
Modular	Arithmetic	and	the	
Caesar	Cipher

Yan	Huang

Objectives

• Divisibility
• Prime	and	Composite	Numbers
• Fundamental	Theorem	of	Arithmetic
• ceiling, floor, /, mod
• Caesar	cipher

Divisibility

• The	set	of	ingtegers ℤ = … , −2, −1, 0, 1, 2, … .

•) divides	* if)+ = * for	some	+ ∈ ℤ.	

• We	write)|* to	denote) divides	*.	We	say) is	a	divisor	of	* and	* is	
a	multiple of).

Divisibility

For	all),	*,	. ∈ ℤ

)), 1),)| 0.

Divisibility

For	all),	*,	. ∈ ℤ

0|) if	and	only	if) = 0.

Divisibility

For	all),	*,	. ∈ ℤ

) * ⇔ −) * ⇔)| − *.

Divisibility

For	all),	*,	. ∈ ℤ

) * and) . ⇒)|(* + .).

Divisibility

For	all),	*,	. ∈ ℤ

) * and * . ⇒)|..

Divisibility

For	all),	* ∈ ℤ

) * and *) ⇔) = ±*.

Primality

: is	a	prime	if	: > 1 and	has	no	other	positive	divisor	besides	1 and	:.

: is	a	composite	if	: > 1 and	is	not	a	prime.

The	List	of	Primes

Fundamental	theorem	of	arithmetic

Every	non-zero	integer	: can	be	written	as

: = ±<=
>? … <@

>A.

where	<= < <C < ⋯ < <@ are	distinct	primes	and	E=, … , E@ are	non-
negative	integers.	Moreover,	the	expression	is	unique.

Division	with	Remainder

Let), * ∈ ℤ with * > 0.	Then	there	exist	unique	F, G ∈ ℤ such	that

) = F* + G and	0 ≤ G < *.

Floors	

The	floor function,	denoted	by	⌊⋅⌋,	is	a	function	from	real	numbers	ℝ to	ℤ.	
For	every M ∈ ℝ,	⌊M⌋ is	the	greatest	integer	N ≤ M.

⌊M⌋ is	uniquely	defined	for	every	M.

Ceilings

The	ceiling	function,	denoted	by	⌈⋅⌉,	is	a	function	from	real	numbers	ℝ to	ℤ.	
For	every M ∈ ℝ,	⌈M⌉ is	the	smallest	integer	N ≥ M.

⌈M⌉ is	uniquely	defined	for	every	M.

The	mod operator

Let), * ∈ ℤ with * > 0,) = F* + G and	0 ≤ G < *.	We	define

) mod * ≔ G

The	mod operator	(Generalized	Definition)

Let), * ∈ ℤ,	we	define

) mod * ≔) − *⌊)/*⌋

Day	in	a	Week

September	1,	2016	is	Thursday.		What	day	is	Oct	1,	2016?

Messages	Encoding	&	Decoding

• Per	character:	

encodeC :: Char -> Int
encodeC =

decodeC :: Int -> Char
decodeC =

Messages	Encoding	&	Decoding

• Per	character:	

encodeC :: Char -> Int
encodeC ‘A’ = 0
encodeC ‘B’ = 1
...
encodeC ‘Z’ = 25

decodeC :: Int -> Char
decodeC 0 = ‘A’
decodeC 1 = ‘B’
...
decodeC 25 = ‘Z’

Very	tedious	and	unscalable.	
Do	you	have	better	ideas?

Messages	Encoding	&	Decoding

• Dealing	with	multi-character	messages

encode :: [Char] -> [Int]
encode m = map encodeC m

encode :: [Char] -> [Int]
encode = map encodeC

Point-free	form

Caesar	Cipher	(Shift	Cipher)

Encryption:	V = W + X mod 26

Decryption:	W = V − X mod 26

The	encryption	keyInput	character

Implementing	Caesar	Cipher

caesarC :: Int -> Int -> Int
caesarC k c = (c + k) mod 26

caesar :: Int -> [Int] -> [Int]
caesar = map . caesarC

Implementing	Caesar	Cipher

caesarDC :: Int -> Int -> Int
caesarDC k c = (c - k) mod 26

caesar :: Int -> [Int] -> [Int]
caesar = map . caesarDC

