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Abstract. Secure Keyword-based Deep Packet Inspection (KDPI) al-
lows a middlebox and a network sender (or receiver) to collaborate in
fighting spams, viruses, and intrusions without fully trusting each other
on the secret keyword list and encrypted traffic. Existing KDPI propos-
als have a heavy-weighted initialization phase, but also require dramatic
changes to existing encryption methods used to the original network
traffic during the inspection phase. In this work, we propose novel KDPI
schemes MT-DPI, CE-DPI, BH-DPI which offer highly competitive per-
formance in initialization and guarantee keyword integrity against mali-
cious middlebox. Moreover, our methods work readily with AES-based
encryption schemes that are already widely deployed and well-supported
by AES-NI. We show that our KDPI schemes can be integrated with
TLS, adding marginal overhead.
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1 Introduction

Deep packet inspection (DPI) is a widely used security technique for detecting
intrusions, scanning for malware, and preventing data exfiltration [54, 8]. DPI
relies on a middlebox that sits between two communication endpoints to examine
the payloads of network traffic to improve security [40, 11]. Many DPI solutions,
e.g., OpenDPI [29] and nDPI [14], have been adopted by enterprises. The global
DPI market size is projected to reach 16.6 billion USD by 2026, up from 4.6
billion USD in 2020, at a yearly growth rate of 25.0% during 2021-2026 [52].

Since Transport Layer Security (TLS) [16] was introduced to secure Inter-
net communications, its usage has been growing [41, 20]. At the time of writing,
more than 90% of HTTP traffic from Google products is encrypted with TLS,
according to Google Transparency Report [22]. However, the end-to-end security
provided by TLS makes it challenging for a middlebox to perform DPI. Some
proposals such as SplitTLS [28] used a TLS interception scheme to allow a mid-
dlebox to access plaintext traffic, which, unfortunately, turns out introducing
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vulnerabilities [10, 17, 48, 56], and compromise the privacy of TLS [55, 38]. This
situation prompted the research community to consider alternative solutions [42].

In 2015, Sherry et al. [53] proposed BlindBox, a keyword-based DPI proto-
col, which enables the middlebox to detect occurrences of preset keywords in the
encrypted traffic, while assuring that the middlebox does not learn other infor-
mation about the encrypted traffic and that the communicating endpoints do not
learn the keywords. The initialization phase of their protocol heavily relied on
the garbled circuit protocol to securely generate tokens for each keyword. Their
approach, however, has three serious limitations: (1) It only considered semi-
honest middleboxes and did not offer integrity of the keywords against malicious
middleboxes. Hence, although legitimate keywords (also known as rules) should
only be decided by a third party called Rule Generator (RG), BlindBox did
not prevent a corrupted middlebox from replacing legitimate keywords with any
keywords of an adversary’s choice to compromise traffic privacy. (2) As their
experiments showed, BlindBox’s initialization phase is rather heavy-weighted,
requiring gigabytes of communication overhead [53], even without guaranteeing
keyword integrity. (3) Their traffic inspection phase is very expensive, since it
requires invoking the AES cipher a large number of times each with a different
AES key, making it hard to leverage efficient pipelining of AES-NI instructions.

Therefore, we asked, “Can we have KDPI protocols that require minimal
modification to the already wide-deployed symmetric-key encryption schemes
while offering keyword integrity and performing significantly better than Blind-
Box?” In this regard, we study new constructions of KDPI and provide positive
answers to the question above.

Contributions Aiming at resolving those limitations of BlindBox, we propose
three efficient keyword-based DPI protocols, MT-DPI, CE-DPI, and BH-DPI.
All three protocols offer keyword integrity and can be integrated with an AES-
based underlying encrypted channel with minimal change, while significantly
outperforming BlindBox in both initialization and traffic inspection phases.

Our first approach, MT-DPI, is based on binary multiplicative triples that
we can efficiently generate using Ferret OT [59]. The resulting protocol is an
order of magnitude more efficient than BlindBox in communication cost and
runs a few times faster in realistic network environments where middleboxes are
deployed. A major challenge in the design of MT-DPI is keyword integrity, be-
cause the traditional secret share and multiplicative triple-based protocol cannot
withstand active attacks. To address this challenge, we developed a novel use of
the cut-and-choose technique for secret-share-based two-party computation pro-
tocols, which may be of independent interest. We proved our protocol is secure
against actively corrupted middleboxes. Our second approach, CE-DPI, extends
BlindBox with a more efficient keyword verification method using Oblivious
Commitment-Based Envelope (OCBE) [35]. Compared with the keyword veri-
fication suggested by BlindBox, CE-DPI is proven secure against semi-honest
middlebox but uses only 1/10 the bandwidth of BlindBox. The third approach,
BH-DPI, improves BlindBox with a batched hashing verification, and uses 1/6
the bandwidth of BlindBox.
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2 Background

2.1 Keyword-based DPI

We consider the problem of enabling Deep Packet Inspection (DPI) under end-
to-end encryption, e.g., when TLS is used. The following parties are involved.

Sender (S) and Receiver (R). DPI is performed by a third party when
the communication between S and R is encrypted. The content being sent is a
sequence of packets.

Middlebox (MB). Given a set of inspection rules, MB inspects the traffic
between S and R, to find out whether a packet matches any of the rules.

Rule Generator (RG). This party defines the inspection rules. An RG is
trusted and specializes in creating effective rules that are useful for various DPI
tasks. However, they are not trusted to inspect network traffic. In fact, they will
not participate in running DPI protocols. Instead, an MB subscribes to an RG
in order to obtain the rules and offer the inspection service. The role of RGs can
be played by major security vendors (e.g., Symantec).

