Recursive Functions

Yan Huang

Introduction

As we have seen, many functions can naturally be defined in terms of other functions.

fac :: Int \rightarrow Int fac n = product [1..n]

fac maps any integer n to the product of the integers between 1 and n.

Expressions are <u>evaluated</u> by a stepwise process of applying

functions to their arguments.

For example:

fac :: Int \rightarrow Int fac n = product [1..n]

fac 4

- = product [1..4]
- = product [1,2,3,4]

Recursive Functions

In Haskell, functions can also be defined in terms of themselves. Such functions are said to be *recursive*.

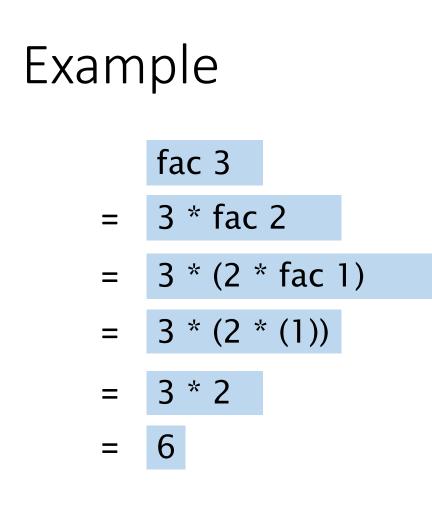
fac:
$$Int \rightarrow Int$$

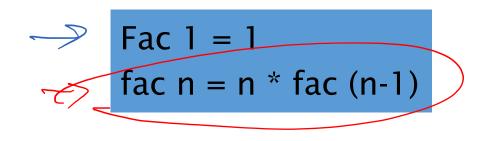
fac $I = I$
fac $N = N \times fac (n-1)$

Recursive Functions

In Haskell, functions can also be defined in terms of themselves. Such functions are said to be *recursive*.

Fac 1 = 1fac n = n * fac (n-1)





z The recursive definition <u>diverges</u> on integers < 0 because the base case is never reached:</p>

> fac (-1)

Error: "Recurse forever"

Why is Recursion Useful?

- Some functions, such as factorial, are <u>simpler</u> to define in terms of other functions.
- As we shall see, however, many functions can <u>naturally</u> be defined in terms of themselves.
- Properties of functions defined using recursion can be proved using the simple but powerful mathematical technique of <u>induction</u>.

Recursion on Lists

Recursion is not restricted to numbers, but can also be used to define functions on <u>lists</u>.

product :: Num $a \Rightarrow [a] \rightarrow a$ product [] = 1 product ($\chi: \chi_{5}$) = $\chi \approx \text{product } \chi_{3}$

Recursion on Lists

Recursion is not restricted to numbers, but can also be used to define functions on <u>lists</u>.

product:: Num $a \Rightarrow [a] \rightarrow a$ product []= 1product (n:ns) = n * product ns

product maps the empty list to 1, and any non-empty list to its head multiplied by the product of its tail.

 $\begin{array}{c} \text{product} :: \text{Num } a \Rightarrow [a] \rightarrow a \\ \text{product} [] = 1 \\ \text{product} (n:ns) = n * \text{product} ns \\ \end{array}$

Example

product [2,3,4]

- = 2 * product [3,4]
- = 2 * (3 * product [4])
- = 2 * (3 * (4 * product []))

Using the same pattern of recursion as in product we can define the length function on lists.

$$length :: [a] \rightarrow lnt$$

$$length [] = 0$$

$$length [-:xs] = 1 + length xs$$

Using the same pattern of recursion as in product we can define the <u>length</u> function on lists.

length:: $[a] \rightarrow Int$ length []= 0length (_:xs) = 1 + length xs

length maps the empty list to 0, and any non-empty list to the successor of the length of its tail.

