List Comprehension

Yan Huang

Set Comprehensions

In mathematics, the comprehension notation can be
used to construct new sets from old sets.

F = 11,49, 1625

The set {1,4,9,16,25} of all numbers x% such that x
is an element of the set {1...5}.

Lists Comprehensions

In Haskell, a similar comprehension notation can be
used to construct new lists from old lists.

%X:[’Wg

wlena,

TN

{The list [1,4,9,16,25] of all numbers x*2 such that}

X is an element of the list [1..5].

7 The expression x <— [1..5] is called a generator, as it
states how to generate values for x.

7 Comprehensions can have multiple generators,
separated by commas. For example:

o X <trom [£03
n*tj\n/\[@'@

O-\,Q-HPW"T G t))

for Y fm & T
- ORY)
7 Changing the order of the generators change‘::ﬂ:;:(g)LA J
order of the elements in the final list: L@y, W

(&F3)

(g/ofcg)@)
Q§15>J

7 Multiple generators are like nested loops, with later
generators as more deeply nested loops whose
variables change value more frequently.

For example:

-

o

X « [1,2,3] is the last generator, so
the value of the x component of each
pair changes most frequently.

~

)

Dependent Generators

Later generators can depend on the variables that are
introduced by earlier generators.

oo Ixe3lye k3
TN

-

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are
elements of the list [1..3] and y > x.

~

Using a dependent generator we can define the library
function that concatenates a list of lists:

concat i [[a]] — [a]

(oncat X555 = ‘C% \ e RSG |, XE= X3]
Types - (@] (3] & o
For example:

Using a dependent generator we can define the library
function that concatenates a list of lists:

For example:

Guards

List comprehensions can use guards to restrict the
values produced by earlier generators.

~
The list [2,4,6,8,10] of all numbers x

such that x is an element of the list
[1..10] and x is even.

Using a guard we can define a function that maps a
positive integer to its list of factors:

faeks it = [t]

=

T thers = [/9(\%‘“ D*-V\l,

For example:

Using a guard we can define a function that maps a
positive integer to its list of factors:

For example:

A positive integer is prime if its only factors are 1 and
itself. Hence, using factors we can define a function
that decides if a number is prime:

?\(i\mﬂ o et Y7 BDDZ

prime 1 = (fpedos 1) == I[fnj

For example:

A positive integer is prime if its only factors are 1 and
itself. Hence, using factors we can define a function
that decides if a number is prime:

For example:

Using a guard we can now define a function that
returns the list of all primes up to a given limit:

For example:

Using a guard we can now define a function that
returns the list of all primes up to a given limit:

For example:

The Zip Function

A useful library function is zip, which maps two lists to a
list of pairs of their corresponding elements.

For example:

Using zip we can define a function returns the list of all
pairs of adjacent elements from a list:

?0[{6 o Le] = Cta(a)]
JATR R zq? x5 (fall ve)

For example:

Pa?rﬁ “obt 0/190
- ISP IS AT

(1l "e)]

Using zip we can define a function returns the list of all
pairs of adjacent elements from a list:

For example:

Using pairs we can define a function that decides if the
elements in a list are sorted:

Soded 1t Tlak] —> Bef
o=] EX@‘) SRS PGS XSJ

For example:

Using pairs we can define a function that decides if the
elements in a list are sorted:

For example:

Using zip we can define a function that returns the list
of all positions of a value in a list:

For example:

String Comprehensions

A string is a sequence of characters enclosed in double
guotes. Internally, however, strings are represented as
lists of characters.

[—® 0, ’c'] :: [Char]. |

Because strings are just special kinds of lists, any
polymorphic function that operates on lists can also
be applied to strings. For example:

Similarly, list comprehensions can also be used to
define functions on strings, such counting how many
times a character occurs in a string:

For example:

Exercises

(1) Atriple (x,y,z) of positive integers is called
pythagorean if x2 + y2 = z2. Using a list
comprehension, define a function

that maps an integer n to all such triples with
components in [1..n]. For example:

(2) A positive integer is perfect if it equals the sum of all
of its factors, excluding the number itself. Using a
list comprehension, define a function

that returns the list of all perfect numbers up to a
given limit. For example:

(3) The scalar product of two lists of integers xs and ys

of length n is give by the sum of the products of the
corresponding integers:

Using a list comprehension, define a function that
returns the scalar product of two lists.

