
Web Security Model and 
JavaScript Rootkits

Credits: slides adapted from 
Stanford and Cornell Tech

Yan Huang



Browser	and	Network

Browser

•

Network
OS

Hardware

websiterequest

reply



HTTP:	HyperText	Transfer	Protocol

◆Used	to	request	and	return	data		
• Methods:	GET,	POST,	HEAD,	… 

◆ Stateless	request/response	protocol	
• Each	request	is	independent	of	previous	requests	
• Statelessness	has	a	significant	impact	on	design	and	
implementation	of	applications		

◆ Evolution	
• HTTP	1.0:	simple		
• HTTP	1.1:	more	complex



GET /default.asp HTTP/1.0 
Accept: image/gif, image/x-bitmap, image/jpeg, */* 
Accept-Language: en 
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) 
Connection: Keep-Alive 
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT 

HTTP	Request

Method File HTTP version Headers

Data – none for GET
Blank line



HTTP/1.0 200 OK 
Date: Sun, 21 Apr 1996 02:20:42 GMT 
Server: Microsoft-Internet-Information-Server/5.0  
Connection: keep-alive 
Content-Type: text/html 
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT 
Content-Length: 2543 
  
<HTML> Some data... blah, blah, blah </HTML>

HTTP	Response

HTTP version Status code Reason phrase Headers

Data



Website	Storing	Info	In	Browser

			A	cookie	is	a	file	created	by	a	website	to	store	
information	in	the	browser

Browser

•

Server

POST login.cgi 
username and pwd

Browser

•

Server

GET restricted.html
Cookie: NAME=VALUE

HTTP is a stateless protocol; cookies add state

•If expires = NULL,  
this session only

HTTP Header: 
Set-cookie: NAME=VALUE ; 
 domain = (who can read) ; 
 expires = (when expires) ; 
 secure = (send only over HTTPS)



What	Are	Cookies	Used	For?

◆Authentication	
• The	cookie	proves	to	the	website	that	the	client	previously	
authenticated	correctly	

◆ Personalization	
• Recognize	the	user	from	a	previous	visit	and	customize	the	
web	pages	

◆ Tracking	
• Follow	the	user	from	site	to	site;	learn	his/her	browsing	
behavior,	preferences,	and	so	on



Goals	of	Web	Security

◆ Browse	the	Web	Safely		
• A	malicious	website	cannot	steal	or	modify	information	
from	legitimate	sites	to	harm	the	users	…	

• …	even	if	visited	concurrently	with	a	legitimate	site	-		in	
separate	browser	windows,	tabs,	or	iframes	

◆ Support	secure	Web	applications	
• Applications	delivered	over	the	Web	should	have	the	same	
security	properties	we	require	for	standalone	applications	
(what	are	these	properties?)



All	of	These	Should	Be	Safe

◆ Safe	to	visit	an	evil	website	

◆ Safe	to	visit	two	pages		
			at	the	same	time	

◆ Safe	delegation



Two	Sides	of	Web	Security

◆Web	browser	
• Responsible	for	securely	confining	Web	content	presented	
by	visited	websites	

◆Web	applications	
• Online	merchants,	banks,	blogs,	Google	Apps	…	
• Mix	of	server-side	and	client-side	code	

– Server-side	code	written	in	PHP,	Ruby,	ASP,	JSP…	runs	on	the	Web	
server	

– Client-side	code	written	in	JavaScript…	runs	in	the	Web	browser	
• Many	potential	bugs:	XSS,	XSRF,	SQL	injection



Where	Does	the	Attacker	Live?

Browser

•

OS

Hardware

website

Web 
attacker

Network 
attacker

Malware 
attacker



Web	Attacker

◆ Controls	a	malicious	website	(attacker.com)	
• Can	even	obtain	an	SSL/TLS	certificate	for	his	site	($0)	

◆ Attracting	user	visits	to	attacker.com	
• Phishing	email,	enticing	content,	search	results,	placed	by	an	
ad	network,	blind	luck	…	

• Attacker’s	Facebook	app	

◆ Attacker	has	no	other	access	to	user	machine!	
◆ Variation:	“iframe	attacker”	

• An	iframe	with	malicious	content	included	in	an	otherwise	
honest	webpage	
– Syndicated	advertising,	mashups,	etc.



