Symmetric Encryption (Block Ciphers)

Yan Huang

Credit: David Evans (UVA)

Quiz - Pros and Cons of One-Time Pad

- Pros
 - 1
 - 2
- Cons
 - 1
 - 2

Quiz - Pros and Cons of One-Time Pad

Pros

- Perfect security
- Simple and efficient
- Cons
 - No Integrity
 - Key size no less than message size
 - No security when reusing the key

Problems with One-Time Pad

- Key must be as long as the plaintext
 - Impractical in most realistic scenarios
 - Still used for diplomatic and intelligence traffic
- Does not guarantee integrity
 - One-time pad only guarantees confidentiality
 - Attacker cannot recover plaintext, but can easily change it to something else
- Insecure if keys are reused
 - Attacker can obtain XOR of plaintexts

Reducing Key Size

- What to do when it is infeasible to pre-share huge random keys?
 Next lecture...
 - Change the security definition to align with some weaker but still useful threat model
 - Use special cryptographic primitives: block ciphers, stream ciphers
 - Single key can be re-used (with some restrictions)

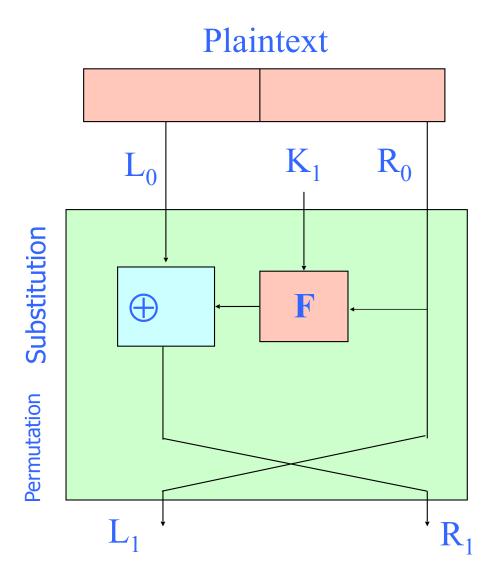
This lecture...

Ciphers

- Stream Ciphers
 - Encrypts small (bit or byte) units one at a time
- Block Ciphers
 - Operate on a single chunk of plaintext, for example, 64 bits for DES, 128 bits for AES
 - Same key is reused for each block (i.e., keys can be shorter than the messages)
- Without the key, result should look like a random permutation

Block Cipher

- Not impossible to break, just very expensive
 - **Unproven Assumption!** There is no algorithm to break the cipher more efficient than brute-force, i.e., enumerate every possible key
 - Time and cost of breaking the cipher exceed the value and/or useful lifetime of protected information

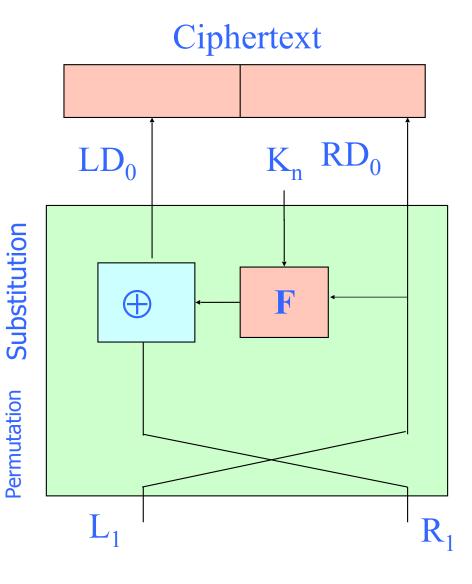

Ideal Block Cipher

- 64 bit blocks
- 2⁶⁴ possible plaintext blocks, must have at least
 2⁶⁴ corresponding ciphertext blocks
 - There are 2⁶⁴! possible permutations
- Why not just create a random permutation?
 - Need a log (2⁶⁴ !) bits key(>1.15 x 10²¹ bits)
 - Occupying a \$7-billion disc drive
 - Need to distribute new key if compromised
- Approximate ideal random mapping using components controlled by a key

A Bit of Block Cipher History

- Playfair and variants (from 1854 until WWII)
- Feistel structure
 - "Ladder" structure: split input in half, put one half through the round and XOR with the other half
 - After 3 random rounds, ciphertext indistinguishable from a random permutation
- DES: Data Encryption Standard
 - Invented by IBM, issued as federal standard in 1977
 - 64-bit blocks, 56-bit key + 8 bits for parity
 - Very widely used (usually as 3DES) until recently
 - 3DES: DES + inverse DES + DES (with 2 or 3 different keys)

Feistel Cipher Structure


Round

 $L_0 =$ left half of plaintext $R_0 =$ right half of plaintext

 $L_i = R_{i-1}$ $R_i = L_{i-1} \bigoplus F(R_{i-1}, K_i)$

 $C = L_n || R_n$ n is number of rounds

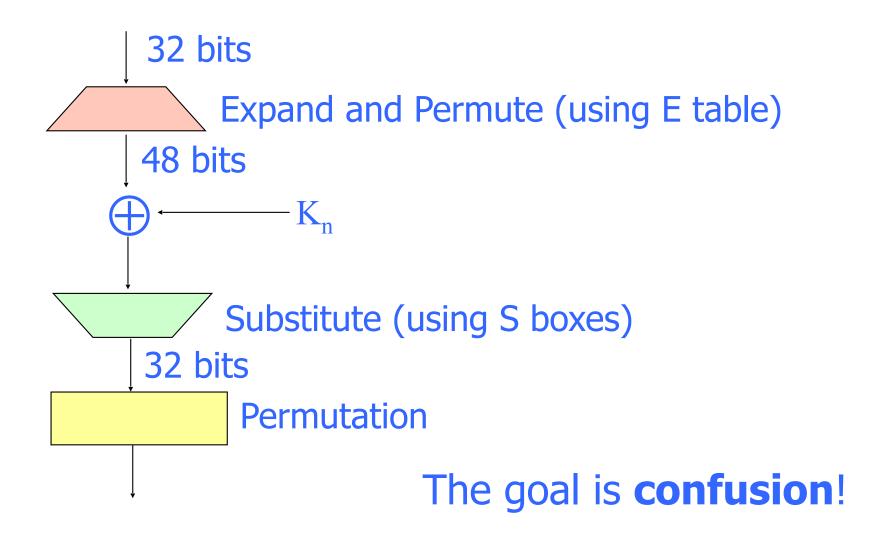
Decryption

 $LD_n =$ left half of ciphertext $RD_n =$ right half of ciphertext

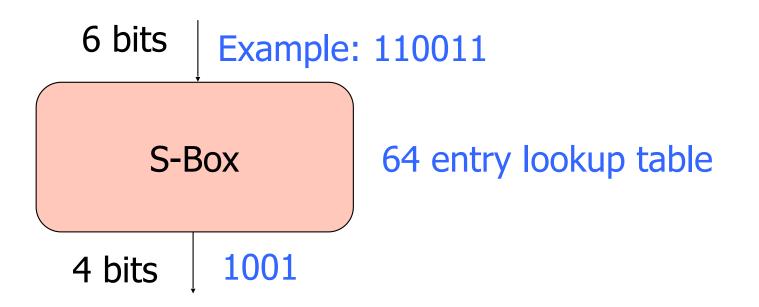
$$RD_{i} = LD_{i+1}$$
$$LD_{i} = LD_{i+1}$$
$$\bigoplus F(LD_{i+1}, K_{n-i+1})$$

 $P = LD_0 || RD_0$ n is number of rounds

- What are the requirements on F?
 - For decryption to work: none!
 - For security:
 - Hide patterns in plaintext
 - Hide patterns in key
 - Coming up with a good F is hard


