Defining Functions

Yan Huang
vh33@indiana.edu

The Very Basic Syntax

chs [=> ¢

Q/[ys/l =) 2

As in most programming languages, functions W =
can be defined using conditional expressions.

bs k= et
ng o :@% NZOJU{MNL%

Conditional Expressions

| dse -

4)
abs takes an integer n and returns n if

3 it is non-negative and -n otherwise.)

Conditional Expressions

As in most programming languages, functions
can be defined using conditional expressions.

N
abs takes an integer n and returns n if

5 it is non-negative and -n otherwise.)

-

Conditional expressions can be nested:

Define the function signum, which returns -1 when
given a negative integer; returns 1 when given a
positive integer; and O if given O.

QWVM I — Tt
§Zﬁnmm n = hc >0 then |
dlse i N <0 then —|

S,

Conditional expressions can be nested:

* In Haskell, conditional expressions must always
have an else branch, which avoids any possible
ambiguity problems with nested conditionals.

Guarded Equations

As an alternative to conditionals, functions can
also be defined using guarded equations.
.. \V\J(—)1/\/‘4(’

&(96 \ \ N 2=0

(\ﬁo/

Guarded Equations

As an alternative to conditionals, functions can
also be defined using guarded equations.

| T

4 N
As previously, but using guarded equations.

The catch all condition otherwise is defined in

(che “Prelude” by otherwise = True.

/

Guarded equations can be used to make definitions
involving multiple conditions easier to read. E.g.,
Try define sighum using guarded equations.

Guarded equations can be used to make definitions
involving multiple conditions easier to read:

Pattern Matching

Many functions have a particularly clear definition
using pattern matching on their arguments.

/N

[not maps False to True, and True to False.]

Functions can often be defined in many different
ways using pattern matching. For example

can be defined more compactly by

The underscore symbol _is a
wildcard pattern that matches
any argument value.

However, the following definition is more efficient,
because it avoids evaluating the second argument if
the first argument is False:

7 Patterns are matched in order. For example, the
following definition always returns False:

7 You may not repeat variables in the same pattern.
For example, the following definition gives an error:

List Patterns

Internally, every non-empty list is constructed
by repeated use of an operator (:) called “cons”
that adds an element to the start of a list.

o W WeanA(z (3:(4:(1)).
oo et (17

Functions on lists can be defined using x:xs pattern.

PN

4 I
head and tail map any non-empty list

5 to its first and remaining elements.)

START

aRUrsera YOUR

FUTURE
TODAY

Build these 13 skills to boost your salary

Find Your Specialization

Employers are looking for specific business and technology skills.
According to sources like PayScale and Monster.com’, these 13 are among the
most likely to make you stand out.

Most valuable COMPUTER SCIENCE skills

SKILL #1

Scala' Functional Programming

in Scala

22% average pay boost > .(Pﬂ-

Apply functional programming
paradigms to write elegant Scala m
code.

Scala

* Full support for functional programming with a very strong static type
system, heavily influenced by Haskell
- Currying
- Type inference
- Immutability
- Lazy evaluation
- Pattern matching
- Algebraic data types

* Compiles to JVM bytecode

Lambda Expressions

Functions can be constructed without naming
the functions by using lambda expressions.

VN

The nameless function that takes a

\number X and returns the result x + x.)

The symbol A is the Greek letter lambda, and is typed at the
keyboard as a backslash “\”.

In mathematics, nameless functions are usually denoted
using the — symbol, as in x> x + x.

In Haskell, the use of the A symbol for nameless functions
comes from the lambda calculus, the theory of functions on
which Haskell is based.

Why Are Lambda's Useful?

Lambda expressions can be used to give a formal
meaning to functions defined using currying.

For example:

Lambda expressions are also useful when defining
functions that return functions as results.

For example:

(svst & 0>

emescnd

is more naturally defined by (JE 3 -

M? fg ‘[3/[—975—/(,’2/] — 7 [f%/(fﬂt”ﬁf/{g

Lambda expressions can be used to avoid {52]
naming functions that are only referenced once.

For example:

|

can be simplified to

—~

M (Nxkowe) [liesy) = (3,86 ,7),

Sections

An operator written between its two arguments can be
converted into a curried function written before its two
arguments by using parentheses.

For example:

This convention also allows one of the arguments of
the operator to be included in the parentheses.

For example: ¢, som

L (<) 5 () [

= 5 20\

(*2) 4
=L

In general, if @ is an operator then functions of the form
(D), (xP) and (DPy) are called sections.

Why Are Sections Useful?

Useful functions can sometimes be constructed
in a simple way using sections. For example:

successor function
reciprocation function
doubling function

halving function

Exercises

Consider a function safetail that behaves in the same way as
tail, except that safetail maps the empty list to the empty list,
whereas tail gives an error in this case. Define safetail using:

a conditional expression;
guarded equations;
pattern matching.

Hint: the library function null :: [a] — Bool can be used to
test if a list is empty.

(2) Give three possible definitions for the logical or
operator (| |) using pattern matching.

(3) Redefine the following version of (&&) using
conditionals rather than patterns:

(4) Do the same for the following version:

