
Types	and	Typeclasses
Yan	Huang

What	is	a	Type?
A	type is	a	name	for	a	collection	of	related	
values.		For	example,	in	Haskell	the	basic	type

TrueFalse

Bool

contains	the	two	logical	values:

Type	Errors
Applying	a	function	to	arguments	of	mismatching	
types	results	a	type	error.

> 1 + False
ERROR

“1”	is	a	number	and	“False”	is	a	logical	
value,	but	“+”	requires	two	numbers.

Types	in	Haskell
• If	evaluating	an	expression	e	would	produce	a	
value	of	type	t,	then	e	has	type t,	written

e :: t

Every	well-formed	expression	has	a	type,	which	
can	be	automatically	calculated	at	compile	time	
using	a	process	called	type	inference.

All	type	errors	are	found	at	compile	time,	which	
makes	programs	safer	and	faster by	removing	
the	need	for	type	checks	at	run	time.

In	GHCi,	the	:type command	calculates	the	type	
of	an	expression,	without	evaluating	it:

> not False
True

> :type not False
not False :: Bool

Basic	Types
Haskell	has	a	number	of	basic	types,	including:

Bool - logical	values

Char - single	characters

Integer - arbitrary-precision	integers

Float - floating-point	numbers

String - strings	of	characters

Int - fixed-precision	integers

List	Types

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In	type	expressions:

A	list is	sequence	of	values	of	the	same type:

[t]	is	the	type	of	lists	with	elements	of	type	t.

• The	type	of	a	list	says	nothing	about	its	length:

[False,True] :: [Bool]

[False,True,False] :: [Bool]

[[’a’],[’b’,’c’]] :: [[Char]]

• The	type	of	the	elements	is	unrestricted.		For	
example,	we	can	have	lists	of	lists:

Tuple	Types
A	tuple is	a	sequence	of	values	of	potentially	different
types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In	type	expressions:

(t1,t2,…,tn)	is	the	type	of	n-tuples	whose	i-th
components	have	type	ti for	any	i in	1,…,n.

• The	type	of	a	tuple	encodes	its	size:

(False,True) :: (Bool,Bool)

(False,True,False) :: (Bool,Bool,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’]) :: (Bool,[Char])

Note:

• The	type	of	the	components	is	unrestricted:

Function	Types

not :: Bool ® Bool

even :: Int ® Bool

In	type	expressions:

A	function is	a	mapping	from	values	of	one	
type	to	values	of	another	type:

t1	® t2	is	the	type	of	functions	that	map	
values	of	type	t1	to	values	to	type	t2.

Arrow	® is	typed	as	“->”	in	editors.	

The	argument	and	result	types	are	unrestricted.		
For	example,	functions	with	multiple	arguments	
or	results	are	possible	using	lists	or	tuples:

add :: (Int,Int) ® Int
add (x,y) = x+y

zeroto :: Int ® [Int]
zeroto n = [0..n]

Functions	with	multiple	arguments	are	also	
possible	by	returning	functions	as	results:

add’ :: Int ® (Int ® Int)
add’ x y = x+y

add’	takes	an	integer	x	and	returns	a	
function	add’	x,	which	is	a	function	that	
takes	an	integer	y	and	returns	the	result	

x+y.

Curried	Functions

• add	and	add’	produce	the	same	final	result,	but	
add	takes	its	two	arguments	at	the	same	time	in	
a	tuple,	whereas	add’	takes	them	one	at	a	time:

• Functions	that	take	their	arguments	one	at	a	
time	are	called	curried	functions,	celebrating	the	
work	of	Haskell	Curry	on	such	functions.

add :: (Int,Int) ® Int

add’ :: Int ® (Int ® Int)

• Functions	with	more	than	two	arguments	can	
be	curried	by	returning	nested	functions:

mult :: Int ® (Int ® (Int ® Int))
mult x y z = x*y*z

mult takes	an	integer	x	and	returns	a	function	
mult x,	which	in	turn	takes	an	integer	y	and	

returns	a	function	mult x	y,	which	finally	takes	
an	integer	z	and	returns	the	result	x*y*z.

Why	is	Currying	Useful?