Keyword-based DPI systems. One class of DPI systems uses rules that are
fixed-length keywords. That is, the RG creates a list of ℓ-byte keywords (where
ℓ is a fixed parameter), and the goal of DPI is to determine whether a packet
contains any keyword in the list.

To realize keyword-based DPI, a sender S will compute a token for every
ℓ-byte substring (word) in the traffic, and send them to the MB. MB checks the
token to learn whether any of them matches that of a keyword. Note each pair
of neighboring ℓ-byte words has ℓ− 1-byte overlap. So in an N -byte packet, the
total number of ℓ-byte words is N − ℓ+ 1.

In KDPI, ℓ, the length of keywords, and K, the number of such keywords,
are public information. Figure 1 depicts a keyword-based DPI System. A KDPI
protocol has the following sub-protocols.

1. Rule delivery. MB and RG run a protocol so that MB obtains information
about the keywords. Note that this does not necessarily mean that MB learns
the actual keywords which can be RG’s private business asset. Rule delivery
happens infrequently, only when initializing MB’s subscription or when rules
need to be updated.

2. Session initialization. Before S establishes its connection with R, S runs
an initialization protocol with MB to prepare MB to allow it to later inspect
the traffic between S and R. The initialization protocol only needs to be
executed once per new pair of connecting peers.

3. Traffic inspection. Before S sends a packet, S extracts all ℓ-byte words in
the packet, and computes a token for each word (which we call token compu-
tation) and sends them to MB. MB inspects the tokens to determine whether
each token is generated from a keyword (which we call token inspection).

Notations. We summarized our notations in Table 1. Here we emphasize two
abstractions.
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1. Rule delivery

2. Session initialization

3. Traffic inspection

Sender Receiver

MB
RG

Fig. 1. A Keyword-based DPI System.

Table 1. Notation used in the paper

Symbol Description Symbol Description Symbol Description

ℓ length of a keyword/word ω a word (ℓ-byte) w a keyword (ℓ-byte)

W a list of keywords K the number of keywords in W η(ω) a handle of ω

T (ω) a token computed from ω k the secret key of S (or R) ctrω a counter for ω

– Handle: For each word ω, there is a corresponding handle η(ω). Possession
of η(ω) enables a party to identify all occurrences of ω in the traffic. During
session initialization, MB, with help from S, learns the handle η(w) for each
keyword w ∈ W , where W denotes all keywords determined by RG.

– Tokens: For each appearance of ω in the traffic, S computes a token T (ω),
and sends T (ω) to MB. It is essential to ensure that different occurrences of
the same word result in unlinkable tokens except to a party who knows the
handle η(ω). One way is to use per-word counters, and set all such counters
to 0 at the beginning of the session, and increment the counter for ω each
time ω appears in the traffic. Then S computes tokens on the word and its
corresponding counter value not to repeat the same tokens on the same word.

Traffic confidentiality. If a malicious MB colludes with RG, our goal is to
ensure MB only learns the occurrences of the set of K words of their choice in
the traffic from S to R. The exact leakage depends on ℓ and K. If K ≥ 28ℓ, the
adversary can fully recover the traffic since the keyword list is long enough to
include all possible words. In typical settings, however, K ≪ 28ℓ (e.g., in our
experiments K = 3000 and ℓ = 5 or 8) so that leakage is reasonably small.

If RG and S are honest while MB is malicious, the confidentiality goal will be
to ensure that MB learns only the occurrences of keywords defined by the honest
RG. A malicious MB should not be able to tamper with the list of keywords and
learn extra information in the traffic.

Keywords confidentiality. The list of keywords may be the valuable intel-
lectual property of RG. Revealing these keywords could also allow attackers to
circumvent the inspection mechanism. Therefore, a KDPI system should ensure
that malicious S (or R) do not learn anything about the keywords beyond what
could be inferred from the observable outcome of the system.
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2.2 BlindBox

Sherry et al. [53] proposed BlindBox, which became a benchmark for KDPI
systems.

Using AES for handles and tokens. In BlindBox, the handle for each
word ω is η(ω) = AESk(ω), where the key k is known to S and R, but not to
MB. MB learns the handles for keywords with help from S, but cannot compute
the handles for other words. The token for an occurrence of a word ω is the
AES encryption using η(ω) as key, and the counter for ω as plaintext. Because
of counters, the tokens computed from different occurrences of ω′ ̸∈ W are
unlinkable by MB.

Using table lookup for inspection. At the beginning of each session, MB
computes T = {AESη(w)(0) | w ∈ W} and maintains the tokens generated from
keywords in a table. (In [53], it is suggested to implement the table using a
balanced binary tree.)

When MB receives a token t, it checks whether t ∈ T . That is, the check takes
the form of a table lookup. When t ∈ T , this means that t is computed from a
keyword w, MB can identify the keyword, update the corresponding counter, and
update T by replacing AESη(w)(0) with AESη(w)(1). This way, MB can maintain
counters for w ∈ W in synchronization with S, so long as it processes all the
tokens in order.

Token computation overhead. For S to compute a token, it needs to find
the counter corresponding to the word, and perform 2 AES operations using two
different keys.

Token transmission overhead. In order to match keywords that appear in
arbitrary positions of the payload, S needs to use a sliding window to extract
words to compute tokens. The number of tokens is thus about the same as the
length of the payload in bytes. That is, for every byte in the payload, S needs to
send a token to MB. If each transmitted token is 16 bytes (i.e., 128 bits), then
the extra communication overhead is 16x the payload.