DES

- NIST (then NBS) sought standard for data security (1973)
- IBM's Lucifer only reasonable proposal
- Modified by NSA
 - Changed S-Boxes
 - Reduced key from 128 to 56 bits
- Adopted as standard in 1976


DES Algorithm

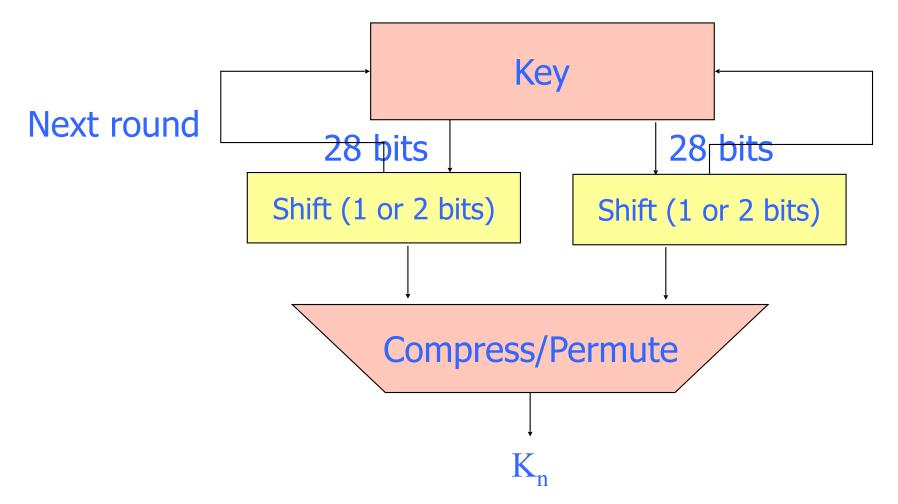
- Feistel cipher with added initial permutation
- Complex choice of F
- 16 rounds
- 56-bit key, shifts and permutations produce 48bit subkeys for each round

DES's F

Critical to security NSA changed choice of S-Boxes Only non-linear step in DES $S(11) \neq S(01) + S(10)$

DES Avalanche

Input:	*	1
Permuted:	**	1
Round 1:	**	1
Round 2:	.****	5
Round 3:	.**.**.*.*.*.*.*.	18
Round 4:	· · * · * * * * * · * · * · * · * · · · · * · * · * · * · * · * · * · * · * · * · * · * · * · * · * · * · * · *	28
Round 5:	* *	29
Round 6:	····*··*····*·*···*·*··*··*··*··*··*··*	26
Round 7:	*****	
Round 8:	* * * * ** * * ** * ******	
Round 9:	*** * *** * ** * ****	
Round 10:	* * . * . * . * . * . * . * * * . * . *	
Round 11:	· · ****** · · · · * · ****** · · · * · · * · * · * · * · * · * · * · * · * · * · * · * · * · * · * · * · · · *	
Round 12:	* * * * * . * . * . * . * * * * * * * * * * * * * * * * *	
	** . * *	
Round 14:	* ** * * . * . ** . * ** . ** . ** . * * ** **	
Round 15:	** .**.*.**.**.**.*.**.**.**.**	
	·*··*·*··*··*·**···	
Output:	***.*.********.**.**.*.****.*	


Source: Willem de Graaf, http://www-groups.dcs.st-and.ac.uk/~wdg/slides/node150.html

Key Schedule

- Need 16 48-bit keys
 - Best security: just use 16 independent keys
 - 768 key bits
- 56-bit key used
 - Represented by 8 bytes (1 parity bit per byte)
 - Produce 48-bit round keys by shifting and permuting