Dangerous	Websites

◆Microsoft’s	2006	“Web	patrol”	study	identified	
hundreds	of	URLs	that	could	successfully	exploit	
unpatched	Windows	XP	machines	
• Many	interlinked	by	redirection	and	controlled	by	the	same	
major	players	

◆ “But	I	never	visit	risky	websites”	
• 11	exploit	pages	are	among	top	10,000	most	visited	
• Trick:	put	up	a	page	with	popular	content,	get	into	search	
engines,	page	then	redirects	to	the	exploit	site	
– One	of	the	malicious	sites	was	providing	exploits	to	75	“innocuous”	
sites	focusing	on	(1)	celebrities,	(2)	song	lyrics,	(3)	wallpapers,	(4)	video	
game	cheats,	and	(5)	wrestling



OS	vs.	Browser	Analogies

◆ Primitives	
• System	calls	
• Processes	
• Disk	

◆ Principals:	Users	
• Discretionary	access	control	

◆ Vulnerabilities	
• Buffer	overflow	
• Root	exploit

◆ Primitives 
• Document object model 
• Frames 
• Cookies and localStorage 

◆ Principals: “Origins” 
• Mandatory access control 

◆ Vulnerabilities 
• Cross-site scripting 
• Universal scripting

Operating system Web browser



ActiveX

◆ ActiveX	“controls”	are	compiled	binaries	that	reside	on	
the	client	machine	
• Downloaded	and	installed,	like	any	other	executable	
• Activated	by	an	HTML	object	tag	on	the	page	
• Run	as	native	binaries,	not	interpreted	by	the	browser	

◆ Security	model	relies	on	three	components	
• Digital	signatures	to	verify	the	source	of	the	control	
• Browser	policy	can	reject	controls	from	network	zones	
• Controls	can	be	marked	by	author	as	“safe	for	initialization”	
or	“safe	for	scripting”	

Once	accepted,	installed	and	started,	no	control	over	execution!



Installing	ActiveX	Controls

If you install and run, no further control over the code, 
same access as any other program you installed



ActiveX	Risks

◆ From	MSDN:	
• “An	ActiveX	control	can	be	an	extremely	insecure	way	to	provide	a	

feature.	Because	it	is	a	Component	Object	Model	(COM)	object,	it	can	do	
anything	the	user	can	do	from	that	computer.	It	can	read	from	and	write	
to	the	registry,	and	it	has	access	to	the	local	file	system.	From	the	
moment	a	user	downloads	an	ActiveX	control,	the	control	may	be	
vulnerable	to	attack	because	any	Web	application	on	the	Internet	can	
repurpose	it,	that	is,	use	the	control	for	its	own	ends	whether	sincere	or	
malicious.”		

◆How	can	a	control	be	“repurposed?”	
• Once	a	control	is	installed,	any	webpage	that	knows	the	
control’s	class	identifier	(CLSID)	can	access	it	using	an	HTML	
object	tag	embedded	in	the	page



Browser:	Basic	Execution	Model

◆ Each	browser	window	or	frame:	
• Loads	content	
• Renders	

– Processes	HTML	and	executes	scripts	to	display	the	page	
– May	involve	images,	subframes,	etc.		

• Responds	to	events	

◆ Events	
• User	actions:	OnClick,	OnMouseover	
• Rendering:	OnLoad,	OnUnload	
• Timing:	setTimeout(),	clearTimeout()	



HTML	and	Scripts

<html>	
						…	
<p>	The	script	on	this	page	adds	two	numbers	
<script>	
	 	 var	num1,	num2,	sum	
	 	 num1	=	prompt("Enter	first	number")	
	 	 num2	=	prompt("Enter	second	number")	
	 	 sum	=	parseInt(num1)	+	parseInt(num2)	
	 	 alert("Sum	=	"	+	sum)	
</script>	
	 	 …	
</html>

Browser receives content,  

displays HTML and executes scripts





Event-Driven	Script	Execution

<script type="text/javascript"> 
     function whichButton(event) { 
  if (event.button==1) { 
   alert("You clicked the left mouse button!") } 
  else { 
   alert("You clicked the right mouse button!")  
   }} 
</script> 
… 
<body onmousedown="whichButton(event)"> 
… 
</body>

Function gets executed 

when some event happens

Script defines a 

page-specific function 





JavaScript

◆ “The	world’s	most	misunderstood	programming	
language”	

◆ Language	executed	by	the	Web	browser	
• Scripts	are	embedded	in	webpages	
• Can	run	before	HTML	is	loaded,	before	page	is	viewed,	
while	it	is	being	viewed,	or	when	leaving	the	page	

◆Used	to	implement	“active”	webpages	and	Web	
applications	

◆ A	potentially	malicious	webpage	gets	to	execute	some	
code	on	user’s	machine



JavaScript	History

◆Developed	by	Brendan	Eich	at	Netscape		
• Scripting	language	for	Navigator	2	

◆ Later	standardized	for	browser	compatibility	
• ECMAScript	Edition	3	(aka	JavaScript	1.5)	

◆ Related	to	Java	in	name	only	
• Name	was	part	of	a	marketing	deal	
• “Java	is	to	JavaScript	as	car	is	to	carpet”	

◆Various	implementations	available	
• SpiderMonkey,	RhinoJava,	others



Common	Uses	of	JavaScript

◆ Page	embellishments	and	special	effects	
◆Dynamic	content	manipulation	
◆ Form	validation	
◆Navigation	systems	
◆Hundreds	of	applications	