Example

length [1,2,3]

- = 1 + length [2,3]
- = 1 + (1 + length [3])
- = 1 + (1 + (1 + length []))
- = 1 + (1 + (1 + 0))

3

=

 $\begin{array}{ll} \mbox{length} & :: [a] \rightarrow \mbox{Int} \\ \mbox{length} [] & = 0 \\ \mbox{length} (_:xs) = 1 + \mbox{length} xs \end{array}$

Using a similar pattern of recursion we can define the <u>reverse</u> function on lists.

reverse ::
$$[a] \rightarrow [a]$$

reverse $[] = []$
reverse $[x:x_5] = (reverse x_5) ff [x]$

(f-f)

 $(:) :: \alpha \rightarrow [a] \rightarrow [a]$

Using a similar pattern of recursion we can define the <u>reverse</u> function on lists.

reverse :: $[a] \rightarrow [a]$ reverse [] = [] reverse (x:xs) = reverse xs ++ [x]

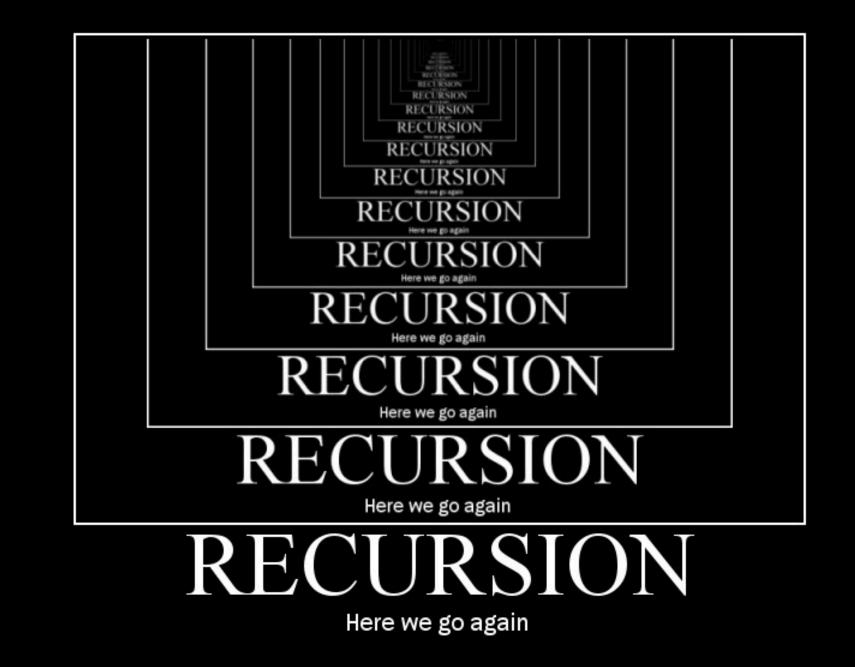
reverse maps the empty list to the empty list, and any non-empty list to the reverse of its tail appended to its head.

Example

reverse [1,2,3]

- = reverse [2,3] ++ [1]
- = (reverse [3] ++ [2]) ++ [1]
- = ((reverse [] ++ [3]) ++ [2]) ++ [1]
- = (([] ++ [3]) ++ [2]) ++ [1]
- = [3,2,1]

reverse $:: [a] \rightarrow [a]$ reverse [] = []reverse (x:xs) = reverse xs ++ [x]



Multiple Arguments

Functions with more than one argument can also be defined using recursion.

z For example, zipping the elements of two lists:

 $Zip :: [A] \rightarrow [b] \rightarrow [(a, b)]$ Zip [] = [7] Zip - [] = [] Zip - [] = [] ZiP (X:XS) (Y:YS) = [(X, Y)] + t Zip XS YS

Multiple Arguments

Functions with more than one argument can also be defined using recursion.

z For example, zipping the elements of two lists:

 $\begin{array}{ll} zip & :: [a] \rightarrow [b] \rightarrow [(a,b)] \\ zip [] & _ & = [] \\ zip _ & [] & = [] \\ zip (x:xs) (y:ys) = (x,y) & : zip xs ys \end{array}$

z Remove the first n elements from a list:

drop	\therefore Int \rightarrow [a] \rightarrow [a]				
drop drop	0 M	$\begin{array}{l} xs = xs \\ \overline{c} & = \overline{c} \\ (x_1, x_5) = \end{array}$	drop	(n-1)	XS

z Appending two lists:

z Remove the first n elements from a list:

 $\begin{array}{ll} drop & :: Int \rightarrow [a] \rightarrow [a] \\ drop 0 xs & = xs \\ drop _ [] & = [] \\ drop n (_:xs) = drop (n-1) xs \end{array}$

z Appending two lists:

$$(++) \qquad :: [a] \rightarrow [a] \rightarrow [a]$$
$$[] \qquad ++ ys = ys$$
$$(x:xs) ++ ys = x : (xs ++ ys)$$

