
Web Security
The Same Origin Policy

Credits: slides adapted from Stanford and Cornell Tech

Yan Huang

2

Browser and Network

Browser

Network

OS

Hardware

websiterequest

reply

3

Website Storing Info In Browser

 A cookie is a file created by a website to store
information in the browser

Browser

•

Server

POST login.cgi
username and pwd

Browser

•

Server

GET restricted.html
Cookie: NAME=VALUE

HTTP is a stateless protocol; cookies add state

If expires = NULL,
this session only

HTTP Header:
Set-cookie: NAME=VALUE ;
 domain = (who can read) ;
 expires = (when expires) ;
 secure = (send only over HTTPS)

Content Comes from Many Sources

◆Scripts
<script src=“//site.com/script.js”> </script>

◆ Frames
<iframe src=“//site.com/frame.html”> </iframe>

◆Stylesheets (CSS)
 <link rel=“stylesheet” type="text/css” href=“//site.com/theme.css" />

◆Objects (Flash) - using swfobject.js script
<script> var so = new SWFObject(‘//site.com/flash.swf', …);
 so.addParam(‘allowscriptaccess', ‘always');
 so.write('flashdiv');
</script>

4

Allows Flash object to communicate with external
scripts, navigate frames, open windows

Browser Sandbox

◆Goal: safely execute JavaScript code
 provided by a website

• No direct file access, limited access to OS, network,
browser data, content that came from other websites

◆Same origin policy
• Can only access properties of documents and

windows from the same domain, protocol, and port
◆User can grant privileges to signed scripts

• UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

5

•

•

Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if A and B have
same (protocol, domain, port)

Same Origin Policy (SOP) for cookies:

Generally, based on 
([protocol], domain, path)

optional

protocol://domain:port/path?params

Same Origin Policy

6

HTTP Header:
Set-cookie: NAME=VALUE;
 domain = (when to send);
 path = (when to send);
 secure = (only send over HTTPS);
 expires = (when expires);
 HttpOnly

Setting Cookies by Server

7

scope

Delete cookie by setting “expires” to date in past

Default scope is domain and path of setting URL

Browser

•

Server

GET …

if expires=NULL:
this session only

•

Viewing Cookies in Browser

8

◆HTTP cookies: max 4K, can delete from browser
◆ Flash cookies / LSO (Local Shared Object)

• Up to 100K
• No expiration date
• Cannot be deleted by browser user

◆ Flash language supports XMLSockets
• Can only access high ports in Flash app’s domain
• Scenario: malicious Flash game, attacker runs a proxy

on a high port on the game-hosting site…
Consequences?

Flash

9

Both cookies stored in browser’s cookie jar,
both are in scope of login.site.com

cookie 1
name = userid
value = test
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = test123
domain = .site.com
path = /
secure

distinct cookies

Cookie Identification

10

Cookies are identified by (name, domain, path)

resource domain URL has to be a suffix of
the principal domain URL

(except top-level domains (TLD))

 Which cookies can be set by login.site.com?

 login.site.com can set cookies for all of .site.com  

 but not for another site or TLD
 Problematic for sites like .indiana.edu

path: anything

allowed domains
login.site.com
 .site.com

disallowed domains
user.site.com
othersite.com
.com

SOP for Writing Cookies

11

✓
✗
✗

✗
✓

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain

• cookie-path is prefix of URL-path

• “secure” cookie if protocol=HTTPS

Goal: server only sees cookies in its scope

GET //URL-domain/URL-path
Cookie: NAME = VALUE

SOP for Sending Cookies

Browser

•

Server

12

Examples of Cookie SOP

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2

 (arbitrary order; in FF3 most specific first)
13

Cookie Protocol Issues

◆What does the server know about the cookie
received from the browser?

◆Server only sees Cookie: Name=Value
 … does not see cookie attributes (e.g., “secure”)
 … does not see which domain set the cookie

• RFC 2109 (cookie RFC) has an option for including
domain, path in Cookie header, but not typically
supported by browsers

14

◆Alice logs in at login.iu.edu
• login.iu.edu sets session-id cookie for .iu.edu

◆Alice visits evil.iu.edu
• Overwrites .iu.edu session-id cookie with session-id of

user “badguy” - not a violation of SOP! (why?)
◆Alice visits i433.iu.edu to submit homework

• i433.iu.edu thinks it is talking to “badguy”
◆Problem: i433.iu.edu expects session-id from

login.iu.edu but cannot tell that session-id cookie
has been overwritten by a “sibling” domain

Who Set The Cookie?

15

Overwriting “Secure” Cookies

◆Alice logs in at https://www.google.com

◆Alice visits http://www.google.com
• Automatically, due to the phishing filter

◆Network attacker can inject into response
 Set-Cookie: LSID=badguy; secure

• Browser thinks this cookie came from http://
google.com, allows it to overwrite secure cookie

16

LSID, GAUSR are
“secure” cookies

Accessing Cookies via DOM

◆Same domain scoping rules as for sending
cookies to the server

◆document.cookie returns a string with all cookies
available for the document
• Often used in JavaScript to customize page

◆ Javascript can set and delete cookies via DOM
– document.cookie = “name=value; expires=…; ”
– document.cookie = “name=; expires= Thu, 01-Jan-70”

17

Path Separation Is Not Secure

Cookie SOP: path separation
 when the browser visits x.com/A,
 it does not send the cookies of x.com/B
 This is done for efficiency, not security!

DOM SOP: no path separation
 A script from x.com/A can read DOM of x.com/B

	 	 <iframe src=“x.com/B"></iframe>	

 alert(frames[0].document.cookie);
18

Frames

◆Window may contain frames from different
sources
• frame: rigid division as part of frameset
• iframe: floating inline frame

◆Why use frames?
• Delegate screen area to content from another source
• Browser provides isolation based on frames
• Parent may work even if frame is broken

<IFRAME SRC="hello.html" WIDTH=450 HEIGHT=100>
If you can see this, your browser doesn't understand IFRAME.
</IFRAME>

19

◆ Each frame of a page has an origin
• Origin = protocol://domain:port

◆ Frame can access objects from its own origin
• Network access, read/write DOM, cookies and localStorage

◆ Frame cannot access objects associated with other origins

•

A A

B

B

 A

Browser Security Policy for Frames

20

Mashups

21

iGoogle (Now Defunct)

22

Cross-Frame Scripting

◆ Frame A can execute a script that manipulates
arbitrary DOM elements of Frame B only if
Origin(A) = Origin(B)
• Basic same origin policy, where origin is identified by

(protocol, domain, port)
◆Some browsers used to allow any frame to

navigate any other frame
• Navigate = change where the content in the frame is

loaded from
• Navigation does not involve reading the frame’s old

content
23

Suppose the following HTML is hosted at site.com
◆Disallowed access

<iframe src="http://othersite.com"></iframe>
alert(frames[0].contentDocument.body.innerHTML)
alert(frames[0].src)

◆Allowed access

alert(images[0].height)
or
frames[0].location.href = “http://mysite.com/”

Frame SOP Examples

Navigating child frame is allowed,
but reading frame[0].src is not 24

Guninski Attack

window.open("https://www.google.com/...")window.open("https://www.attacker.com/...", "awglogin")

awglogin

If bad frame can navigate sibling frames, attacker gets password! 25

Gadget Hijacking in Mashups

top.frames[1].location = "http:/www.attacker.com/...“;
top.frames[2].location = "http:/www.attacker.com/...“;

...

26

Gadget Hijacking

27

Modern browsers only allow a frame to navigate its “descendant” frames

