
Haskell	Scripts
Yan	Huang

yh33@indiana.edu

Last	Quiz

Objectives

• Writing	Haskell	programs	in	“.hs”	files
• Note	some	differences	between	programs	typed	into	GHCi and	
programs	written	in	script	files

• Operator	Precedence
• Operator	Associativity

Haskell	Scripts

• As	well	as	the	functions	in	the	standard	library,	you	can	also	define	
your	own	functions;

• New	functions	are	defined	within	a	script,	a	text	file	comprising	a	
sequence	of	definitions;

• By	convention,	Haskell	scripts	usually	have	a	.hs suffix	on	their	
filename.		

My	First	Script

double x = x + x

quadruple x = double (double x)

When	developing	a	Haskell	script,	it	is	useful	to	keep	
two	windows	open,	one	running	an	editor	for	the	
script,	and	the	other	running	GHCi.

Start	an	editor,	type	in	the	following	two	function	
definitions,	and	save	the	script	as	test.hs:

$ ghci test.hs

Leaving	the	editor	open,	in	another	window	start	up	
GHCi with	the	new	script:

> quadruple 10

40

> take (double 2) [1,2,3,4,5,6]

[1,2,3,4]

Now	both	the	standard	library	and	the	file	test.hs are	
loaded,	and	functions	from	both	can	be	used:

factorial n = product [1..n]

average ns = sum ns `div` length ns

Leaving	GHCi open,	return	to	the	editor,	add	the	
following	two	definitions,	and	save:

z div is	enclosed	in	back quotes,	not	forward;
z x `f` y is	just	syntactic	sugar for	f x y.

Note:

> :reload

Reading file "test.hs"

> factorial 10

3628800

> average [1,2,3,4,5]

3

GHCi does	not	automatically	detect	that	the	script	has	
been	changed,	so	a	reload command	must	be	executed	
before	the	new	definitions	can	be	used:

Useful	GHCi	Commands
Command Meaning

:load name load script name
:reload reload current script
:type expr show type of expr
:? show all commands
:quit quit GHCi

:set editor name set editor to name
:edit name edit script name
:edit edit current script

Naming	Requirements	and	Conventions

• Function	and	argument	names	must	begin	with	a	
lower-case	letter.		For	example:

myFun fun1 arg_2 x’

By	convention,	list	arguments	usually	have	an	s	suffix	
on	their	name.		For	example:

xs ns nss

The	Layout	Rule
In	a	sequence	of	definitions,	each	definition	must	begin	
in	precisely	the	same	column:

a = 10

b = 20

c = 30

a = 10

b = 20

c = 30

a = 10

b = 20

c = 30

means

The	layout	rule	avoids	the	need	for	explicit	syntax	to	
indicate	the	grouping	of	definitions.

a = b + c
where
b = 1
c = 2

d = a * 2

{a = b + c
where
{b = 1;
c = 2}

d = a * 2}

implicit	grouping explicit	grouping

In script:

a = 1

In GHCi:

let a = 1

Operators

Prelude λ: 3+5

8

Prelude λ: (+) 3 5

8

Prelude λ: 3 / 5

0.6

Prelude λ: (/) 3 5

0.6

Prelude λ: mod 3 5

3

Prelude λ: 3 `mod` 5

3

Prelude λ: 2 `elem` [1,2,3]

True

Prelude λ: elem 2 [1,2,3]

True

• Operators	are	in	essence	
functions.

• Operators	whose	identifiers	
consist	of	symbols	are	by	
default	infix.	Surround	them	
with	parentheses to	use	as	
prefix	operators.

• Operators	with	letters	in	their	
identifiers	are	prefix by	
default.	Place	them	in	back-
quotes	to	use	as	infix	
operators.

Operator	Precedence

3 + 5 ∗ 2

“∗”	has	higher	precedence	than	“+”

Prelude λ: :info +

class Num a where

(+) :: a -> a -> a

...

-- Defined in ‘GHC.Num’

infixl 6 +

Prelude λ: :info *

class Num a where

...

(*) :: a -> a -> a

...

-- Defined in ‘GHC.Num’

infixl 7 *

Operator	Precedence

• Prefix	form	(+)	is	treated	as	normal	function	(precedence	escalated	to	
that	of	function	applications,	which	is	higher	than	‘*’)

• Infix	+	is	processed	as	normal	binary	operators

+ 3 5 ∗ 2

Precedence	and	Associativity	of	Selected	Operators
Left-associative Non-associative Right-associative

9 !! .

8 ^, ^^, **

7 *, /, `div`

6 +, -,

5 :, ++

4 ==, /=, >, >=, <, <=
`elem`, `notElem`

3 &&

2 ||

1 >>, >>=

0 $, $!, `seq`

• Function	applications	are	of	level	10	precedence.
• Any	operator	lacking	a	fixity	declaration	is	assumed	to	be infixl 9.