DES Key Schedule

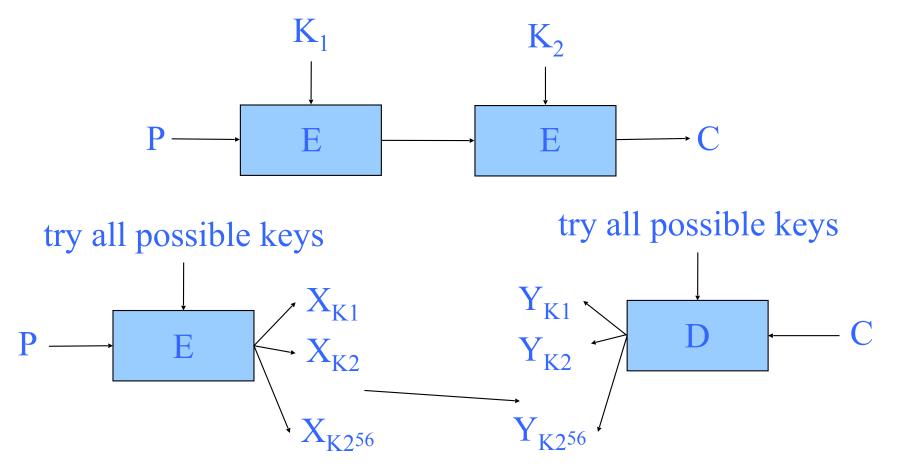
56 bits

Cracking DES

90B keys per second Cost < \$250K (in 1998) 56 hours to solve RSA DES Challenge

Breaking DES by Brute Force

- RSA DES challenges:
 - 1997: 96 days (using 70,000 machines)
 - Feb 1998: 41 days (distributed.net)
 - July 1998: 56 hours (custom hardware)
 - January 1999: 22 hours (EFF + distributed.net)
 245 Billion keys per second
 - May 2005, NIST withdraw DES (FIPS 46-3)
 - Nov 2008, <1 day (FPGA-based RIVYERA machine, \$10,000 hardware cost)
- NSA can probably crack DES routinely (but they won't admit it)


Double DES?

• $C = E_{K2} (E_{K1} (P))$

• Effective key size of Double DES? = $2^{56} * 2^{56} = 2^{112}$

WRONG!

Known Plaintext Attack

One $X_{Ki} = Y_{Kj}$ means $K_1 = K_i$ and $K_2 = K_j$

Meet-in-the-Middle Attack

- $C = E_{K2} (E_{K1} (P))$
- $X = E_{K1}(P) = D_{K2}(C)$
- Brute force attack (given one P/C pair): calculate E_{K1} (P) for all keys (2⁵⁶ work) calculate D_{K2} (C) for all keys (2⁵⁶ work) the match gives the keys
- Total work = $2 * 2^{56} + 56 * 2^{56} = 58 * 2^{57}$

Hmmm...maybe thrice?

2-Key Triple DES

- $C = E_{K1} (D_{K2} (E_{K1} (P)))$
- Why D_{K2} not E_{K2}?
 - Backwards compatibility with DES
 - If K1 = K2: C = $E_{K1} (D_{K1} (E_{K1} (P))) = E_{K1} (P)$
- Actual key size = 56 + 56 bits = 112 bits
- Meet-in-the-middle?
 - $X = E_{K1}(P) = D_{K1}(E_{K2}(C))$

 2^{56} need to try 2^{112}

How secure is Triple-DES

- Brute force search: 2¹¹² keys
 - Best DES attack: 245 B keys/second
 - $\approx 6.7 \times 10^{14}$ years (compared to 22 hours)
 - 10¹¹ years = total lifetime of universe (closed universe theory)
- Best known attack reduces to 2^{120-log}2ⁿ
 - n = number of known P-C pairs
 - n = 2⁶⁴, work is 2⁵⁶

Realistic?

3-Key Triple DES

- $C = E_{K3} (D_{K2} (E_{K1} (P)))$
- H(K) = 168
- Used by PGP, S/MIME
- How much work to brute-force?
 - Meet-in-the-middle:

$$X = D_{K3} (C) = D_{K2} (E_{K1} (P))$$
256 + 2¹¹²