This overhead can be reduced by using truncated tokens. For example, one
can only use the first 5-bytes of the AES encryption to make a 5-byte token.
This results in reducing the communication overhead from 16x to 5x. See 3.4 for
more details.

Using garbled circuits to hide rules. To ensure that MB does not learn
the handles for words not in W , and S does not learn W , BlindBox uses a secure
two-party computation protocol. RG generates a signature for each w ∈ W
using its own public key. MB and S run Yao’s Garbled Circuit protocol where
MB provides w and RG’s signature over w, and S provides k.

Here the garbled circuit first verifies that the signature on w is valid, and if so,
gives the handle η(w) = AESk(w) to MB. The usage of garbled circuits introduces
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significant overhead in terms of both time and bandwidth. This overhead is
especially large if signature verification needs to be part of the circuit.

Drawbacks of BlindBox. As we discussed in the previous sections, Blind-
Box is less efficient in the token initialization phases due to the high bandwidth
requirements for the garbled circuit. The initialization phase requires roughly
4.3GB bandwidth between S and MB which makes the BlindBox hard to be
practical. Another drawback for BlindBox is the lacking of keyword verification.
The threat model of BlindBox assumes that MB is semi-honest but in practice
MB may replace the keywords to other sets of words without being detected.
Though the paper suggests using a hash to verify each keyword before initial-
ization, it did not clearly describe the steps.

2.3 Secure Two-Party Computation Protocols

Given a Boolean circuit, cryptographically secure computation protocols allow
two mutually-distrustful parties to compute the circuit over their secret inputs.
Garbled Circuit and Additive Secret-Sharing based protocols represent two ap-
proaches to cryptographic secure computation. The garbled circuit approach
features a small constant round of interaction but requires a large amount of
network bandwidth, typically at least 32 bytes per binary AND gate. In con-
trast, additive secret-sharing based protocols cost a linear number of rounds in
the depth of the circuit but little bandwidth, about 2 bits per binary AND gate.
We refer the readers to the literature [60, 37, 18] for the garbled circuit tech-
nique, but describe Beaver’s protocol [5] as a representative secret-sharing based
approach since it is used in our main protocol.

Beaver’s Circuit Randomization Protocol Let C be a binary circuit con-
sisting of XOR and AND gates. Two parties P1 with input x and P2 with input y
want to compute C(x, y) without leaking extra information about x, y. Beaver’s
protocol process the circuit in a topological order:

– For every initial input associated with secret bit v owned by Pi: Pi divides
v into two uniform random bits v1, v2 where v1 ⊕ v2 = v and distribute the
shares such that Pi holds vi.

– For every binary gate with secret input bits u, v: let the secret shares of u
be u1, u2 and that of v be v1, v2 where P1 holds u1, v1 while P2 holds u2, v2.

• If it is an XOR gate, to derive the shares of the secret output bit z = u⊕v,
P1 sets z1 := u1 ⊕ v1 and P2 sets z2 := u2 ⊕ v2.

• If it is an AND gate, to derive the shares of the secret output bit z = u·v,
1. P1 and P2 generate a multiplicative triple (see Section 2.3 for the

triple generation protocol) so that P1 obtains random bits a1, b1, c1
while P2 obtains random bits a2, b2, c2 such that (a1⊕a2)·(b1⊕b2) =
c1 ⊕ c2.

2. P1 and P2 compute u′, v′ where u′ = u⊕a and v′ = v⊕b, by revealing
u1 ⊕ a1, u2 ⊕ a2, v1 ⊕ b1, v2 ⊕ b2.

3. P1 sets z1 := u′ ·v′⊕u′ ·b1⊕v′ ·a1⊕c1. P2 sets z2 := u′ ·b2⊕v′ ·a2⊕c2.
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– To reveal the secret value v on an output wire of the whole circuit, P1 and
P2 simply exchange their respective secret shares of v and each party locally
xor the shares.

For correctness, it is easy to verify that z1 ⊕ z2 = u′ · v′ ⊕ u′ · (b1 ⊕ b2)⊕ v′ ·
(a1 ⊕ a2) ⊕ (c1 ⊕ c2) = u′ · v′ ⊕ u′ · b ⊕ v′ · a ⊕ a · b = (u′ ⊕ a) · (v′ ⊕ b) = u · v.
For confidentiality, we note that all exchanged bits are uniform random and
independent of each party’s secrets.

Generating Multiplicative Triples Multiplicative triples used above for
securely computing the ANDs are typically computed in batches using Random
Oblivious Transfers (ROT). ROT is a two-party cryptographic functionality that,
once invoked, will generate two uniform random strings x1, x2 and one uniform
random bit b, then sends (x1, x2) to one party while sending (b, xb) to the other.
The seminal work of Ferret [59] provides an efficient implementation of ROT.
Using ROT, P1 and P2 can securely generate multiplicative triples as follows:

1. P1 and P2 invoke ROT () twice (with flipped roles) so that after the first call
P1 obtains (x0, x1) and P2 obtains (b, xb), whereas after the second call P1

obtains (b′, x′
b′) and P2 obtains (x′

0, x
′
1).

2. Let H be a random oracle with 1-bit output. P1 computes and outputs

a1 := H(x0)⊕H(x1); b1 := b′; c1 := a1 · b1 ⊕H(x0)⊕H(x′
b′).

P2 computes and outputs

a2 := H(x′
0)⊕H(x′

1); b2 := b; c2 := a2 · b2 ⊕H(x′
0)⊕H(xb).