Quick Sort

The <u>quicksort</u> algorithm for sorting a list of values can be specified by the following two rules:

z The empty list is already sorted;

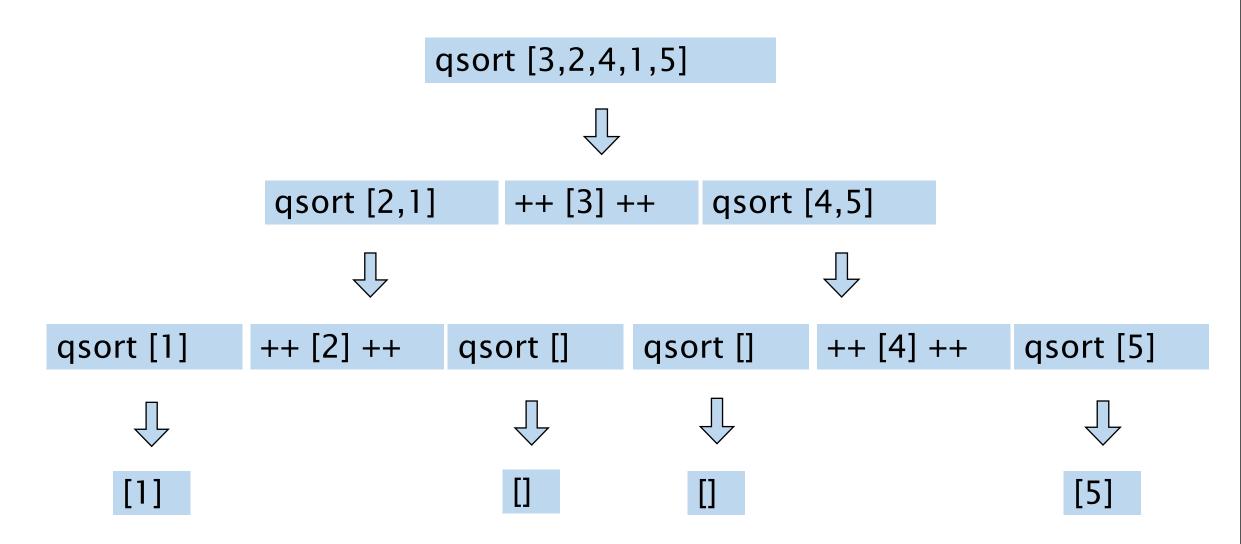
Z Non-empty lists can be sorted by sorting the tail values ≤ the head, sorting the tail values > the head, and then appending the resulting lists on either side of the head value. Using recursion, this specification can be translated directly into an implementation:

Using recursion, this specification can be translated directly into an implementation:

```
qsort :: Ord a \Rightarrow [a] \rightarrow [a]
qsort [] = []
qsort (x:xs) =
qsort smaller ++ [x] ++ qsort larger
where
smaller = [a | a \leftarrow xs, a \le x]
larger = [b | b \leftarrow xs, b > x]
```

z This is probably the <u>simplest</u> implementation of quicksort in any programming language!

For example (abbreviating qsort as q):



Exercises

(1) Without looking at the standard prelude, define the following library functions using recursion:

z Decide if all logical values in a list are true:

and :: [Bool] \rightarrow Bool

z Concatenate a list of lists:

concat :: $[[a]] \rightarrow [a]$

z Produce a list with n identical elements:

replicate :: Int \rightarrow a \rightarrow [a]

z Select the nth element of a list:

 $(!!) :: [a] \rightarrow Int \rightarrow a$

z Decide if a value is an element of a list:

elem :: Eq $a \Rightarrow a \rightarrow [a] \rightarrow Bool$

(2) Define a recursive function

merge :: Ord
$$a \Rightarrow [a] \rightarrow [a] \rightarrow [a]$$

that merges two sorted lists of values to give a single sorted list. For example:

> merge [2,5,6] [1,3,4] [1,2,3,4,5,6]

(3) Define a recursive function

```
msort :: Ord a \Rightarrow [a] \rightarrow [a]
```

that implements <u>merge sort</u>, which can be specified by the following two rules:

- **z** Lists of length \leq 1 are already sorted;
- Z Other lists can be sorted by sorting the two halves and merging the resulting lists.