
Heap Overflows and
Double-Free Attacks

Yan Huang

Credits: Vitaly Shmatikov

Format Strings — Variable Arguments in C

◆ In C, can define a function with a variable number
of arguments
- Example: void printf(const char* format, …)

◆Examples of usage:

Format specification encoded by
special % characters

 %d,%i,%o,%u,%x,%X – integer argument
 %s – string argument
 %p – pointer argument (void *)
 Several others

Implementation of Variable Args

Special functions va_start, va_arg, va_end compute
arguments at run-time

printf has an internal
stack pointer

Frame with Variable Args

va_start computes
location on the stack
past last statically
known argument

va_arg(ap,type)
retrieves next arg
from offset ap

Format Strings in C

◆Proper use of printf format string:
 … int foo=1234;
 printf(“foo = %d in decimal, %X in hex”,foo,foo); …

This will print
 foo = 1234 in decimal, 4D2 in hex

◆Sloppy use of printf format string:
 … char buf[13]=“Hello, world!”;
 printf(buf);
 // should’ve used printf(“%s”, buf); …

If the buffer contains a format symbol starting with %, location
 pointed to by printf’s internal stack pointer will be interpreted
 as an argument of printf. This can be exploited to move
 printf’s internal stack pointer! (how?)

Writing Stack with Format Strings

◆%n format symbol tells printf to write the number of
characters that have been printed

 … printf(“Overflow this!%n”,&myVar); …

Argument of printf is interpreted as destination address
This writes 14 into myVar (“Overflow this!” has 14 characters)

◆What if printf does not have an argument?
 … char buf[16]=“Overflow this!%n”;
 printf(buf); …

Stack location pointed to by printf’s internal stack pointer will be
interpreted as address into which the number of characters will be
written!

Using %n to Mung Return Address

“… attackString%n”, attack code &RET

Overwrite location under printf’s stack
pointer with RET address;
printf(buffer) will write the number of
characters in attackString into RET

Buffer with attacker-supplied
input string

Number of characters in
attackString must be
equal to … what?

See “Exploiting Format String Vulnerabilities” for details

C has a concise way of printing multiple symbols: %Mx will print exactly 4M bytes (taking them
from the stack). Attack string should contain enough “%Mx” so that the number of characters

printed is equal to the most significant byte of the address of the attack code.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Overwrite a location on printf’s
internal stack with the address
of RET

Dynamic Memory on the Heap

◆Memory allocation: malloc(size_t n)

◆Memory deallocation: free(void * p)

Heap Overflow

◆Overflowing buffers on heap can change pointers
that point to important data
- Illegitimate privilege elevation: if program with overflow

has sysadm/root rights, attacker can use it to write into a
normally inaccessible file

Example: replace a filename pointer with a pointer into a memory
location containing the name of a system file (for example, instead
of temporary file, write into AUTOEXEC.BAT)

◆Sometimes can transfer execution to attack code
- Example: December 2008 attack on XML parser in

Internet Explorer 7 - see http://isc.sans.org/diary.html?
storyid=5458

Compiler-generated function pointers
(e.g., virtual method table in C++ or JavaScript code)

Suppose vtable is on the heap next to a string object:

data

vtable

Function Pointers on the Heap

ptr

Object T FP1
FP2
FP3

vtable

method #1

method #2

method #3

buf[256]

object T

Compiler-generated function pointers
(e.g., virtual method table in C++ code)

Suppose vtable is on the heap next to a string object:

FP2

Heap-Based Control Hijacking

ptr

data

FP1Object T

FP3
vtable

method #1

method #2

method #3

buf[256]

object T

vtable

shell 
code

Problem?
 <SCRIPT language="text/javascript">
 shellcode = unescape("%u4343%u4343%...");
 overflow-string = unescape(“%u2332%u4276%...”);

 cause-overflow(overflow-string); // overflow buf[]
 </SCRIPT?

buf[256]

object T

vtable

shell 
code

Where will the browser place
the shellcode on the heap???

Heap Spraying

◆ Force JavaScript JIT (“just-in-time” compiler) to fill
heap with executable shellcode, then point SFP or
vtable ptr anywhere in the spray area

heap

execute enabled execute enabled

execute enabledexecute enabled

execute enabled execute enabled

◆Use a sequence of JavaScript allocations and free’s
to make the heap look like this:

◆Allocate vulnerable buffer in JavaScript and
 cause overflow

Placing Vulnerable Buffer
[Safari PCRE exploit, 2008]

object O

free blocks

heap

Dynamic Memory Management in C

◆Memory allocation: malloc(size_t n)
- Allocates n bytes and returns a pointer to the allocated

memory; memory not cleared
- Also calloc(), realloc()

◆Memory deallocation: free(void * p)
- Frees the memory space pointed to by p, which must

have been returned by a previous call to malloc(),
calloc(), or realloc()

- If free(p) has already been called before, undefined
behavior occurs

- If p is NULL, no operation is performed

Memory Management Errors

◆ Initialization errors
◆ Failing to check return values
◆Writing to already freed memory
◆ Freeing the same memory more than once
◆ Improperly paired memory management functions

(example: malloc / delete)
◆ Failure to distinguish scalars and arrays
◆ Improper use of allocation functions
All result in exploitable vulnerabilities

Doug Lea’s Memory Allocator

◆ The GNU C library and most versions of Linux are
based on Doug Lea’s malloc (dlmalloc) as the
default native version of malloc

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

P

Size or last 4 bytes of prev.

