
Defining	Functions
Yan	Huang

yh33@indiana.edu

The	Very	Basic	Syntax

double :: Int ® Int

double x = x + x

Conditional	Expressions

As	in	most	programming	languages,	functions	
can	be	defined	using	conditional	expressions.

abs takes	an	integer	n	and	returns	n	if	
it	is	non-negative	and	-n	otherwise.

Conditional	Expressions

As	in	most	programming	languages,	functions	
can	be	defined	using	conditional	expressions.

abs :: Int ® Int
abs n = if n ≥ 0 then n else -n

abs takes	an	integer	n	and	returns	n	if	
it	is	non-negative	and	-n	otherwise.

Conditional	expressions	can	be	nested:

Define	the	function	signum,	which	returns	-1	when	
given	a	negative	integer;	returns	1	when	given	a	
positive	integer;	and	0	if	given	0.	

Conditional	expressions	can	be	nested:

signum :: Int ® Int
signum n = if n < 0 then -1 else

if n == 0 then 0 else 1

• In	Haskell,	conditional	expressions	must	always
have	an	else	branch,	which	avoids	any	possible	
ambiguity	problems	with	nested	conditionals.

Guarded	Equations
As	an	alternative	to	conditionals,	functions	can	
also	be	defined	using	guarded	equations.	

Guarded	Equations
As	an	alternative	to	conditionals,	functions	can	
also	be	defined	using	guarded	equations.	

abs n | n ≥ 0 = n
| otherwise = -n

As	previously,	but	using	guarded	equations.
The	catch	all	condition	otherwise is	defined	in	
the	“Prelude”	by	otherwise	=	True.

Guarded	equations	can	be	used	to	make	definitions	
involving	multiple	conditions	easier	to	read.	E.g.,	
Try	define	signum using	guarded	equations.

Guarded	equations	can	be	used	to	make	definitions	
involving	multiple	conditions	easier	to	read:

signum n | n < 0 = -1
| n == 0 = 0
| otherwise = 1

Pattern	Matching

Many	functions	have	a	particularly	clear	definition	
using	pattern	matching	on	their	arguments.

not :: Bool ® Bool
not False = True
not True = False

not	maps	False	to	True,	and	True	to	False.

Functions	can	often	be	defined	in	many	different	
ways	using	pattern	matching.		For	example

(&&) :: Bool ® Bool ® Bool
True && True = True
True && False = False
False && True = False
False && False = False

True && True = True
_ && _ = False

can	be	defined	more	compactly	by

The	underscore	symbol	_	is	a	
wildcard pattern	that	matches	
any	argument	value.

True && b = b
False && _ = False

However,	the	following	definition	is	more	efficient,	
because	it	avoids	evaluating	the	second	argument	if	
the	first	argument	is	False:

z You	may	not	repeat variables	in	the	same	pattern.		
For	example,	the	following	definition	gives	an	error:

b && b = b
_ && _ = False

z Patterns	are	matched	in	order.		For	example,	the	
following	definition	always	returns	False:

_ && _ = False
True && True = True

List	Patterns

Internally,	every	non-empty	list	is	constructed	
by	repeated	use	of	an	operator	(:)	called	“cons”
that	adds	an	element	to	the	start	of	a	list.

[1,2,3,4]

Means	1:(2:(3:(4:[]))).

Functions	on	lists	can	be	defined	using	x:xs pattern.

head :: [a] ® a
head (x:_) = x

tail :: [a] ® [a]
tail (_:xs) = xs

head	and	tail	map	any	non-empty	list	
to	its	first	and	remaining	elements.

z x:xs	patterns	must	be	parenthesised,	because	
application	has	priority	over	(:).		For	example,	
the	following	definition	gives	an	error:

z x:xs patterns	only	match	non-empty lists:

> head []
ERROR

head x:_ = x

Scala

• Full	support	for	functional	programming	with	a	very	strong	static	type	
system,	heavily	influenced	by	Haskell
- Currying
- Type	inference
- Immutability
- Lazy	evaluation
- Pattern	matching
- Algebraic	data	types

• Compiles	to	JVM	bytecode

Lambda	Expressions

Functions	can	be	constructed	without	naming	
the	functions	by	using	lambda	expressions.

l x ® x + x

The	nameless	function	that	takes	a	
number	x	and	returns	the	result	x	+	x.

z The	symbol	l is	the	Greek	letter	lambda,	and	is	typed	at	the	
keyboard	as	a	backslash	“\”.

z In	mathematics,	nameless	functions	are	usually	denoted	
using	the	a symbol, as	in	x	a x	+	x.

z In	Haskell,	the	use	of	the	l symbol	for	nameless	functions	
comes	from	the	lambda	calculus,	the	theory	of	functions	on	
which	Haskell	is	based.

Why	Are	Lambda's Useful?

Lambda	expressions	can	be	used	to	give	a	formal	
meaning	to	functions	defined	using	currying.

For	example:

add x y = x + y

add = l x ® (l y ® x + y)

means

const :: a ® b ® a
const x _ = x

is	more	naturally	defined	by

const :: a ® (b ® a)
const x = _ ® x

Lambda	expressions	are	also	useful	when	defining	
functions	that	return	functions	as	results.

For	example:

odds n = map f [0..n-1]
where

f x = x*2 + 1

can	be	simplified	to	

odds n = map (\x ® x*2 + 1) [0..n-1]

Lambda	expressions	can	be	used	to	avoid	
naming	functions	that	are	only	referenced	once.

For	example:

Sections

An	operator	written	between its	two	arguments	can	be	
converted	into	a	curried	function	written	before its	two	
arguments	by	using	parentheses.

For	example:

> 1+2
3

> (+) 1 2
3

This	convention	also	allows	one	of	the	arguments	of	
the	operator	to	be	included	in	the	parentheses.

For	example:

> (1+) 2
3

> (+2) 1
3

In	general,	if	Å is	an	operator	then	functions	of	the	form	
(Å),	(xÅ)	and	(Åy)	are	called	sections.

Why	Are	Sections Useful?

Useful	functions	can	sometimes	be	constructed	
in	a	simple	way	using	sections.		For	example:

- successor	function

- reciprocation	function

- doubling	function

- halving	function

(1+)

(*2)

(/2)

(1/)

Exercises
Consider	a	function	safetail that	behaves	in	the	same	way	as	
tail,	except	that	safetail maps	the	empty	list	to	the	empty	list,	
whereas	tail	gives	an	error	in	this	case.		Define	safetail using:

(a) a	conditional	expression;
(b) guarded	equations;
(c) pattern	matching.

Hint:	the	library	function	null	::	[a]	® Bool	can	be	used	to	
test	if	a	list	is	empty.

(1)

Give	three	possible	definitions	for	the	logical	or	
operator	(||)	using	pattern	matching.

(2)

Redefine	the	following	version	of	(&&)	using	
conditionals	rather	than	patterns:

(3)

True && True = True
_ && _ = False

Do	the	same	for	the	following	version:(4)

True && b = b
False && _ = False

