocks of AES in the interactive setting,
Ding and Huang [5] proposed two AES circuits, one on
byte-field and the other on bit-field. Their byte-field based
scheme allowed faster prover but requires linear verifier and
communication, whereas the bit-field based scheme, which
involves 41 rounds of challenges, has sublinear verifier
and communication but significantly slower prover, thus
impractical to be turned into a non-interactive argument via
parallel repetition.

In this work, we propose a novel ZK argument for AES
offering the best of both previous schemes. It allows a quasi-
linear prover, sublinear verifier and sublinear proof size. It
is also concretely faster in prover and verifier times, uses
much less bandwidth while requiring no interaction.

To avoid the big constant factor when the computation
is specified on GF(2) (as shown in [5]), we wish to use the
byte-field circuit like the witness-based AES circuit from
Dubhe [5] but commit and prove all the witness using a
polynomial commitment scheme. The challenge resides in
the linear operations in MixColumns and SubByte, which
are defined with respect to two different modulus. It was not
known how to efficiently support both modulo computations
in a single circuit through a succinct PC. Dubhe relied on
KKW-Lin to prove these linear operations in MixColumns
and the affine transform in SubByte, but resulted in linear
communication and verification time.
A Novel Approach to Verify AES. To address this chal-
lenge, we propose a new AES verification circuit specifically
tailored for batch proving many AES blocks. The new circuit
is defined on a larger binary extension field GF(2N ) which
allows to efficiently emulate operations of smaller embedded
binary extension fields, such as GF(28) utilized by AES.
While all additions in an AES circuit over GF(2N ) can be
easily supported with GKR, the three types of gates that
need special treatment are:
SubByte’s special inverse: i.e., “a•b = 1∨(a = 0∧b = 0)”

for all a, b ∈ GF(28) with “•” defined modulo 0x011B.
SubByte’s affine transform: i.e., “a ∗ 0x1F ⊕ 0x63 = b”

for all a, b ∈ GF(28) with ring operator “∗” defined
modulo 0x0101.



MixColumns’s constant multiplication: i.e., “0x02 •a = b”
and “0x03 • a = b” for all a, b ∈ GF(28) with “•”
defined modulo 0x011B.

We developed a method to translate all these operations into
efficient range checks, by applying the Emulation Lemma.

We can interpret a (with binary form an . . . a0) as repre-
senting the polynomial an ·xn+ · · ·+a1 ·x+a0. Therefore,
we use deg(a) to denote the degree of the binary-coefficient
polynomial represented by a. For example, deg(1001) = 3.
In cases where the exact value of a is unknown, deg(a) rep-
resents the maximum possible degree of the corresponding
polynomial. For example, if a denotes any value of GF(28),
then deg(a) = 7.

Emulation Lemma. Let ⋆ denote the multiplication in an n-
bit ring, and × denote the multiplication of an N -bit binary
extension field with N ≥ 2n − 1. Let m be the modulus
defined by the ring and m−1 be m’s inverse in the N -bit
field. Let ⊕ be bit-wise XOR. For all n-bit values a, b, c,

a ⋆ b = c ⇐⇒ (a× b⊕ c)×m−1 ∈ [2k+1]

where k = deg(a) + deg(b)− deg(m).

Proof. Let ◦ denote multiplication in the infinite-degree
binary-coefficient polynomial ring. Then a ⋆ b = c ⇐⇒
c = a ◦ b mod m. Since deg(a ◦ b) = deg(a) + deg(b), by
the definition of infinite-degree polynomial ring division,
“c = a ◦ b mod m” is equivalent to “∃r such that a ◦ b =
r ◦m⊕ c ∧ deg(r) ≤ deg(a)+deg(b)−deg(m)”, which is
equivalent to “∃r such that a× b = r×m⊕ c ∧ deg(r) ≤
deg(a) + deg(b) − deg(m) since N is sufficiently large to
avoid “overflow” as a result of the ring multiplication. The
latter is essentially “∃r such that (a × b ⊕ c) × m−1 = r
and deg(r) ≤ deg(a) + deg(b) − deg(m)” when N >
deg(a) + deg(b). That is, “(a × b ⊕ c) × m−1 ∈ [2k+1]
with k = deg(a) + deg(b)− deg(m).

Thus, applying this lemma, the check in MixColumns,
“a, b ∈ [28]∧ 0x02 • a = b” becomes “a, b ∈ [28]∧ (0x02×
a⊕ b)× 0x011B−1 ∈ [2]” since k = deg(0x02) + deg(a)−
deg(0x011B) = 1 + 7 − 8 = 0 while 0x03 • a = b ⇔
0x02 •a⊕a = b; the affine transformation check in SubByte,
“a, b ∈ [28] ∧ a ∗ 0x1F⊕ 0x63 = b” becomes “a, b ∈ [28] ∧
(a × 0x1F ⊕ b ⊕ 0x63) × 0x0101−1 ∈ [24]” since k =
deg(a) + deg(0x1F)− deg(0x0101) = 7 + 4− 8 = 3.

Checking the special inverse for SubByte is a bit more
complex. The inverse is special since the output byte b
for an input byte a is defined as a−1 modulo 0x011B if
a ̸= 0; or 0 if a = 0. To realize the a ̸= 0 case, we
use Emulation Lemma to translate “a, b ∈ [28] ∧ a • b = 1”
into “a, b ∈ [28] ∧ (a × b ⊕ 1) × 0x011B−1 ∈ [27]” (since
here k = deg(a)+deg(b)−deg(0x011B) = 7+7− 8 = 6).
In case a = 0, the check is a = 0 ∧ b = 0. Like
Dubhe, the check combining both cases becomes “a, b ∈
[28]∧(a×b⊕1)×0x011B−1 ∈ [27]∨a = 0∧b = 0”, which
can be translated to a more GKR-friendly expression: “a, b ∈
[28] ∧ x = RangeCheck

(
(a× b⊕ 1)× 0x011B−1, [27]

)
∧

x × a = 0 ∧ x × b = 0” where RangeCheck(a,R) returns

TABLE 3: Prover Time (ms) of Range Checks

log |Range| 4 8 12 16 20 24

Traditional 5.92 39.0 47.2 102 509 6390
Proposed 3.50 12.9 16.1 22.3 28.4 35.9

0 if a ∈ R, and a non-zero field element if a ̸∈ R. We will
present our range-checking method in more detail shortly.

In summary, our AES circuit is defined on large finite
fields GF(2N ) with N > 14. For 128-bit computational
security and computer architecture reasons, we set N = 192.
The key schedule for AES128 involves 40 SubBytes, thus
need 2 · 40 = 80 witness elements and 80 range checks: 2
for each SubByte as it has 1 special inverse and 1 affine
transform. To prove the rest of the AES128, 464 witnesses
and 464 range checks are needed: 320 for the 160 SubBytes
and 16 ·9 = 144 for the MixColumnss. All other parts of the
circuit are linear operations that are easily handled by GKR.
The circuit for m AES blocks can be done with 10 layers,
with 80 + 464m witnesses and 80 + 464m range checks.
Efficient Range Checking using Algebra. Our new AES
verification circuit requires many range checks to ensure
some secret values are within a specific range. The tradi-
tional way to realize this is through checking Πi∈Range(x−
i) = 0, which can be implemented as a tree of multiplica-
tions and proved in ZK. However, observing the similarity
between the left-side of the equality above and the vanishing
polynomial Πi∈H(x− i), we notice that the ranges to prove
is exactly those upon which vanishing polynomials are
defined [23]. Therefore, we can leverage the structure of the
underlying cosets over binary extension fields to compute
the series of products recursively, using only log |Range|
multiplications [24]. Let Hi = [2i] and zi = Πa∈Hi

(x− a),
then z0(x) = x and zi+1(x) = zi(x) ·(zi(x)−zi(βi)) where
βi are the standard basis of the subspace Hi. When |Range|
is small, like in AES, it is easy to prove these multiplica-
tions sequentially. In case |Range| is large, zkGKR can be
applied to further reduce the verifier’s time and bandwidth
to O(log log |Range|). Table 3 compares the proving time
of range-checking per element, assuming GF(2192) field
is used. For a witness of 20-bit or more, the proposed
optimization is more than an order-of-magnitude faster.

7. Evaluation

We implemented Phecda in Rust and run experiments in
the transparent zkSNARK setting, on a Linux PC with Intel
i9-11900H CPU and 64GB DDR4 Memory.

7.1. Verifiable AES

Figure 7 gives the costs of Phecda on realizing ver-
ifiable AES128 in the counter-mode and compares them
with several baseline implementations. The closest prior
work is from Dubhe, which proposed two methods to verify
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Figure 7: Publicly Verifiable AES (2K blocks)
Phecda GF(2256) 128-bit security, Dubhe (no extra-witness, scalable, 128-bit security), Dubhe (extra-witness, 128-bit security),

Jolt/Lasso (Hyrax, ∼90-bit security), Virgo (∼90-bit security)

TABLE 4: Cost Breakdown of Phecda (1024 AES blocks)

% GKR FLPCP VOLEitH PC
commit prove commit prove

P time 39.27 0.027 0.042 0.054 20.99 39.62
V time 2.21 29.04 – 56.15 – 12.72
|π| – – 22.75 1.14 0.005 76.10

AES computation: one using linear extra-witness (200 bytes
per AES block, i.e., 1 byte per SubByte call) and the
other without extra-witness but proving each SubByte as
8 bit-level table-lookups. Our new protocol exhibits obvi-
ous advantage in verification time. For 1024 AES blocks,
Phecda offers 2.33× faster prover, 1270× faster verifier,
and 102× smaller proof size, than Dubhe’s extra-witness
based scheme; while offering 540× faster prover, 1070×
faster verifier, and 3.8× smaller proof size, than Dubhe’s
more scalable scheme without using extra-witnesses. The
cost breakdown of the sub-protocols are given in Table 4.
Note that current implementations of Lasso [25] and Virgo
only offer about 90-bit computational security and the Lasso
implementation is not quantum-resistant due to its use of
elliptic curves. So comparisons with these two schemes are
not perfectly aligned.