Size

User data

Last 4 bytes of user data

P

Allocated chunk Free chunk

••

Free Chunks in dlmalloc

◆Organized into circular double-linked lists (bins)
◆Each chunk on a free list contains forward and

back pointers to the next and previous free chunks
in the list
- These pointers in a free chunk occupy the same eight

bytes of memory as user data in an allocated chunk
◆Chunk size is stored in the last four bytes of the

free chunk
- Enables adjacent free chunks to be consolidated to

avoid fragmentation of memory

A List of Free Chunks in dlmalloc
Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list

Back pointer to last chunk in list

head
element

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1
Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1
Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1
Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list

Back pointer to last chunk in list

Forward pointer to first chunk in list

Back pointer to last chunk in list

head
element

Responding to Malloc

◆Best-fit method
- An area with m bytes is selected, where m is the

smallest available chunk of contiguous memory equal
to or larger than n (requested allocation)

◆ First-fit method
- Returns the first chunk encountered containing n or

more bytes
◆Prevention of fragmentation

- Memory manager may allocate chunks that are larger
than the requested size if the space remaining is too
small to be useful

To free()

#define link(bin, P) {
 chk = bin->fd;
 bin->fd = P;
 P->fd = chk;
 chk->bk = P;
 P->bk = bin;
}

Add a chunk to the free list, bin.

The unlink macro

#define unlink(P, BK, FD) {
 FD = P->fd;
 BK = P->bk;
 FD->bk = BK;
 BK->fd = FD;
}

Removes a chunk from a free list -when?

Hmm… memory copy…
Address of destination read
 from the free chunk
The value to write there also read
 from the free chunk

What if the allocator is confused
and this chunk has actually
been allocated…
… and user data written into it?

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
:

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
:

1

<-P
:

:

<-BK (2)

<-FD (1)
(4) BK->fd = FD;

(1) FD = P->fd;

(2) BK = P->bk;
(3) FD->bk = BK;

Before
Unlink

Results
of Unlink

(4)

(3)

Example of Unlink

What if this area
is contaminated with
untrusted user data?

Double-Free Vulnerabilities

◆ Freeing the same chunk of memory twice, without
it being reallocated in between

◆Start with a simple case:
- The chunk to be freed is isolated in memory
- The bin (double-linked list) into which the chunk will be placed

is empty

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

User data
:

P->

bin->

P

Empty Bin and Allocated Chunk

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes
Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After First Call to free()

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes
Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Second Call to free()

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes
Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After malloc() Has Been Called

After malloc, user data
will be written here

This chunk is
unlinked from
free list… how?

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes
Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Another malloc()

After another malloc,
pointers will be read
from here as if it pointed
to a free chunk (why?)

Same chunk will
be returned…
(why?)

One will be interpreted as address,
the other as value (why?)

 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_"
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

“first” chunk free’d for the second time
This malloc returns a pointer to the same
chunk as was referenced by “first”

The GOT address of the strcpy() function
(minus 12) and the shellcode location are
placed into this memory

This malloc returns same chunk yet again (why?) unlink()
macro copies the address of the shellcode into the
address of the strcpy() function in the Global Offset Table
- GOT (how?)

When strcpy() is called, control is transferred to
shellcode… needs to jump over the first 12 bytes
(overwritten by unlink)

Sample Double-Free Exploit Code

Use-After-Free in the Real World

MICROSOFT WARNS OF NEW IE ZERO DAY, EXPLOIT IN THE WILD

[ThreatPost, September 17, 2013]

The attacks are targeting IE 8 and 9 and there’s no patch for the vulnerability right now…
The vulnerability exists in the way that Internet Explorer accesses an object in memory
that has been deleted or has not been properly allocated. The vulnerability may corrupt
memory in a way that could allow an attacker to execute arbitrary code…
The exploit was attacking a Use After Free vulnerability in IE’s HTML rendering engine
(mshtml.dll) and was implemented entirely in Javascript (no dependencies on Java, Flash
etc), but did depend on a Microsoft Office DLL which was not compiled with ASLR
(Address Space Layout Randomization) enabled.
The purpose of this DLL in the context of this exploit is to bypass ASLR by providing
executable code at known addresses in memory, so that a hardcoded ROP (Return
Oriented Programming) chain can be used to mark the pages containing shellcode (in
the form of Javascript strings) as executable…
The most likely attack scenarios for this vulnerability are the typical link in an email or
drive-by download.