It is easy to check that for all b ∈ {0, 1}, a1 · b2 = H(x0)⊕H(xb), and that for
all b′ ∈ {0, 1}, a2 · b1 = H(x′

0)⊕H(x′
b′). Therefore, we have (a1⊕a2) · (b1⊕ b2) =

(c1⊕ c2). The unpredictability of H’s output, together with the security of ROT
guarantees that P1 (resp. P2) learns nothing about (a2, b2, c2) (resp. (a1, b1, c1)).

3 Proposed Protocols

In this section, we elaborate on new different KDPI schemes, MT-DPI, CE-DPI,
and BH-DPI, which have different initialization protocols but share the same
AES-based traffic inspection scheme.

3.1 Session Initialization in MT-DPI

Rule delivery. For each keyword wi, RG randomly generates a 128-bit ri,
and computes certi = cert(wi, ri) = H(wi, ri). where H is modeled as a random
oracle, hence evaluatingH leaks no information on howH behaves on other input
values. We instantiateH based on AES using the Davies-Meyer construction [57]:

H(x) = AESk̂(x)⊕ x. where k̂ is a key picked by RG and known to both S and



8 W. Wang et al.

Public Input: {certi}i∈[K] where certi = cert(wi, ri) = H(wi, ri).
MB’s Input: The keywords {wi}i∈[K], certificate randomness {ri}i∈[K].
S’s Input: Handle generation key k.
Output: MB obtains {ηi}i∈[K] where ηi = η(wi) = H(k ⊕ wi).
Protocol:

1. For every i ∈ [K],
(a) Repeat the following s times where s is a statistical security parameter. In the

j-th repetition:
i. MB picks 128-bit uniform string r′i and securely compute with S the func-

tion f

f({w, r′, r}; {k, b}) = H(mux(b, k ⊕ w, (w, r))⊕mux(b, r′, 0)

where MB’s secret input is wi, r
′
i, ri and S’s secret inputs are k and bj .

(b) For every bi,j = 1, S learns H(wi, ri), which is compared against the certi
signed by RG (if they are not equal, S aborts immediately, reporting that MB
was cheating).
For every bi,j = 0, S learns a value H(k ⊕ wi) ⊕ r′i. S verifies that the result
is identical across all iterations with j ∈ {j | bi,j = 0} (otherwise, S aborts,
reporting that MB was cheating).

(c) S chooses any j such that bi,j = 0 and sends the corresponding output H(k⊕
wi)⊕ r′i to MB. MB then recovers ηi by XOR-ing the received value with r′i.

Fig. 2. MT-DPI: Secure generation of handles for certified keywords (with malicious
MB and semi-honest S)

MB. When AES is modeled as an ideal block cipher, even if k̂ is not secret, H
is still collision-resistant thanks to the security of Davies-Meyer.

RG then sends a signed message {(wi, ri, certi)}i∈[K] to MB and a signed
message {certi}i∈[K] to S, where messages are signed with a standard digital
signature scheme. Because H is collision-resistant and S does not know ri, certi
does not leak anything about w. In addition, we note that a malicious MB cannot
forge a certificate for a word of his/her choice because S knows H(w, r) and H
is collision-resistant (MB cannot find a (w′, r′) ̸= (w, r) such that H(w′, r′) =
H(w, r) ).

Handle generation. We define a handle of a keyword w as ηw = H(k ⊕ w)
where H is the same random oracle as described above and the key k is S’s
secret and w is MB’s secret. MB and S will launch a secure two-party compu-
tation protocol to allow MB to obliviously learn the handle. However, without
additional treatment, a malicious MB can obtain handles for any word ω ̸= w of
his/her choice and monitor the occurrence of ω in S’s traffic. Next, we show how
we prevent this attack using a cut-and-choose mechanism. Our full protocol is
shown in Figure 2.

To obtain the handle of a keyword w, MB holding w, r′, r and S holding k, b
would jointly compute:

f({w, r′, r}; {k, b}) = H(mux(b, k ⊕ w, (w, r))⊕mux(b, r′, 0)
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Public Input: Commitment of each bit of the keyword {cj}j∈[ℓ] where cj =
gbjhyj . Group elements g, h for computing the commitments.

MB’s Input: The bit of keywords {bj}j∈[ℓ], commitment randomness {yj}j∈[ℓ],
S’s Input: GC input labels {(X0

j , X
1
j )}j∈ℓ each corresponding to an input wire in

the circuit
Output: MB obtains Xb

j , which can be used to evaluate the circuit
Protocol:

For every j ∈ [ℓ],

1. S chooses a random value rj , and computes ej := hrj , σ0
j := H(c

rj
j ), and

σ1
j := H(c

rj
j · g−rj ).

2. S computes two envelopes: E0
j = AESσ0

j
(X0

j ), and E1
j = AESσ1

j
(X1

j ).

3. S sends E0
j , E

1
j , ej to MB.

4. MB computes σb
j = H(e

yj
j ). MB can decrypt Xb

j = AES−1
σb

(Eb
j ).

Fig. 3. CE-DPI: Keyword verification methods for one keyword (with malicious MB
and semi-honest S)

where mux(b, x, y) denotes evaluating a multiplexer on an input bit b and two
same-length inputs x, y, which returns x if b = 0 and y if b = 1. That is,

f({w, r′, r}; {k, b}) =
{
H(k ⊕ w)⊕ r′ if b = 0.
H(w, r) if b = 1.

