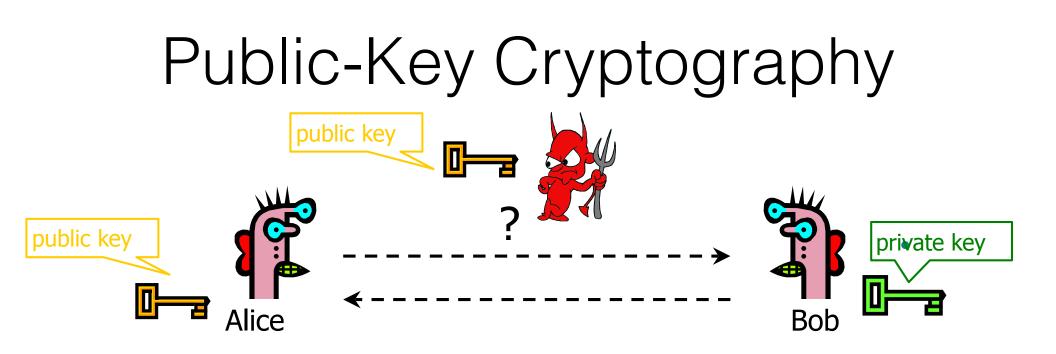
Public Key Cryptography (I)

The era of "electronic mail" [Potter1977] may soon be upon us; we must ensure that two important properties of the current "paper mail" system are preserved: (a) messages are private, and (b) messages can be signed.

R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. January 1978. Yan Huang

Credits: David Evans, Vitaly Shmatikov



<u>Given</u>: Everybody knows Bob's public key

- How is this achieved in practice? Only Bob knows the corresponding private key

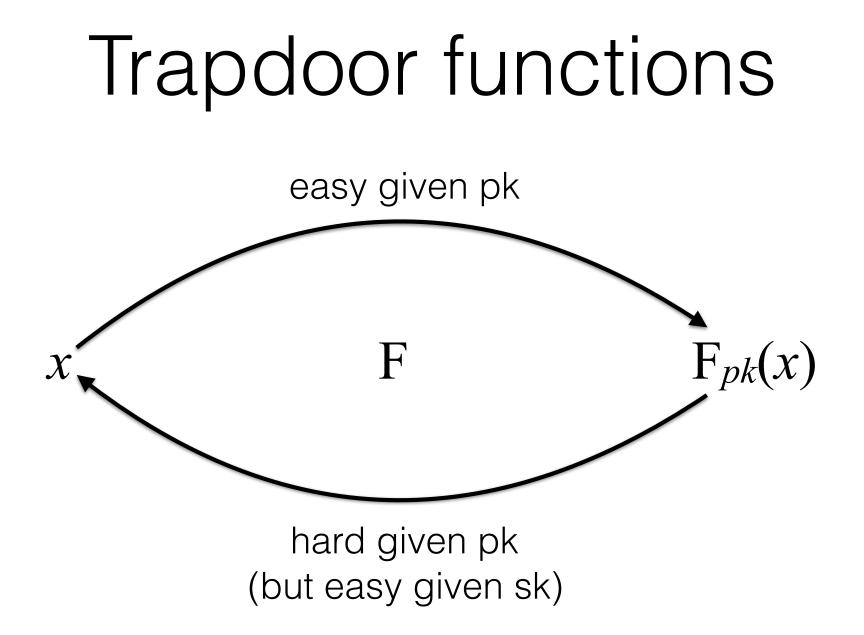
Goals: 1. Alice wants to send a message that only Bob can read 2. Bob wants to send a message that only Bob could have written

Applications of Public-Key Crypto

- Public key crypto as a solution to key management
- Encryption for confidentiality
 - + Anyone can encrypt a message
 - + Only someone who knows the private key can decrypt
 - + Secret keys are only stored in one place
- Digital signatures for authentication
 - + Only someone who knows the private key can sign
- Session key establishment
 - + Exchange messages to create a secret session key
 - + Then switch to symmetric cryptography (why?)

Public-Key Encryption

- Key generation: *computationally easy* to generate a pair (public key PK, private key SK)
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext M=D_{SK}(C) and private key SK, easy to compute plaintext M
 - + Infeasible to learn anything about M without SK
 - + <u>Trapdoor</u> function: Decrypt(SK,Encrypt(PK,M))=M



Some Number Theory Facts

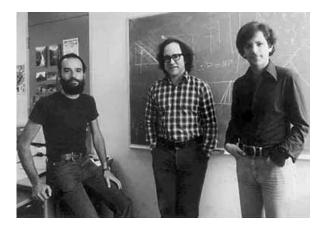
- Euler totient function $\varphi(n)$ where $n \ge 1$, is the number of integers in the interval [1,n] that are relatively prime to n
 - x and y are relatively prime if gcd(x, y) = 1

-
$$\varphi(n)$$
 is also the *size* of \mathbb{Z}_{n}^{*}
 $\mathbb{Z}_{7}^{*} = \{1, 2, 3, 4, 5, 6\}, \quad \varphi(7) = \|\mathbb{Z}_{7}^{*}\| = 6$
 $\mathbb{Z}_{15}^{*} = \{1, 2, 4, 7, 8, 11, 13, 14\}, \quad \varphi(15) = \varphi(3 \cdot 5) = \|\mathbb{Z}_{15}^{*}\| = (3 - 1) \cdot (5 - 1) = 8$
 $\varphi(n) = n \prod_{p \mid n, prime} (1 - 1/p)$

• Euler's theorem:

If
$$a \in \mathbb{Z}_n^*$$
, then $a^{\phi(n)} \equiv 1 \mod n$

RSA Cryptosystem



• Key generation:

[Rivest, Shamir, Adleman 1977]

- + Generate large primes p, q
 - At least 1024 bits each... need primality testing!
- + Compute n=pq
 - Note that $\varphi(n)=(p-1)(q-1)$
- + Choose small e, relatively prime to $\varphi(n)$
 - Typically, e=3 (may be vulnerable) or $e=2^{16}+1=65537$ (why?)
- + Compute unique d such that $ed \equiv 1 \mod \varphi(n)$
- + Public key = (n,e); private key = d
- Encryption of m: c = m^e mod n
- Decryption of c: $c^d \mod n = (m^e)^d \mod n = m$

Why RSA Decryption Works

Because

 $e \cdot d \equiv 1 \mod \varphi(n),$ thus there exists integer k such that $e \cdot d = 1 + k \cdot \varphi(n)$ So $m^{ed} \equiv m^{1+k \cdot \varphi(n)} \equiv m \mod n.$ (Euler's theorem)

Why Is RSA Secure?

- RSA Problem: given c, n=pq, and e such that gcd(e, (p-1)(q-1))=1, find an eth root of c modulo n.
- RSA Assumption: there is no *efficient* algorithm to solve RSA problem.
- Factoring problem: given positive integer n=pq where p, q are large primes (thousands of bits), factor n.
- If factoring is easy, then RSA problem is easy, but may be possible to break RSA without factoring n