• Google	Docs,	Google	Maps,	dashboard	widgets	in	Mac	OS	
X,	Philips	universal	remotes	…



JavaScript	in	Webpages

◆ Embedded	in	HTML	as	a	<script>	element	
• Written	directly	inside	a	<script>	element	

– <script>	alert("Hello	World!")	</script>	
• In	a	file	linked	as	src	attribute	of	a	<script>	element	

<script	type="text/JavaScript"	src=“functions.js"></script>	

◆ Event	handler	attribute	
<a	href="http://www.yahoo.com"	onmouseover="alert('hi');">	

◆ Pseudo-URL	referenced	by	a	link	
<a	href=“JavaScript:	alert(‘You	clicked’);”>Click	me</a>



Document	Object	Model	(DOM)

◆HTML	page	is	structured	data	
◆DOM	is	object-oriented	representation	of	the	
hierarchical	HTML	structure	
• Properties:		document.alinkColor,	document.URL,	
document.forms[	],	document.links[	],	…	

• Methods:		document.write(document.referrer)	
– These	change	the	content	of	the	page!	

◆Also	Browser	Object	Model	(BOM)	
• Window,	Document,	Frames[],	History,	Location,	Navigator	
(type	and	version	of	browser)



Browser	and	Document	Structure	

W3C standard differs from models 
supported in existing browsers



Reading	Properties	with	JavaScript

Sample	script	

• Example	1	returns	"ul"	
• Example	2	returns	"null"	
• Example	3	returns	"li"	
• Example	4	returns	"text"	

– A	text	node	below	the	"li"	which	holds	the	actual	text	data	as	its	value	
• Example	5	returns	"	Item	1	"	

1. document.getElementById('t1').nodeName 
2. document.getElementById('t1').nodeValue 
3. document.getElementById('t1').firstChild.nodeName 
4. document.getElementById('t1').firstChild.firstChild.nodeName 
5. document.getElementById('t1').firstChild.firstChild.nodeValue

<ul id="t1"> 
<li> Item 1 </li> 
</ul>

Sample HTML



Page	Manipulation	with	JavaScript

◆ Some	possibilities	
• createElement(elementName)	
• createTextNode(text)	
• appendChild(newChild)	
• removeChild(node)	

◆ Example:	add	a	new	list	item

 var list = document.getElementById('t1') 
 var newitem = document.createElement('li') 
 var newtext = document.createTextNode(text) 
 list.appendChild(newitem) 
 newitem.appendChild(newtext)

<ul id="t1"> 
<li> Item 1 </li> 
</ul>

Sample HTML



JavaScript	Bookmarks	(Favelets)

◆ Script	stored	by	the	browser	as	a	bookmark	
◆ Executed	in	the	context	of	the	current	webpage	
◆ Typical	uses:	

• Submit	the	current	page	to	a	blogging	or	bookmarking	
service	

• Query	a	search	engine	with	highlighted	text	
• Password	managers	

– One-click	sign-on	
– Automatically	generate	a	strong	password	
– Synchronize	passwords	across	sites

Must execute  
only inside the  
“right” page



Root-Kits

A	rootkit	modifies	the	user-program-accessible	
behavior	of	the	operating	system	and	escapes	
detection	by	interception	of	the	operating	
system’s	reflection	APIs	
– E.g.,	removing	itself	from	the	operating	system’s	
list	of	running	processes

JavaScript Rootkits?



A	JavaScript	“Rootkit”
[“Rootkits for JavaScript environments”]

A malicious webpage

JavaScript bookmark

if (window.location.host == "bank.com") 
   doLogin(password);

Malicious page defines a global variable named 
“window” whose value is a fake “location” object 
var window = { location: { host: "bank.com" } };

Browsers let web pages 
override native objects to 
help with compatibility.



Let’s	Detect	Fake	Objects
[“Rootkits for JavaScript environments”]

A malicious webpage

JavaScript bookmark

window.location = “#”; 
If window.location is a native object, 
new value will be “https://bank.com/login#”

window.__defineGetter__("location", 
     function () { return "https://bank.com/login#"; }); 
window.__defineSetter__("location", function (v) { });



Let’s	Detect	Emulation
[“Rootkits for JavaScript environments”]

A malicious webpage

JavaScript bookmark

typeof 
obj.__lookupGetter__(propertyName) !== 
"undefined"

Attacker emulates reflection API itself! 
Object.prototype.__lookupGetter__ = 
function() { ... };

typeOf  and !== avoid asking for the value of 
“undefined” (could be redefined by attacker!)

Use reflection API



Defenses	to	Javascript	Rootkits

– Store	a	short	master	secret	in	a	Secure	cookie	for	
pwdmngr.com	

– The	bookmarklet	initiates	a	network	request	to	
https://pwdmngr.com	by	adding	a	<script>	tag	to	
the	current	page	

– Must	authenticate	the	web	site	receiving	the	
password	
– Referral	header	through	HTTPS


