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Set Comprehensions

In mathematics, the comprehension notation can be
used to construct new sets from old sets.

F = 11,49, 1625

The set {1,4,9,16,25} of all numbers x% such that x
is an element of the set {1...5}.




Lists Comprehensions

In Haskell, a similar comprehension notation can be
used to construct new lists from old lists.
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{The list [1,4,9,16,25] of all numbers x*2 such that}

X is an element of the list [1..5].




7 The expression x <— [1..5] is called a generator, as it
states how to generate values for x.

7 Comprehensions can have multiple generators,
separated by commas. For example:
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7 Multiple generators are like nested loops, with later
generators as more deeply nested loops whose
variables change value more frequently.




For example:

-
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X « [1,2,3] is the last generator, so
the value of the x component of each
pair changes most frequently.

~
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Dependent Generators

Later generators can depend on the variables that are
introduced by earlier generators.
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The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are
elements of the list [1..3] and y > x.
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Using a dependent generator we can define the library
function that concatenates a list of lists:

concat i [ [a]] — [a]
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Using a dependent generator we can define the library
function that concatenates a list of lists:

For example:




Guards

List comprehensions can use guards to restrict the
values produced by earlier generators.

~
The list [2,4,6,8,10] of all numbers x

such that x is an element of the list
[1..10] and x is even.




Using a guard we can define a function that maps a
positive integer to its list of factors:

faeks it = [t ]

=

T thers = [/9( \%‘“ D*-V\l,

For example:




Using a guard we can define a function that maps a
positive integer to its list of factors:

For example:




A positive integer is prime if its only factors are 1 and
itself. Hence, using factors we can define a function
that decides if a number is prime:
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For example:




A positive integer is prime if its only factors are 1 and
itself. Hence, using factors we can define a function
that decides if a number is prime:

For example:




Using a guard we can now define a function that
returns the list of all primes up to a given limit:

For example:




Using a guard we can now define a function that
returns the list of all primes up to a given limit:

For example:




The Zip Function

A useful library function is zip, which maps two lists to a
list of pairs of their corresponding elements.

For example:




Using zip we can define a function returns the list of all
pairs of adjacent elements from a list:
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Using zip we can define a function returns the list of all
pairs of adjacent elements from a list:

For example:




Using pairs we can define a function that decides if the
elements in a list are sorted:

Soded 1t Tlak] —> Bef
o= ] EX@‘) SRS PGS XSJ

For example:




Using pairs we can define a function that decides if the
elements in a list are sorted:

For example:




Using zip we can define a function that returns the list
of all positions of a value in a list:

For example:




String Comprehensions

A string is a sequence of characters enclosed in double
guotes. Internally, however, strings are represented as
lists of characters.

[—® 0, ’c'] :: [Char]. |




Because strings are just special kinds of lists, any
polymorphic function that operates on lists can also
be applied to strings. For example:




Similarly, list comprehensions can also be used to
define functions on strings, such counting how many
times a character occurs in a string:

For example:




Exercises

(1) Atriple (x,y,z) of positive integers is called
pythagorean if x2 + y2 = z2. Using a list
comprehension, define a function

that maps an integer n to all such triples with
components in [1..n]. For example:




(2) A positive integer is perfect if it equals the sum of all
of its factors, excluding the number itself. Using a
list comprehension, define a function

that returns the list of all perfect numbers up to a
given limit. For example:




(3) The scalar product of two lists of integers xs and ys

of length n is give by the sum of the products of the
corresponding integers:

Using a list comprehension, define a function that
returns the scalar product of two lists.