!!

*Main λ: :type (!!)

(!!) :: [a] -> Int -> a

.

*Main λ: :type (.)

(.) :: (b -> c) -> (a -> b) -> a -> c

^,		^^,		**

*Main λ: :type (^)

(^) :: (Integral b, Num a) => a -> b -> a

*Main λ: :type (^^)

(^^) :: (Fractional a, Integral b) => a -> b -> a

*Main λ: :type (**)

(**) :: Floating a => a -> a -> a

*,	 /,	 `div`

Main λ: :type ()

(*) :: Num a => a -> a -> a

*Main λ: :type (/)

(/) :: Fractional a => a -> a -> a

*Main λ: :type div

div :: Integral a => a -> a -> a

+,		-

:,		++

*Main λ: :type (:)

(:) :: a -> [a] -> [a]

*Main λ: :type (++)

(++) :: [a] -> [a] -> [a]

==,	/=,	>,	>=,	<,	<=
`elem`,	`notElem`

*Main λ: :type elem

elem :: (Eq a, Foldable t) => a -> t a -> Bool

*Main λ: :type notElem

notElem :: (Eq a, Foldable t) => a -> t a -> Bool

&&

*Main λ: :type (&&)

(&&) :: Bool -> Bool -> Bool

||

>>,	 >>=

*Main λ: :t (>>)

(>>) :: Monad m => m a -> m b -> m b

*Main λ: :t (>>=)

(>>=) :: Monad m => m a -> (a -> m b) -> m b

$,	 $!,		`seq`

*Main λ: :info ($)

($) :: (a -> b) -> a -> b -- Defined in ‘GHC.Base’

infixr 0 $

*Main λ: :info ($!)

($!) :: (a -> b) -> a -> b -- Defined in ‘GHC.Base’

infixr 0 $!

*Main λ: :info seq

seq :: a -> b -> b -- Defined in ‘GHC.Prim’

infixr 0 `seq`

Non-Associative	Operators

Prelude λ: True == False

False

Prelude λ: True == False == False

<interactive>:551:1:

Precedence parsing error

cannot mix ‘==’ [infix 4] and ‘==’ [infix 4] in the same infix expression

==,	/=,	>,	>=,	<,	<=
`elem`,	`notElem`

Operator	Associativity

• Associate	to	the	left
1+2+3																																		5-4-3																																					18	/	9	/	1

Operator	Associativity

• Associate	to	the	right
5^3^2	

1:2:3:[]										

Prelude λ: :info ^

(^) :: (Num a, Integral b) => a -> b -> a -- Defined in ‘GHC.Real’

infixr 8 ^

Prelude λ: :info :

data [] a = ... | a : [a] -- Defined in ‘GHC.Types’

infixr 5 :

Operator	Precedence	and	Associativity

f g x ≢ f g x

f g x ≡ f $ g x

Customizing	Precedence	and	Associativity

multThenInc :: Int -> Int -> Int
multThenInc x y = x * y + 1

infix 3 @@
(@@) = multThenInc

@@	operator	has	precedence	level	3,	non-associative.
@@	is	a	binary	function	on	Int as	specified	by	multThenInc.

Operator	Precedence	and	Associativity

5^3-1^2:2^3*3`div`2:3+5:3+2^3`div`2+3:[]	

Exercises

N = a ’div’ length xs
where

a = 10
xs = [1,2,3,4,5]

Fix	the	syntax	errors	in	the	program	below,	and	
test	your	solution	using	GHCi.

(1)

Show	how	the	library	function	last that	selects	
the	last	element	of	a	list	can	be	defined	using	the	
functions	introduced	in	this	lecture.

(2)

Similarly,	show	how	the	library	function	init
that	removes	the	last	element	from	a	list	can	be	
defined	(possibly	in	two	different	ways).

(4)

Can	you	think	of	another	possible	definition?(3)

multThenInc :: Int -> Int -> Int
multThenInc x y = x * y + 1

infixl 3 @@
(@@) = multThenInc

What	does	1 @@ 2 @@ 3 + 4 evaluate	to	under	
the	following	three	definitions?	Explain.

(5)

multThenInc :: Int -> Int -> Int
multThenInc x y = x * y + 1

infixl 7 @@
(@@) = multThenInc

multThenInc :: Int -> Int -> Int
multThenInc x y = x * y + 1

infix 5 @@
(@@) = multThenInc

What	do	1 @@ 2 @@ 3,
1 == 2 == 2,	
3 @@ 5 == 1 evaluate	to,	respectively?	Explain.

(6)

