Extended Euclidean Algorithm

Yan Huang




Can you sell exactly 4 gallons of gasoline?

8 Gallon




Are there integers x and y that satisfy

8x+3y=47




Can you sell 1 gallon of gasoline with
containers of these two sizes?

1. Pour 8*2 gallons of gasoline the tank.

2. Fill the 3-gallon container with gasoline
in the tank, 5 times.

3. Sell the remaining 1 gallon gasoline in

8 Gallon

3 Gallon the tank.




Theorem: gcd(a,b) = d if and only if d is the least positive
integer that can be expressed as ax + by where x,y € Z.
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Theorem: gcd(a,b) = d if and only if d is the least positive
integer that can be expressed as ax + by where x,y € Z.
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Theorem: gcd(a,b) = d if and only if d is the least positive
integer that can be expressed as ax + by where x,y € Z.

Proof (by contradiction): Consider the set of integers
S={ax+ by |x,y € Z}and d = min S.

Assume (for the sake of contradiction) thatd t a. Thena =
dq +r where 0 < r < d. Therefore,r =d —aq = ax +

by —aq = a(x — q) + by € S, which contradicts to the fact
that d = min S sincer € S and r < d. Thus, the assumption

was wrong and d|a.
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Theorem: gcd(a,b) = d if and only if d is the least positive
integer that can be expressed as ax + by where x,y € Z.

(continued) Similarly, we can show d|b. Hence d is a common
divisor of a and b.

If d’ is a common divisor of a and b, then d'|d (because d =
ax + by for some x,y € Z). QED.
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Find x, y € Z such thatax + by = gcd(a, b) ?

egcd :: Int -> Int -> (Int, Int, Int)
egcdal=(0,1,1)
egcd a0 = (1,0, a)
egcdabla<b=Ilet(x,y,d) =egcdbain (y, x, d)
| otherwise = let (x,y, d) =egcd b (a mod b)
g=a div b
in (y, x-y*q, d)




egcd :: Int -> Int -> (Int, Int, Int)
egcdal=(,1,1)
egcda 0=(1,0,a)

Exa m pleS egcdabla<b=let(x,y,d) =egcd bain(y,x,d)

| otherwise = let (x,y, d) =egcd b (a "'mod" b)

* Find x, y such that 12*x + 8*y = gcd(12, 8)
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Exercise

* Find integer x, y such that 27*x + 42*y = gcd(27, 42)
egcd (27, 42)