Since b is S’s input, S controls whether the result will be a (masked) handle (by
setting b = 0) or the certificate (by setting b = 1). For each w, the circuit will
be evaluated s times, each with a freshly sampled b. S can then verify that for
all b = 1, the outputs are all equal to cert(w, r); and for all b = 0, the results all
equal to an identical value H(k ⊕ w) ⊕ r′ where r′ is the mask picked by MB.
(Without the mask r′, S will learn H(k ⊕ w) thus can launch selective probes
to learn w.) Note that MB does not know b. So if MB used some ω ̸= w in any
of the s iterations, it will either fail to produce the correct certificate or output
some inconsistent masked handles.

The cut-and-choose procedure above will be repeated s times. This statistical
security parameter s directly impacts both overhead and security. The protocol
cost is linear in s, and a malicious MB who tries to learn the token for a word
different from a certified keyword will be caught with probability 1 − 2−s. It is
standard to set s = 40, but in some settings it could be justified to use a smaller
s. When MB cheats without being detected, it only gains the ability to scan
for the presence of one word not in the keyword list. On the other hand, when
MB is detected, the sender S learns that MB is trying to cheat, and can take
action accordingly, such as not cooperating in traffic inspection, informing other
parties, etc.

Security. The handle generation protocol given in Figure 2 is essentially a
secure two-party computation protocol. Its security can be established follow-
ing the real-world/ideal-world paradigm. Consider a malicious MB and semi-
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honest S that interact in an ideal-world execution where a trusted third-party
Fhandle-gen exists:

1. Fhandle-gen accepts k from S, and accepts (wi, ri) for all i ∈ [K] from MB.

2. Fhandle-gen, with certi from RG, checks if H(wi, ri) = certi for all i ∈ [K].

If the check passes, Fhandle-gen sends H(k⊕wi) to MB, and sends ⊥ to S;

otherwise, Fhandle-gen sends “MB Cheats” to both MB and S.

3. If MB is honest, it outputs what was received from Fhandle-gen; otherwise, it
can output anything. S always outputs what was received from Fhandle-gen.

A real-world protocol Π, where MB and S are the two interacting parties, is
defined to be secure if for all certi, (wi, ri), k, the joint distribution of the outputs
of MB and S is indistinguishable from that of the ideal-world execution.

If MB is honest while the sender S is compromised (but still semi-honest),
we note that S cannot gain more information than every single run of the s
repetitions of step (1a) because all s must be over exactly the same inputs (since
S cannot deviate from the protocol to use different inputs across different runs
of the circuit randomization sub-protocol). In this case, the whole protocol of
Figure 2 simply reduces to a single run of Beaver’s circuit randomization protocol
and the security of our protocol can be derived directly from Beaver’s protocol.
Hence we have:

Theorem 1. The handle generation protocol described in Figure 2 is a two-party
computation protocol secure against a semi-honest S.

If S is honest while MB is fully compromised, it is easy to see that the protocol
is secure if MB does not deviate from the protocol. In case MB deviates from
our protocol, its cheating behavior will be caught by step (1b) except for 2−s

probability, thus S outputting MB Cheats like in the ideal world.

Theorem 2. The handle generation protocol described in Figure 2 is a two-party
computation protocol secure against a malicious MB.

Proof. For a malicious MB and honest S, we can construct a simulator S that
is connected to the ideal-world Fhandle-gen and interacts with MB as follows:

1. S runs the Figure 2 protocol as S to interact with MB.

2. If S aborts in step (1b), it generates random values and sends them to
Fhandle-gen as (wi, ri) (so these values cannot pass Fhandle-gen’s check of

H(w, ri) = certi).

If S does not abort in step (1b), it extracts MB’s effective input (wi, ri)
through Beaver’s circuit randomization protocol (note that Beaver’s pro-
tocol offers input ex-tractability from an adversary) and sends them to
Fhandle-gen.

3. S outputs whatever MB outputs.
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A real-world execution (consisting of MB and S) will produce an indistin-
guishable output distribution from that of an ideal-world execution (consisting
of the simulator S defined above, the sender S, and Fhandle-gen), because a de-

viating MB only gets to flip the values of any wires (including the input wires)
in the Beaver’s protocol to compute the handle, which will only result in one of
the following consequences:

1. The value of f({w, r′, r}; {k, b}) is unaffected. In this case, MB’s cheating
behavior has no effect on the output distribution.

2. The value of f({w, r′, r}; {k, b}) is changed. In this case, however, for MB to
successfully evade S’s checks in step (1b), the results must be consistently
changed for all {bi,j}j∈[s], which happens only if MB guessed all s bits of bj
correctly, that is, with probability 2−s.

Overall, the difference between the two output distributions are 2−s at most.

Security against malicious S. It is easy to make our protocol also secure
against a malicious sender by simply adding the following (rather symmetric)
check in step (1b):

For every bj = 1, S sends all of H(k ⊕wi)⊕ r′i back to MB, so that MB
can verify that all these values are identical (otherwise, MB aborts and
reports that S was cheating) before recovering H(k ⊕ wi).

The security proof is also based on cut-and-choose, similar to what has been
shown earlier against malicious MB. We did not include this treatment in our
main protocol because in the context of KDPI, even if the handle generation
protocol can handle malicious S, because a deviating S can easily sabotage other
parts of the DPI system (such as the token computation step during the traffic
inspection phase).

3.2 CE-DPI

CE-DPI (Commitment Envelope-DPI) combines garbled circuit protocol with
Oblivious Commitment-Based Envelope (OCBE) [35] to ensure keyword in-
tegrity. Recall that in the DPI initialization phase, S constructed the garbled
circuit and sends to MB. In the circuit, each bit of a keyword corresponds to an
input wire of the circuit and has two associated secret values (one for 0 and one
for 1). The protocol enables MB to learn the wire value corresponding to correct
keyword bit, without S learning anything about the keyword.

