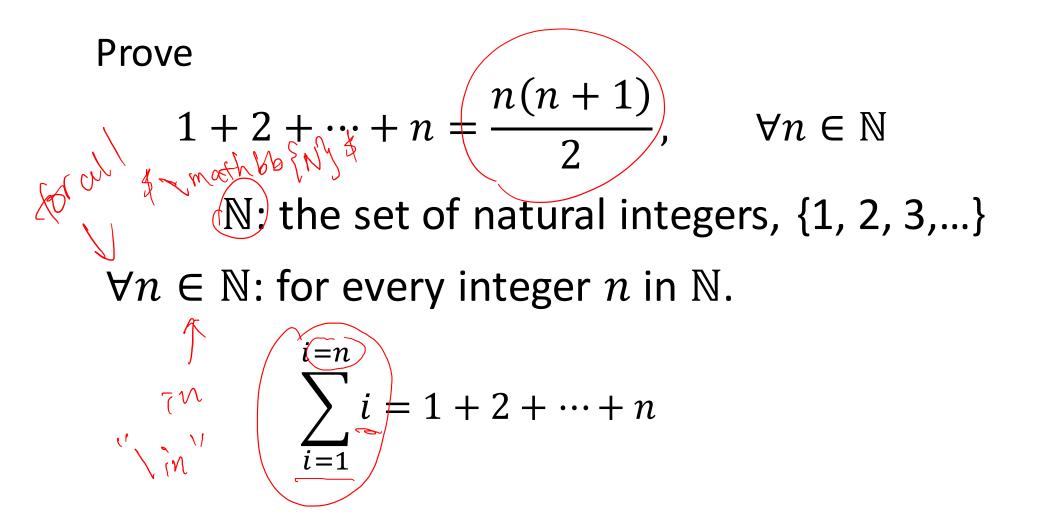
Mathematic Induction

Yan Huang

Objective

- Induction on Integers
- Induction on Structures



First attempt

Prove

$$1+2+\dots+n = \frac{n(n+1)}{2}, \quad \forall n \in \mathbb{N}$$

 $n = 1$ LHS = [RHS = $\frac{1 \times (1+4)}{2}$ = [LHS=RHS
 $n = 2$ LHS = [+2=3 RHS = $\frac{2 \times 3}{2}$ = 3 = LHS
 $n = 4$

•••

You will never finish the proof ... !

Mathematic Induction

Base step

- Prove the identity for a particular n value (such as n = 1, depending on your goal,).

Inductive hypothesis

- Assuming the identity holds for all $n \leq k$,

Induction step

- Prove the identity also holds for n = k + 1.

$$\frac{dk}{2} + \frac{kk}{2}$$

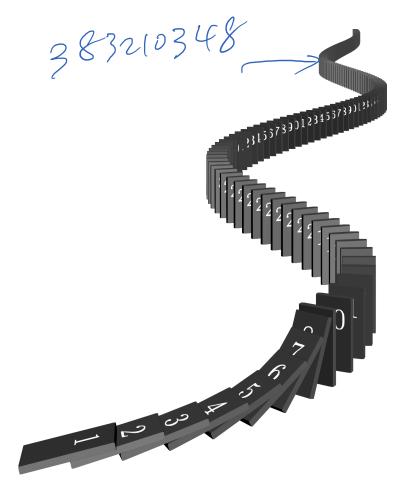
$$= \frac{ak+k}{2}$$

$$= \frac{ak+k}{2}$$

$$\frac{1+2+\dots+n}{2} = \frac{n(n+1)}{2}, \quad \forall n \in \mathbb{N}$$
Base step: if $n=1$ LHS=1. RHS = $[\times(l+1)]$
LHS= RHS
Inductive hypothesis:
For a given K , $l=2$ for $n=1$ kills for all $n \leq K$.
Induction step:
Want to prove the equation holds for $n=k+1$.
 $LHS= [+2+\dots+k+(l+1)] = \frac{k(l+1)}{2} = \frac{(k+1)(k+2)}{2}$

Are we done?

 Yes! But why? (I haven't proved the theorem for many particular n such as 383210348 yet. Am I really done?)



Infinity?

• Does this proof show that $1 + 2 + \dots + n = \frac{n(n+1)}{2}$ even when $n = \infty$?

No.

$$if(K=M)$$

 $k=1 \neq M$

Prove
$$\forall n \in \mathbb{N}$$
,
 $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

 $\forall n \in \mathbb{N}$ means "for every integer n in $\{1, 2, 3, ...\}$."

