

λ Calculus --- Basics

Yan Huang

λ Calculus

Calculus

A branch of mathematics that studies *limits, derivatives, integrals,* and *infinite series*.

Examples

d(uv) = v(du) + u(dv) The product rule $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ The chain rule

Calculus is just a bunch of *rules* for manipulating symbols.

Calculus

A branch of mathematics that studies *limits, derivatives, integrals,* and *infinite series*.

Examples

d(uv) = v(du) + u(dv) The product rule $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ The chain rule

λ Calculus Formalism (Grammar)

Key words: λ . () terminals **Defining** λ -*term*: e.g., *x* $term \rightarrow variable$ e.g., (x) (v)(*term*) λ variable . term e.g., $\lambda x . x$ term term $e.g., (\lambda x . x) y$ Humans can give meaning to those

symbols to describe computations.

λ Calculus Formalism (Rules)

 $\begin{array}{ll} \alpha \text{-reduction} & (\text{renaming}) & \lambda \not x & \chi \\ \lambda \not y & M \rightarrow_{\alpha} \lambda \not y & M \left[y \vDash v \right] & \neg_{\chi} \lambda \not y & \chi \end{array}$ where v does not occur in M. **β-reduction** (substitution) $(\lambda x . M) T \rightarrow_{\beta} M[x \mapsto T]$ Replace all bounded *x* of M with T

$$(\lambda x \cdot x) y \rightarrow_{\beta} \bigvee_{\beta}$$

 $X \left[X \longrightarrow (\lambda y, y) \right]$

 $(\lambda x \cdot x) (\lambda y \cdot y) \rightarrow_{\beta} \quad \lambda y \cdot y$

Free and Bound variables

• Learn by examples

 $-\lambda x \cdot x y$

x is bound, while *y* is free;

$$-(\lambda x \cdot x) (\lambda y \cdot y x)$$

x is bound in the 1st function, but free in the 2^{nd} function

$$-\lambda x . (\lambda y . y x)$$

x and y are both bound variables.

Be careful about β-Reduction

$$(\lambda x . M) T \rightarrow_{\beta} M [x \mapsto T]$$

Replace all bounded x of M with T

If a free variable v in T occurs bound in M, we rename all appearances of v in M before the substitution.

 $(\lambda x \cdot (\lambda y \cdot (x y))) y \to_{\mathcal{B}} (\lambda \chi \cdot (\lambda Z \cdot (\chi Z))) y$

~BY5. A5

Syntactic Sugar

$$\lambda x . (\lambda y . M) \equiv \lambda x . \lambda y . M$$
$$\equiv \lambda x y . M$$

$$\lambda x . \lambda y . \lambda z . M \equiv \lambda x y z . M$$

 λ -terms extend as far *right* as possible.

Treat "." as a *lowest-priority*, *right-associative* operator.

$$S \equiv \lambda w y x \cdot y (w y x)$$

$$Z \equiv \lambda s z \cdot z$$

$$SZ \equiv (\lambda w y x \cdot y (w y x)) (\lambda s z \cdot z)$$

$$\rightarrow_{\beta} \lambda y x \cdot y ((\lambda s z \cdot z) y x)$$

$$\rightarrow_{\beta} \lambda y x \cdot y (x)$$

$$\equiv \lambda y x \cdot y x$$

Computing Model for λ Calculus

• **redex**: a *term* of the form $(\lambda x. M)N$

Something that can be β -reduced

- An expression is in *normal form* if it contains no *redexes* (*redices*).
- To evaluate a λ-*term*, keep doing reductions until you get to *normal form*.

 β -Reduction represents all the computation capability of λ Calculus.

Another exercise

$(\lambda f. ((\lambda x. f(xx)) (\lambda x. f(xx)))) (\lambda z.z)$

Possible Answer

$$\begin{array}{c} (\lambda f. ((\lambda x . f(x x)) (\lambda x . f(x x)))) (\lambda z.z) \\ \rightarrow_{\beta} (\lambda x . (\lambda z.z)(x x)) (\lambda x . (\lambda z.z)(x x)) \\ \rightarrow_{\beta} (\lambda z . z) (\lambda x . (\lambda z.z)(x x)) (\lambda x . (\lambda z.z)(x x)) \\ \rightarrow_{\beta} (\lambda x . (\lambda z.z)(x x)) (\lambda x . (\lambda z.z)(x x)) \\ \rightarrow_{\beta} (\lambda z . z) (\lambda x. (\lambda z.z)(x x)) (\lambda x . (\lambda z.z)(x x)) \\ \rightarrow_{\beta} (\lambda x . (\lambda z.z)(x x)) (\lambda x . (\lambda z.z)(x x)) \\ \rightarrow_{\beta} \dots \end{array}$$

Alternate Answer

$$(\lambda f. ((\lambda x . f (x x)) (\lambda x . f (x x)))) (\lambda z.z)$$

$$\rightarrow_{\beta} (\lambda x . (\lambda z.z)(x x)) (\lambda x. (\lambda z.z)(x x))$$

$$\rightarrow_{\beta} (\lambda x . x x) (\lambda x . (\lambda z.z)(x x))$$

$$\rightarrow_{\beta} (\lambda x . x x) (\lambda x . x x)$$

$$\rightarrow_{\beta} (\lambda x . x x) (\lambda x . x x)$$

$$\rightarrow_{\beta} ...$$

Be very afraid!

Some λ -calculus terms can be β -reduced forever!

The order in which you choose to do the reductions might change the result!

Take on Faith

 All ways of choosing reductions will produce the same normal form (but some might never terminate).

- If we always *apply the outermost redex first*, we will find the normal form if there is one.
 - This is *normal order reduction* corresponds to normal order (lazy) evaluation