7.2. Polynomial Commitment

Table 5 shows the concrete improvements of our batched
LDT protocol in the context of proving computations over
binary extension fields. Without our batched LDT, to make
sure all fi’s (∀i ∈ [n]) are of low degrees where n is
the number of variables in the multi-linear polynomial,
the best existing method will need to make n independent
LDT calls. The asymptotic improvement is reflected by the
experiments, with proof size and verifier cost improved by
65–70% and prover cost improved by 14–21%.
Compare with Virgo. We only compare our PC with
Virgo’s on a squared Mersenne prime field (Table 6) since
Virgo does not support binary fields. On polynomials of

TABLE 5: Improvement Ratios of mLDT

log |Input| 13 15 17 19 21

P faster 1.21× 1.19× 1.17× 1.16× 1.14×
V faster 1.65× 1.70× 1.68× 1.68× 1.71×

|π| smaller 1.66× 1.70× 1.72× 1.75× 1.77×

TABLE 6: Our PC vs Virgo’s on GF((2127 − 1)2)

log |Input| 13 15 17 19 21

P (s) Virgo 0.15 0.63 2.92 12.90 55.73
Phecda 0.12 0.48 2.16 9.88 43.16

V (ms) Virgo 0.89 1.31 1.36 1.85 1.97
Phecda 0.82 1.21 1.24 1.71 1.80

|π| (KB) Virgo 235 304 385 472 568
Phecda 217 283 356 438 528

213 to 221 secret coefficients, our PC prover (resp. verifier)
runs 25–35% (resp. 8.3–9.7%) faster than Virgo’s, while our
PC’s proof sizes are only 92–93% of Virgo’s. An improved
algorithm for proving FFT can further reduce Virgo’s prover
time by roughly 4%–6% but won’t help with verification
time and proof size [26]. It is unclear if that improved
algorithm works for fields over additive cosets.
Compare with Orion. Table 7 compares the costs of
our PC with Orion [27]. Experiments were only run
on GF

(
(261 − 1)2

)
for 90–100-bit conjectured security

(roughly 60-bit provable security) because this is the only
field available in Orion’s implementation. On polynomials
of 215 to 221 secret coefficients, our prover runs 6.5–15.7×
slower, while our verifier runs 25.8–44.2× faster and our
proof size is 11.6–18.5× smaller than Orion’s.

TABLE 7: Our PC vs Orion’s on GF((261 − 1)2)

log |Input| 15 17 19 21

P (ms) Orion 31.8 81.0 286.2 1089
Phecda 205.8 917.6 3992 17139

V (ms) Orion 12.8 15.2 21.8 42.5
Phecda 0.497 0.615 0.763 0.961

|π| (KB) Orion 2576 2699 2850 3023
Phecda 139.4 175.7 216.1 260.7



TABLE 8: VOLEitH vs MPCitH in Verifying 2K AES

K 4 6 8 10 12

P (ms) MPCitH 37.0 40.1 52.4 57.0 64.8
VOLEitH 7.3 8.5 9.6 10.2 12.0

V (ms) MPCitH 24.2 25.4 29.9 33.6 35.5
VOLEitH 7.0 8.1 9.2 10.1 11.1

|π| (KB) MPCitH 361 406 452 497 543
VOLEitH 100 114 127 138 151

Compare with Brakedown. Brakedown [28] is another
multi-linear polynomial commitment scheme with concrete
costs similar to those of Orion (see [27, Fig. 3] for detailed
data points). Brakedown is field-agnostic and features linear
(and concretely faster) prover, though its verification time
and proof size are asymptotically worse than Orion and ours.

7.3. VOLE-in-the-Head

Compare with MPCitH. Table 8 shows the performance
advantages of VOLEitH over MPCitH. In the context of
proving linear relations for verifiable AES, VOLEitH is able
to beat MPCitH in all three respects of performance mea-
sures by a significant gap. Specifically, VOLEitH’s prover,
verifier, and proof size are roughly 5.5×, 3.3×, and 3.6×
better than MPCitH’s.

8. Conclusion

Phecda improves best existing GKR-based zero-
knowledge proof systems with a new polynomial commit-
ment scheme and a new linear constraints proof scheme.
Using a novel verification circuit for AES, Phecda is able
to offer unprecedented performance for publicly verifiable
AES-based encryption or pseudorandom permutation.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper introduces a new framework for construct-
ing transparent (zk-)SNARKs with plausible post-quantum
security. The construction is based on a combination of
the GKR protocol, VOLE-in-the-head protocols, fully linear
PCPs, and a novel multi-linear polynomial commitment
scheme. The authors consider verifiable encryption (AES)
as a concrete application and provide detailed experimen-
tal evaluation, comparison with prior works, and publicly-
available source code, empirically demonstrating significant
concrete performance improvement in terms of prover time,
verifier time, and proof size.

A.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

A.3. Reasons for Acceptance

(1) This paper provides a valuable step forward in an es-
tablished field. It gives a zkSNARK that is transparent
and plausibly post-quantum secure and has competitive
concrete efficiency in terms of prover and verifier time,
along with proof sizes, built from known and new novel
technical building blocks.
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