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Objectives

* Divisibility

* Prime and Composite Numbers

* Fundamental Theorem of Arithmetic
eceiling, floor, /, mod

e Caesar cipher




Divisibility

* The set of ingtegersZ ={..., —2, —1,0,1,2, ... }.
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* We write a|b to denote a divides b. We say a is a divisor of b and b is
a multiple of a.

e a divides b"if az = b for some z € Z.




Divisibility

Foralla, b,c € Z
ala, 1la, a]O.

ale. = al=a
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Divisibility

Foralla, b,c € Z
alb & —al|b © a| — b.
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Divisibility

Foralla, b,c € Z
alb and a|c = a|(b + ¢).
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Divisibility

Foralla, b,c € Z

ot

alb and b|c = al]c.




Divisibility

Foralla, b € Z

alband bla & a = tb.
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Primality

n is a prime if n > 1 and has no other positive divisor besides 1 and n.

n is a composite if n > 1 and is not a prime.
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The List of Primes




Fundamental theorem of arithmetic

Every non-zero integer nn can be written as
— €1 Er
n=d=p; ..p, .

where p; < p, < --- < p, are distinct primes and ey, ..., e, are non-
negative integers. Moreover, the expression is unique.
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Division with Remainder

Let a, b € Z with b > 0. Then there exist unique g, r € Z such that

a=qgb+rand0 <r <b.
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Floors

The floor function, denoted by |-, is a function from real numbers R to Z.
For every x € R, |x]| is the greatest integer m < x.

| x| is uniquely defined for every x.
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Ceilings

The ceiling function, denoted by [-], is a function from real numbers R to Z.
For every x € R, [x] is the smallest integer m = x.

|x] is uniquely defined for every x.
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The mod operator

leta,b € Zwithb > 0,a=qgb+1rand 0 <r < b. We define

amodb :=r
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The mod operator (Generalized Definition)

Let a, b € Z, we define

amod b == a — bla/b]
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Day in a Week

September 1, 2016 is Thursday. What day is Oct 1, 20167
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Messages Encoding & Decoding

* Per character:

encodeC
encodeC

decodeC
decodeC

Char -> Int




Messages Encoding & Decoding

* Per character:

encodeC :: Char -> Int decodeC :: Int -> Char
encodeC ‘A’ =0 decodeC 0 ‘A’
encodeC ‘B’ =1 decodeC 1 ‘B’

encodeC ‘7' 25 decodeC 25

Very tedious and unscalable.
Do you have better ideas?




Messages Encoding & Decoding

* Dealing with multi-character messages

encode :: [Char] -> [Int]
encode m = map encodeC m

|

encode :: [Char] -> [Int]
encode = map encodeC

Point-free form




Caesar Cipher (Shift Cipher)

Input character The encryption key

\

Encryption: C = (M + k) mod 26

Decryption: M = (C — k) mod 26




Implementing Caesar Cipher

caesarC :: Int -> Int -> Int
caesarC k ¢ = (¢ + k) mod 26

caesar :: Int -> [Int] -> [Int]
caesar = map . caesarC




Implementing Caesar Cipher

caesarDC :: Int -> Int -> Int
caesarDC k ¢ = (¢ - k) mod 26

caesar :: Int -> [Int] -> [Int]
caesar = map . caesarDC