In CE-DPI, RG stores cryptographic commitments for each bit of a keyword
in a digitally signed certificate. For each keyword bit, S constructs two envelopes
(encrypted messages) so that one can be decrypted when the committed value
is 0, and the other when the committed value is 1.

More specifically CE-DPI uses the Pedersen commitment scheme [49]. To
commit to a secret bit b, the committer generates a random value r, and publishes
a commitment ci = gbhr, where g, h are two generators of a group in which
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discrete logarithm is hard. The verifier receiving ci cannot learn the secret b
without knowing the random value r.

CE-DPI uses an OCBE where the opening condition is that the committed
bit equals to a pre-determined bit value. See [35] on how such an OCBE protocol
works.

In CE-DPI, for each keyword w, RG computes a commitment for every bit
of w:

1. RG computes {cj} = {gbjhyj} for all j ∈ [ℓ], where bj is the j-th bit of w,
and yj is a fresh random value.

2. RG reveals {yj}j∈[ℓ] to MB and published a digitally signed {cj}j∈[ℓ].

S will verify the signed {cj}j∈[ℓ], and then construct two envelopes to deliver
wire labels representing those bits to MB (Figure 3).

Since S sees only the commitments of the keywords, and the Petersen com-
mitment scheme used in CE-DPI is information-theoretically hiding, S learns
nothing about the keywords. it has been proven in [35] that ability to open the
envelope not corresponding to the committed bit value implies the ability to
compute the discrete log of logg h. Thus MB can obtain only the wire values
corresponding to the keywords. Finally, note that S receives nothing from MB,
it is easy to prove CE-DPI is secure against malicious MB and semi-honest S in
the OT-hybrid model.

3.3 BH-DPI

For keyword integrity, BlindBox initially suggested RG to digitally sign each
keyword, then use garbled circuits (or other 2PC protocols) to verify the sig-
nature without revealing the keywords. However, for any public-key signature
scheme, implementing its verification function in garbled circuits is challenging
and very expensive. At the time of writing this paper, we are not aware of any
open-source code for garbled circuits support public-key signature verification.

Alternatively, one can use a cryptographic Batched Hash BH-DPI: (1) RG
samples a secret random nonce, computes h = H(w||nonce), signs h using a
signature scheme, and sends nonce, h and the signature to MB. (2) MB sends S
the value h with RG’s signature. Later, S can verify h is indeed signed by RG,
and use a garbled circuit to ensure that h = H(w1||w2||...||wn||nonce) (where H
is modeled a random oracle and MB provides wi and nonce) while the same wi’s
are used for handle generation.

3.4 Traffic Inspection

The traffic inspection protocol for both MT-DPI and CE-DPI is described in Fig-
ure 4, enhancing BlindBox’s in several respects.

More effective use of AES-NI. In BlindBox, the tokens for ω are computed
as T (ω) = AESη(ω)(ctrω). The security property this achieves is that any adver-
sary who knows multiple tuples in the form (ω, ctrω,T (ω)) but does not know
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Public Parameter: sliding window size ℓ. H modeled as a random oracle.
MB’s Input: The list of keywords {wi}i∈[K] and their handles {ηi}i∈[K].
S’s Input: Handle generation key k and a stream of packets.
Output: MB learns every occurrence of wi in the packet stream for all i ∈ [K].
Protocol:

1. Initialize Counters and MB’s token set:
– S initializes a map MS from ℓ-byte words to their counters (initialized to 0).
– MB initializes a map MMB from his list of keywords to their counters (initial-

ized to 0).
– MB computes the token set TS := {Ti}i∈[K] where Ti = H(ηi ⊕MMB[wi]).

2. For j ∈ [N − ℓ+1], S moves its fixed-size sliding window to start at the j-th byte.
Then,
(a) Compute Tokens:

– S computes η := H(k ⊕ ω), ctrω := MS[ω], T := H(η ⊕ ctrω) where ω is a
word in current sliding window.

(b) Match Tokens:
– S sends T to MB.
– If T ∈ TS with T = Ti∗ , MB learns wi∗ occurred at the jth byte in the

packet stream; otherwise, MB learns no keywords appeared at this location
of the packet stream.

(c) Update Counters and MB’s token set:
– S sets MS[ω] := MS[ω] + 1.
– If it was a match of keyword wi∗ , MB sets MMB[wi∗ ] := MMB[wi∗ ] + 1

and Ti∗ := H(ηi∗ ⊕MMB[wi∗ ]); otherwise, MB do nothing.

Fig. 4. The traffic inspection protocol for MT-DPI, CE-DPI and BH-DPI

ηω cannot monitor ω in the traffic. However, Their design fails to fully take full
advantage of AES-NI [27] capabilities, since the tokens for different words are
computed using AES with different keys. This means a key needs to be freshly
scheduled per token, to introduce data-dependent stalls in the pipeline of AES-
NI instructions.

To avoid such data-dependent stalls when running AES-NI instructions, we
observe that the same security property desired for tokens can also be achieved
by defining

T (ω) = H(η(ω)⊕ ctrω)

where H is also modeled as a random oracle, defined the same as that used
in MT-DPI’s session initialization (Section 3.1), except that a different public
fixed-key would be used to instantiate this random oracle.