Curried	functions	are	more	flexible	than	functions	on	
tuples,	because	useful	functions	can	often	be	made	
by	partially	applying a	curried	function.

add’ 1 :: Int ® Int

take 5 :: [Int] ® [Int]

drop 5 :: [Int] ® [Int]

Currying	Conventions

• The	arrow	® in	type	expressions	associates	to	the	right.

Int ® Int ® Int ® Int

To	avoid	excess	parentheses	when	using	curried	
functions,	two	simple	conventions	are	adopted:

Means	Int ® (Int ® (Int ® Int)).

But	function	application	associates	to	the	left.

mult x y z

Means ((mult x) y) z.

Unless	tupling is	explicitly	required,	all	functions	
in	Haskell	are	normally	defined	in	curried	form.

Polymorphic	Functions

A	function	is	called	polymorphic (“of	many	forms”)	
if	its	type	contains	one	or	more	type	variables.

length :: [a] ® Int

For	any	type	a,	length takes	a	list	of	
values	of	type	a	and	returns	an	integer.

• Type	variables	can	be	instantiated	to	different	
types	in	different	circumstances:	

• Type	variables	must	begin	with	a	lower-case	
letter,	and	are	usually	named	a,	b,	c,	etc.

> length [False,True]
2

> length [1,2,3,4]
4

a = Bool

a = Int

Type	Variables

Many	of	the	functions	defined	in	the	standard	
prelude	are	polymorphic.		For	example:	

fst :: (a,b) ® a

head :: [a] ® a

take :: Int ® [a] ® [a]

zip :: [a] ® [b] ® [(a,b)]

id :: a ® a

Overloaded	Functions

A	polymorphic	function	is	called	overloaded if	
its	type	contains	one	or	more	class	constraints.

(+) :: Num a Þ a -> a -> a

For	any	numeric	type	a,	(+)	takes	two	values	
of	type	a	and	returns	a	value	of	type	a.

Num - Numeric types

Eq - Equality types

Ord - Ordered types

Haskell	has	a	number	of	type	classes,	including:

For	example:
(+) :: Num a Þ a ® a ® a

(==) :: Eq a Þ a ® a ® Bool

(<) :: Ord a Þ a ® a ® Bool

Type	Constraints

Constrained	type	variables	can	be	instantiated	
to	any	types	that	satisfy	the	constraints:

> 1 + 2
3

> 1.0 + 2.0
3.0

> ’a’ + ’b’
ERROR

Char is not a
numeric type

a = Int

a = Float

Type	Constraints

class Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs :: a -> a

signum :: a -> a

fromInteger :: Integer -> a

x - y = x + negate y

negate x = 0 - x

Typeclass Example

instance Num Int where

x + y = ...

x - y = ...

negate x = ...

x * y = ...

abs n = ...

signum n = ...

fromInteger i = ...

Typeclass Example

instance Num Int where
...

instance Num Integer where
...

instance Num Natural where
...

instance Num Word where
...

Other	Typeclass Examples

Haskell’s	Automatic	Type	Inference

• How	does	your	compiler	automatically	infer	their	types?

first x y = x

f x = x

Haskell’s	Automatic	Type	Inference

• How	does	your	compiler	automatically	infer	their	types?

times x y = x * y

Haskell’s	Automatic	Type	Inference

• How	does	your	compiler	automatically	infer	their	types?

factorial n = product [1..n]

Hints	and	Tips

•When	defining	a	new	function	in	Haskell,	it	is	useful	
to	begin	by	writing	down	its	type;

•Within	a	script,	it	is	good	practice	to	state	the	type	
of	every	new	function	defined;

•When	stating	the	types	of	polymorphic	functions	
that	use	numbers,	equality	or	orderings,	take	care	
to	include	the	necessary	class	constraints.

Exercises

[’a’,’b’,’c’]

(’a’,’b’,’c’)

[(False,’0’),(True,’1’)]

([False,True],[’0’,’1’])

[tail,init,reverse]

What are the types of the following values?(1)

second xs = head (tail xs)

swap (x,y) = (y,x)

pair x y = (x,y)

double x = x*2

palindrome xs = reverse xs == xs

twice f x = f (f x)

What are the types of the following functions?(2)

Check your answers using GHCi.(3)

