
Recursive	Functions

Yan	Huang

Introduction

As	we	have	seen,	many	functions	can	naturally	be	
defined	in	terms	of	other	functions.

fac :: Int ® Int
fac n = product [1..n]

fac	maps	any	integer	n	to	the	product	of	
the	integers	between	1	and	n.

Expressions	are	evaluated by	a	stepwise	process	of	applying	
functions	to	their	arguments.

For	example:

fac 4

product [1..4]=

product [1,2,3,4]=
1*2*3*4=

24=

fac :: Int ® Int
fac n = product [1..n]

Recursive	Functions

In	Haskell,	functions	can	also	be	defined	in	terms	of	
themselves.		Such	functions	are	said	to	be	recursive.

Recursive	Functions

In	Haskell,	functions	can	also	be	defined	in	terms	of	
themselves.		Such	functions	are	said	to	be	recursive.

Fac 1 = 1
fac n = n * fac (n-1)

fac 3

3 * fac 2=
3 * (2 * fac 1)=
3 * (2 * (1))=

= 6

3 * 2=

Example
Fac 1 = 1
fac n = n * fac (n-1)

z The	recursive	definition	diverges on	integers	< 0	
because	the	base	case	is	never	reached:

> fac (-1)

Error: “Recurse forever”

Why	is	Recursion	Useful?

• Some	functions,	such	as	factorial,	are	simpler to	
define	in	terms	of	other	functions.

• As	we	shall	see,	however,	many	functions	can	
naturally be	defined	in	terms	of	themselves.

• Properties	of	functions	defined	using	recursion	can	
be	proved	using	the	simple	but	powerful	
mathematical	technique	of	induction.

Recursion	on	Lists

Recursion	is	not	restricted	to	numbers,	but	can	also	be	
used	to	define	functions	on	lists.

product :: Num a Þ [a] ® a

Recursion	on	Lists

Recursion	is	not	restricted	to	numbers,	but	can	also	be	
used	to	define	functions	on	lists.

product :: Num a Þ [a] ® a
product [] = 1
product (n:ns) = n * product ns

product	maps	the	empty	list	to	1,	and	
any	non-empty	list	to	its	head	multiplied	
by	the	product	of	its	tail.

product [2,3,4]

2 * product [3,4]=

2 * (3 * product [4])=

2 * (3 * (4 * product []))=

2 * (3 * (4 * 1))=

24=

Example

product :: Num a Þ [a] ® a
product [] = 1
product (n:ns) = n * product ns

Using	the	same	pattern	of	recursion	as	in	product	we	
can	define	the	length function	on	lists.

Using	the	same	pattern	of	recursion	as	in	product	we	
can	define	the	length function	on	lists.

length :: [a] ® Int
length [] = 0

length (_:xs) = 1 + length xs

length	maps	the	empty	list	to	0,	and	
any	non-empty	list	to	the	successor	of	
the	length	of	its	tail.

length [1,2,3]

1 + length [2,3]=

1 + (1 + length [3])=

1 + (1 + (1 + length []))=

1 + (1 + (1 + 0))=

3=

Example

length :: [a] ® Int
length [] = 0

length (_:xs) = 1 + length xs

Using	a	similar	pattern	of	recursion	we	can	define	the	
reverse function	on	lists.

Using	a	similar	pattern	of	recursion	we	can	define	the	
reverse function	on	lists.

reverse :: [a] ® [a]
reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

reverse	maps	the	empty	list	to	the	empty	list,	and	
any	non-empty	list	to	the	reverse	of	its	tail	
appended	to	its	head.

reverse [1,2,3]

reverse [2,3] ++ [1]=

(reverse [3] ++ [2]) ++ [1]=

((reverse [] ++ [3]) ++ [2]) ++ [1]=

(([] ++ [3]) ++ [2]) ++ [1]=

[3,2,1]=

Example

reverse :: [a] ® [a]
reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Multiple	Arguments
Functions	with	more	than	one	argument	can	also	be	
defined	using	recursion.		

z For	example,	zipping	the	elements	of	two	lists:

Multiple	Arguments
Functions	with	more	than	one	argument	can	also	be	
defined	using	recursion.		

z For	example,	zipping	the	elements	of	two	lists:

zip :: [a] ® [b] ® [(a,b)]
zip [] _ = []

zip _ [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

drop :: Int ® [a] ® [a]

z Remove	the	first	n	elements	from	a	list:

(++) :: [a] ® [a] ® [a]

z Appending	two	lists:

drop :: Int ® [a] ® [a]
drop 0 xs = xs

drop _ [] = []

drop n (_:xs) = drop (n-1) xs

z Remove	the	first	n	elements	from	a	list:

(++) :: [a] ® [a] ® [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

z Appending	two	lists:

Quick	Sort

Quick	Sort
The	quicksort algorithm	for	sorting	a	list	of	values	can	
be	specified	by	the	following	two	rules:

z The	empty	list	is	already	sorted;

z Non-empty	lists	can	be	sorted	by	sorting	the	tail	
values	£ the	head,	sorting	the	tail	values	> the	
head,	and	then	appending	the	resulting	lists	on	
either	side	of	the	head	value.

Using	recursion,	this	specification	can	be	translated	
directly	into	an	implementation:

Using	recursion,	this	specification	can	be	translated	
directly	into	an	implementation:

qsort :: Ord a Þ [a] ® [a]
qsort [] = []
qsort (x:xs) =

qsort smaller ++ [x] ++ qsort larger
where

smaller = [a | a ¬ xs, a £ x]
larger = [b | b ¬ xs, b > x]

z This	is	probably	the	simplest implementation	of	
quicksort	in	any	programming	language!

For	example	(abbreviating	qsort as	q):

qsort [3,2,4,1,5]

qsort [2,1] ++ [3] ++ qsort [4,5]

qsort [1] qsort []++ [2] ++ qsort [] qsort [5]++ [4] ++

[1] [] [] [5]

Exercises
(1) Without	looking	at	the	standard	prelude,	define	the	

following	library	functions	using	recursion:

and :: [Bool] ® Bool

z Decide	if	all	logical	values	in	a	list	are	true:

concat :: [[a]] ® [a]

z Concatenate	a	list	of	lists:

(!!) :: [a] ® Int ® a

z Select	the	nth	element	of	a	list:

elem :: Eq a Þ a ® [a] ® Bool

z Decide	if	a	value	is	an	element	of	a	list:

replicate :: Int ® a ® [a]

z Produce	a	list	with	n	identical	elements:

(2) Define	a	recursive	function

merge :: Ord a Þ [a] ® [a] ® [a]

that	merges	two	sorted	lists	of	values	to	give	a	
single	sorted	list.		For	example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]

(3) Define	a	recursive	function

z Lists	of	length	£ 1	are	already	sorted;

z Other	lists	can	be	sorted	by	sorting	the	two	
halves	and	merging	the	resulting	lists.	

msort :: Ord a Þ [a] ® [a]

that	implements	merge	sort,	which	can	be	
specified	by	the	following	two	rules:

