Mathematic Induction
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Objective

* Induction on Integers

* Induction on Structures



Prove

1+24+-+4+n-= i Vn € N
W el N2

U\)
X \ ™ the set of natural integers, {1, 2, 3,...}

vn € N: for every integer n in N,

)

(& 1+2+-4+n
! \/

\ "



First attempt
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------ You will never finish the proof ... !




Mathematic Induction

* Base step

- Prove the identity for a particular n value (such asn = 1,
depending on your goal,).

* Inductive hypothesis
- Assuming the identity holdsforalln < k,

* Induction step
- Prove the identity also holds forn = k + 1.
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Are we done?

* Yes! But why? (I haven’t proved
the theorem for many
particular n such as
383210348 yet. Am | really
done?)




Infinity?
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* Does this proofshow that1 4+ 2 4+ -4+ n = n(n; )even

whenn = oo?
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Prove Vn € N,
12 4+ 2% 4+ -+ n? =
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vn € N means “for every integernin{1,2,3, ...}

Base step:
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Prove Vn € N,
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Inductive hypothesis:

There exists some k such thatifn < k,
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Induction step:
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Prove Vn € N,
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Prove Vn € N,
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Prove Vn € N,
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Induction over Structures



Structural Induction

1. Provethe statement for the base cases.
2. Statethe hypothesis

3. Provethe statement for everyinductive rules



Structural Induction

The set S is defined as follows,
(1) 3 €S.
(2)Ifx,y €S,thenx+ vy €S.

ProveS € {3n |n € Z*}.



Base Step The set S is defined as follows,

(1)3 €S.
(2)Ifx,ye S, thenx +y €S.

ProveS € {3n|n € Z"}.
* We wantto show 3 € {3n|n € Z*}.
Proof:
letn=1€Z",3=3+x1=3n€{3nlnezZ"}.
Thus,3 € {3n|n € Z*}.



Inductive Hypothesis

Ifx,y € S,thenx,y € {3n|n € Z*}.



|ﬂdUCtiOﬂ Step The set S is defined as follows,
(1) 3 €S.
(2)Ifx,ye S, thenx +y €S.

ProveS € {3n|n € Z"}.
 We want to show:

Ifx,y € S,thenx +y € {3n|n € Z*}.
Proof:

Since x,y € S, by the inductive hypothesis,x,y € {3n|n €
Z*}. Hence, there exist ny,n, € Z* such thatx = 3n,,y =
3n,. Therefore,x +y = 3(n; + n,) € {3n|n € Z*} because
nq + no (S Z+.



Exercise

* ProveVn €N,
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