Refreshing the counters. S will have to maintain a table of words that it has
encountered so far and associate a counter with each word. The size of S’s table
is linear in the number of unique length-ℓ words in the traffic. As our experiments
in Section 4 show, this table grows quickly. For example, over a 700MB traffic
stream, we observed 7 million unique ℓ-byte words. It would be infeasible for
S to efficiently maintain this large table of counters. Hence, S will periodically
reset its counter table after inspecting a fixed amount (e.g., 100KB∼1MB) of
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Table 2. Initialization costs in various network settings.

Time cost (s)
B/W (MB)

50 Mbps 100 Mbps 200 Mbps 300 Mbps 400 Mbps 500 Mbps 600 Mbps 700 Mbps 800 Mbps 900 Mbps 1 Gbps

MT-DPI 135.6 109.2 95.2 91.2 90.4 89.2 67.2 66 65.2 64.3 64.3 425

BH-DPI 210.7 174.4 132.4 110.0 94.7 92.5 89.4 85.1 82.5 81.9 81.6 769

CE-DPI 181.1 122.5 112.4 100.8 96.7 93.6 91.5 89 88.2 87.8 87.6 530

BlindBox 817.9 455.6 273.4 212.0 180.4 163.7 151.7 142.3 137.0 132.2 132 4300

RTT for all network settings: 20ms. Bandwidth unit is MB.

traffic. Note that MB also needs to maintain a list of counters, one for each
keyword. Thus, when S resets its table of counters, MB will do the same to stay
synchronized on the keyword handles.

Comparing tokens. Using 16-byte tokens can be a waste of bandwidth.
Instead, S could just send the first t bytes of the tokens to MB for comparison.
The benefit is substantial bandwidth savings, which can be more than 50%
if t ≤ 8. The downside is that it will require an extra communication round
between S and MB to avoid matching packets that contain the substring but
not the actual keyword. It may also come with a potential information leakage
of the keyword that MB learns extra information in the form of each occurrence
of portions of the keywords. It is a trade-off between performance and efficiency.

4 Evaluation

In this section, we present a comparative evaluation of BH-DPI, CE-DPI, MT-
DPI with existing protocols. We released our source-code at https://github.
com/mt-dpi. In the appendix A, we discuss the integration of TLS.

4.1 Experiment Setup

Testbed. Our testbed consists of two machines (each has 8-core i7-3770 and
16GB memory) connected by a router, which supports 1Gbps Ethernet. We run
S and MB on the two machines. As MB usually processes multiple connections,
we experiment on several bandwidth capacities, ranging from 50Mbps to 1Gbps.
We use Throttle [26] to configure both bandwidth capacities and RTTs.

Parameters. We assume that all the words and keywords are represented by
8-byte sequences, and set the length of a truncated token to 5 bytes. In the
traffic inspection phase, the counters (of tokens) are refreshed every 1M tokens.
We instantiate AES with AES-128 and implement it with OpenSSL-1.1.1l that
supports AES-NI for fast token computation. We set s = 40 for 40-bit statistical
security to run experiments for MT-DPI.

4.2 Initialization Phase

The cost of MT-DPI is mainly due to multiplicative triple generation and circuit
evaluation. Since there is no data dependency across different invocations of AES
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circuits, the entire circuits of K · s AES instances can be finished in 40 rounds
(where K is the total number of keywords).

Thanks to the efficiency of Ferret OT [59] (about 0.5 bits and 4µs per random
OT), the majority of the triple generation cost is due to constructing multiplica-
tive triples from random OTs. The time cost of triple generation does not vary
much across different network settings. However, the cost of triple generation
exhibits a linear growth in terms of the statistical security parameter s, which
determines the number of AES circuits to be securely evaluated.

Compared with CE-DPI and BH-DPI (see Table 2), MT-DPI uses less band-
width, and we believe it is more suitable for network environments where real-
world middle-boxes are deployed (RTT≥20ms). Only when the network condi-
tion is ideal (very high bandwidth with at the same time very low round-trip
latency), CE-DPI and BH-DPI could have some performance advantages.

We measure the initialization cost of BH-DPI and CE-DPI. These include (1)
secure handle generation for the keywords, and (2) verification of the keywords.
Table 2 shows that CE-DPI costs about 31.1% less bandwidth comparing to BH-
DPI. Because of SHA3-256, 38,400 garbled AND gates must be computed per 15
keywords (960 bits); hence, 81.9K bytes of traffic is required per keyword. On the
other hand, in CE-DPI, each keyword requires computing 1 group exponentiation
and 2 additions, and sending one group element and two 16-byte envelopes. Thus,
roughly 4.2KB bandwidth is used.

We also note that CE-DPI spends much time computing the envelopes whereas
BH-DPI requires much time to transmit the garbled circuit. We find that as the
connection speed increases, BH-DPI outperforms CE-DPI for connections over
350Mbps.

Comparison with existing protocols Compared with BlindBox, we find that
the three new protocols are always better. That is because (1) BlindBox requires
each word to be verified by one hash, while the verification parts are optimized
in the new protocols; (2) the new protocols allow better utilization of AES-NI
instructions. Compared with other ECC-based protocols, AES-based protocols
do not have much benefits. However, the heavy cost in traffic inspection makes
ECC-based protocols much less attractive and almost impractical.

4.3 Traffic Inspection Phase

We experimentally studied the benefit of AES-NI (used by MT-DPI, BH-DPI,
and CE-DPI) for traffic inspection. Since MT-DPI, BH-DPI, and CE-DPI run
identical traffic inspection algorithm, we use MT-DPI as a representative. The
per-token costs (averaged over 1M tokens) are 67.78 ns for MT-DPI and 241.04
ns for BlindBox. That is, MT-DPI’s traffic inspection runs 3.6x faster than Blind-
Box. BlindBox does not fully benefit from AES-NI because it uses a handle as
an AES key, which not only requires running the more expensive key sched-
ule frequently but also introduces data dependency that prevents the AES-NI
instructions from leveraging a fully pipelined execution.