Base step:

$$LHS = I = REFS = \frac{I \times 2 \times 3}{6} =$$

Prove
$$\forall n \in \mathbb{N}$$
,
 $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Inductive hypothesis:

There exists some k such that if
$$n \le k$$
,
 $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
(141) (-141) (-24+3)
Induction step:
want to show $\vec{H} \cdots \vec{f}$ (141) (-24+3)
2

Prove
$$\forall n \in \mathbb{N}$$
,
 $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Induction step:

$$\begin{aligned}
& \text{AH32} |^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2} \\
& \text{If } n = k+1, \\
& = \frac{1}{6} \left[k(k+1)(2k+1) + 6(k+1)^{2} \right] \\
& = 2k^{2} + 3k(4+1) \\
& = 2k^{2} + 2k(4+1) \\
& = 2k^{2} +$$

2K +3 2K(K-f2) KF2) 2K2 + 7K-F6 3 (1472) - 24° + 4 K E 3476 3K the e Bemainder. \bigwedge

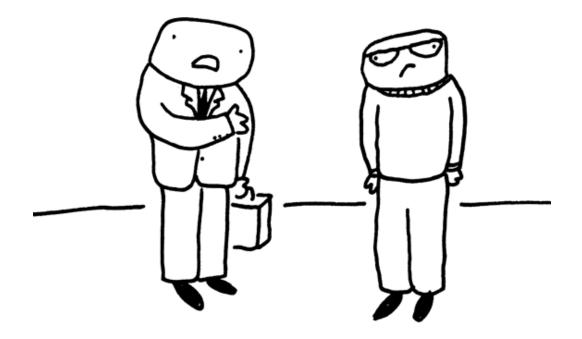
(+ ab) *c

fabc Not pyput

 $f(a,b) \times C$

<u>fabre</u>t! correct!

i don't care if you're a mathematician or not ... the judge is going to need more proof than "Q.E.D."



Toothpaste For Dinner.com

Prove $\forall n \in \mathbb{N}$,

$n! \leq n^n$.

Base step: if nzi LHSZI RMSZI

Prove $\forall n \in \mathbb{N}$,

$$n! \leq n^n$$
.

Inductive hypothesis: $\exists K, \text{ for all } n \leq K, N' \leq N^{M}$ $RHS=(k-FI)^{HS}$

Induction step:

when
$$h = |k \in \mathbb{N}$$

 $LHS = |k \in \mathbb{N}$ $= (k :)(k \in \mathbb{N}) \leq \mathbb{B}^{k} (k \in \mathbb{N}) \leq |k \in \mathbb{N}$
 $= (|k \in \mathbb{N}) = RHS$

Induction over Structures

Structural Induction

- 1. Prove the statement for the base cases.
- 2. State the hypothesis
- 3. Prove the statement for every inductive rules

Structural Induction

The set S is defined as follows, (1) $3 \in S$. (2) If $x, y \in S$, then $x + y \in S$. Prove $S \subseteq \{3n \mid n \in \mathbb{Z}^+\}$.

Base Step

The set S is defined as follows, (1) $3 \in S$. (2) If $x, y \in S$, then $x + y \in S$. Prove $S \subseteq \{3n \mid n \in \mathbb{Z}^+\}$.

• We want to show $3 \in \{3n | n \in \mathbb{Z}^+\}$. Proof: Let $n = 1 \in \mathbb{Z}^+$, $3 = 3 * 1 = 3n \in \{3n | n \in \mathbb{Z}^+\}$. Thus, $3 \in \{3n | n \in \mathbb{Z}^+\}$. Inductive Hypothesis

The set S is defined as follows, (1) $3 \in S$. (2) If $x, y \in S$, then $x + y \in S$. Prove $S \subseteq \{3n \mid n \in \mathbb{Z}^+\}$.

If $x, y \in S$, then $x, y \in \{3n | n \in \mathbb{Z}^+\}$.

Induction Step

```
The set S is defined as follows,

(1) 3 \in S.

(2) If x, y \in S, then x + y \in S.

Prove S \subseteq \{3n \mid n \in \mathbb{Z}^+\}.
```

• We want to show:

```
If x, y \in S, then x + y \in \{3n | n \in \mathbb{Z}^+\}.
```

Proof:

Since $x, y \in S$, by the inductive hypothesis, $x, y \in \{3n | n \in \mathbb{Z}^+\}$. Hence, there exist $n_1, n_2 \in \mathbb{Z}^+$ such that $x = 3n_1, y = 3n_2$. Therefore, $x + y = 3(n_1 + n_2) \in \{3n | n \in \mathbb{Z}^+\}$ because $n_1 + n_2 \in \mathbb{Z}^+$.

Exercise

• Prove $\forall n \in \mathbb{N}$, $3 + 3^2 + 3^3 + 3^4 + \dots + 3^n = \frac{3^{n+1} - 3}{2}$