Chinese Remainder Theorem
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* There is a pile of n apples. If divide the pile into grolps of 3, there are
2 apples left. If divided into groups of 7, there 4 apples left. What is
the minimal value of n? e/
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* There is a pile of n apples. If divide the pile into groups of 4, there are
2 apples left. If divided into groups of 5, there 1 apples left. What is
the minimal value of n?
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Chinese Remainder Theorem
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Assume n,; and n, are coprime. Let x be the solution to the following

e

«

systems of modulo identities

X = a; modn,
X = a, modn,.

Then x = (X,n,a,; + Xyn,a,) mod N, where N = n;Xn, and X;n, +

inz — 1
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More Generally

* Chinese Remainder Theorem establishes a bijection between Z, XZ,







lsomorphism

Let G, H be groups with respect to the operations x¢ and *p. A
function f: G —» His an isomorphlsm if

1. fisa bijection and jﬂ eriht s,

2. Forali g1, g, € G, f(91 *g 92) = f(91) *u (92):
If there exists an isomorphism between G and H, we say G and H are
isomorphic and write G = HI.




* Lpq is @ group with respect to either addition prmultiptication-

* LpXZLg is also a group (W|th respect to entry-wise modulo either
addltlon or-mautipli ).
¢ Lpg = LpXZy.
* modulo addition is an isomorphism between Z,, and Z, XZ,,

* modulo multiplication is also an isomorphism between Z,,, and Z,, XZ,




Modulo Addition is an Isomorphism between Z,,, and Z, XZ,
-




Modulo Multiplication is an Isomorphisrln between Z,, and Z, XZ,
(f‘r
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Using CRT to Simplify Modulo Computations
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Using CRT to Simplifty Modulo Computations

e Calculate
2838*12345 mod 35