We compare the AES-based protocols (MT-DPI, BlindBox) with ECC-based
protocols (e.g., PrivDPI, P2DPI and PE-DPI). For each token, ECC-based pro-
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tocols require S to compute at least one group multiplication, which is far more
expensive than AES operation. The cost for ECC-based protocols is at least 100x
more expensive for traffic inspection phase than AES-based ones, which makes
the ECC-based protocols impractical even if they allow leaner initialization.

5 Related Work

Several ECC based approach, such as PrivDPI [46], Kim et al. [30] , Pine [45],
SEPM [7], ZKMB [23] can have fast initialization phase compared with AES-
based approaches. However, the inspection phase are their main drawbacks which
make them almost impossible to launch.

Several TLS extensions, including mcTLS [43], maTLS [33], and others [36,
39, 47], have been proposed for enabling middleboxes to perform DPI within
TLS sessions. With these protocols, endpoints can authenticate middleboxes and
grant them permission to read (or write) all (or part) of the packets. Unlike these
TLS extensions, our scheme does not allow middleboxes to learn the plaintext.

Systems such as mbTLS [42], SGXBox [25], and others [24, 50], relied on
trusted hardware like Intel SGX [1]. The basic idea is to let either one of the
endpoints perform remote attestation to verify the middleboxes’ integrity and
sends cryptographic keys to the enclave. In comparison, our scheme does not
require special trusted hardware.

There are other related approaches, such as Yuan et.al [61], BlindIDS [9],
EndBox [21], SEST [15], Lai et.al [31], EV-DPI [51], PE-DPI [34], Embark [32],
SplitBox [4], SPABox [19] and some machine learning approaches [58, 2, 6, 3]
that try to analyze the encrypted contents to find some features. However, they
either have a weaker threat assumption, (e.g., semi-honest MB, trusted Gateway,
isolated two MBs) or have efficiency shortcomings (e.g., using curves to generate
tokens, using look-up methods or using a public key to verify handles).

6 Conclusion

We studied efficient privacy-preserving keyword deep packet inspection proto-
cols for network middleboxes. Through a close-up analysis of BlindBox[53], we
proposed three new protocols MT-DPI, CE-DPI and BH-DPI that reduce the
overhead and address vulnerabilities of lacking keyword verification. We im-
plement and evaluate these protocols and compare them with BlindBox. Our
experiment results show that they can outperform all prior protocols.
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A Integration with TLS

Table 3. Performance Evaluation of MT-DPI Integrated with TLS.

RTT (S– MB, <1ms) RTT (S– MB, 20ms) RTT (S– MB, 200ms)

SplitTLS BlindBox MT-DPI SplitTLS BlindBox MT-DPI SplitTLS BlindBox MT-DPI

Elapsed Time to Retrieve Data (in ms)

One Packet (1K) 0.68 3.35 2.87 40.88 42.77 42.42 400.79 403.28 402.72

One TLS Record (16K) 0.78 12.64 4.24 41.18 51.53 44.02 401.07 412.37 404.11

CPU Processing Overhead of S (in ms)

One Packet (1K) 0.02 1.16 0.51 0.10 1.46 0.84 0.08 1.60 0.87

One TLS Record (16K) 0.10 9.11 1.97 0.13 9.46 2.14 0.10 9.31 2.22

Since TLS is the most widely deployed end-to-end protocol, we integrate MT-
DPI into the TLS protocol by leveraging the TLS extension mechanism [16]. Our
main focus is to make MT-DPI run within the TLS protocol so that it can be
easily and immediately deployed without changes to applications.

We extended the TLS handshake protocol so that for S and R: (1) each has a
copy of the key used to generate tokens, and (2) each establishes a separate TLS
session with MB after authenticating the agreed MB between S and R. In addi-
tion, we instrument the TLS record protocol with the MT-DPI traffic inspection
phase. We have verified that no modifications are needed to the applications
by running our TLS extension with curl [12], Nginx [44] and Apache [13]). We
compare MT-DPI with SplitTLS [28] and BlindBox [53]. We choose SplitTLS
in our comparison because it is widely deployed in practice. For the size of the
data that S sends, we select 1.5K and 16K as the former is one packet size of
the Internet and the latter is the maximum length of the TLS message called
the TLS record. The experiment results are shown in Table 3.

Elapsed time to retrieve data. We measure the elapsed time from the time
when R requests a content from S to the time when R finally receives the content
after the inspection by MB. The experimental results show that MT-DPI is faster
than BlindBox in all the scenarios. With MT-DPI, the best scenario is that R
receives a data from S for one TLS record in the 20ms RTT case. MT-DPI is
14.57% faster than BlindBox.

Interestingly, MT-DPI does not inflate the elapsed time for data retrieval
compared with SplitTLS. It incurs only 3.77% of overhead for one packet and
6.90% for one TLS record that R receives from S with 20ms RTT.

CPU processing overhead. Since MT-DPI requires S to compute lots of
tokens, it may incur high CPU processing overhead. To quantify the overhead,
we evaluate CPU processing time while S gets a request message and sends
a response message with the corresponding tokens. Our numerical results show
that though MT-DPI requires relatively high processing overhead compared with
SplitTLS, it reduces the overhead of BlindBox. The main reason is that our
approach fully benefits from AES-NI, which makes the AES operation instantly
completed. Finally, the processing time decreased.


