Probability (2)

Yan Huang

Review

- A finite probability space is denoted by (S, P) where
- S is a finite set (the sample space), and
- P is a function $S \rightarrow[0,1]$ (the probability measure) such that

$$
\sum_{x \in S} P(x)=1
$$

Whenever hearing "probability", make sure that you are clear what the probability space is: what is the sample space and what is the probability measure on it

Conditional Probability

$$
P(A \mid B)=P(A \mid B) P(B)
$$

If $B \neq \phi$, the probability of even A conditioned on the fact that B happens, $P(A \mid B)=P(A \cap B) / P(B)$.

Independent Events

$$
\begin{aligned}
& P(A \cap B)=0 \\
& P(A)=\frac{1}{2} P(B)=\frac{1}{2}
\end{aligned}
$$

Events A and B are independent if $P(A \mid B)=P(A)$.

An equivalently definition of independent events A and B :

$$
\begin{equation*}
P(A \cap B)=P(A) P(B) . \tag{A}
\end{equation*}
$$

tosshy a fair coin 1 time
$A=\{$ the sun ot the two outcomes is 0$\}$

- Drawing (with replacement) two cards from a standard deck. Let

$$
\begin{aligned}
& P(E \cap F)=\frac{4}{52} \cdot \frac{4}{52} \\
& P=\{\text { the first card is a King }\} \\
& P(E)=P(F)=\frac{4}{52} \quad E \text { and } F \text { card } \begin{array}{l}
\text { ind pendent. }
\end{array}
\end{aligned}
$$

- Drawing (without replacement) two cards from a standard deck. Let $E=\{$ the first card is a King $\}$ E and F $F=\{$ the second card is a King $\}$ are not indenpucalat

$$
P(E \cap F)=P(F \mid E) P(E)=\frac{4}{\sqrt{2}} \times \frac{3}{51}=\frac{1}{221}=P(E) P(F)
$$

$$
\begin{aligned}
& P(E)=\frac{4}{52} \\
& =\frac{f}{52} \\
& \left.\left.=\frac{3}{5} \cdot \frac{4}{5}+\frac{4}{5} \cdot \frac{48}{3}=12+1\right)^{2}\right) P(E)
\end{aligned}
$$

Bayes's Formula (1)

For any two events A and B,

$$
\begin{aligned}
& P(A)=P(A \mid B) * P(B)+P(A \mid \bar{B}) * P(\bar{B}) \\
& P(B)-P(A \mid B) \\
& P(A \mid B)=\frac{P(A)-P(A \mid \bar{B}) \cdot P(\bar{B})}{P(B)}=P(B \mid A) \cdot P(A)+P(B \mid \bar{A}) P(\bar{A})
\end{aligned}
$$

Bayes's Formula (2)

$$
P(A)-P(A \mid \bar{B}) P(\bar{B})=P(B \mid A) \cdot P(A)
$$

$$
(1-P(B \mid A)) P(A)=P(A \mid \bar{B}) P(\bar{B})
$$

For any two events A and $B, \quad \quad \quad \underline{(\bar{B} \mid A) P(A)}=P(A \mid \bar{B}) P(\bar{B})$

$$
\begin{aligned}
P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B \mid A) * P(A)+P(B \mid \bar{A}) P(\bar{A})} & P(A \mid \bar{B})=P(A \mid \bar{B}) \\
P(A \mid B)= & \frac{P(A)-P(A \mid \bar{B}) P(\bar{B})}{P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})} \\
= & \frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+中(B \mid \bar{A}) \cdot P(\bar{A})}
\end{aligned}
$$

Exercise 1

$$
\begin{aligned}
& P(G \mid B)=\frac{10}{10+5}=\frac{2}{3} \\
& P(B)=\frac{1}{2} \quad P(\bar{B})=\frac{1}{2}
\end{aligned}
$$

- Two urns:

Urn \#1 has 10 gold coins and 5 silver coins Urn \#2 has 2 gold coins and 8 silver coins

$$
P(G \mid \bar{B})=\frac{2}{2+8}=\frac{1}{5}
$$

First randomly pick an urn then randomly pick a coin from the urn.
What is the probability it is a gold coin?
$G=\{$ the coin picked is golden $\} \quad P(G)=P(G \mid B) \cdot P(B)+$
$B=\{\operatorname{urn} \mid$ was pissed $\}$
$P(G \mid \bar{B}) P(\bar{B})$
$\bar{B}=\{$ urn 2 aus picked $\}=\frac{2}{3} \cdot \frac{1}{2}+\frac{1}{5} \cdot \frac{1}{2}=\frac{1}{3}+\frac{1}{6}=\frac{13}{30}$
$B=\underset{\text { Exercise } 2}{\left\{\begin{array}{l}\text { urn }\end{array}\right.} \quad P(G \mid B)=\frac{10}{15}=\frac{2}{3} \quad P(G \mid \bar{B})=\frac{1}{5}$

- Two urns:

Urn \#1 has 10 gold coins and 5 silver coins Urn \#2 has 2 gold coins and 8 silver coins
First randomly pick an urn then randomly pick a coin from the urn. It turns out that the coin is golden. What is the probability that urn \#1

$$
\begin{aligned}
P(B \mid G) & =\frac{P(G \mid B) P(B)}{P(G \mid B) P(B) \in P(G \mid \bar{B}) P(\bar{B})} \\
& =\frac{2 / 3 \cdot \frac{1}{2}}{2 / 3 \cdot \frac{1}{2}+\frac{1}{5} \cdot \frac{1}{2}}=\frac{1 / 3}{13130}=\frac{10}{13}
\end{aligned}
$$

Random Variable

A random variable is a function $X: S \rightarrow \mathbb{R}$ (from the sample space to the reals)

$$
\begin{aligned}
& S=\{H, r\} \\
& x(H)=1 \\
& x(T)=0
\end{aligned}
$$

coin-tosing. Shoots game.

$$
X(V)=V, V \in[1,10]
$$

Expectation of a Random Variable

- The expected value of a random variable X, denoted by $\mathbf{E}[X]$, is defined as

$$
\mathbf{E}[X]=\sum_{s \in S} P(s) X(s)
$$

- Example - Fair coin tossing: define $X(H)=1, X(T)=0$.

$$
\begin{aligned}
E(X) & =P(H) X(H)+P(T) \cdot X(T) \\
& =\frac{1}{2} \cdot 1+\frac{1}{2} \cdot 0=\frac{1}{2}
\end{aligned}
$$

Shooting competition

	10	9	8	7	6	5
James	45%	30%	27%	13%	1%	0
Kenny	55%	18%	17%	5%	3%	2%

Who is more likely to win in a competition?
James. $E(x)=45 \% \cdot-10+30 \cdot \cdot 9+27 \% \cdot 8+137.7+17 \cdot 6$
$=4.5+2.7+211.6+0.91+0.06$

More examples

- What is the expected outcome of rolling a dice?

$$
\begin{aligned}
E(x) & =\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\frac{1}{6} \times 3+\frac{1}{6} \times 4+\frac{1}{6} \times 5+\frac{1}{6} \cdot 6 \\
& =\frac{1}{6}(1+6)^{k} / 9=\frac{1}{6} \cdot 21=\frac{7}{2}
\end{aligned}
$$

- Rolling a fair dice, what is the expectation of the square of the outcomes?

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{s \in S} P(s) \cdot X^{2}(s)=\frac{1}{6} \sum_{s \in S} X^{2}(s) \\
& =\frac{1}{6}\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right)=91 / 6
\end{aligned}
$$

More examples

- How about rolling a dice twice? what is the expection of the Sum of the two outcomes?

$X(5)$	2	3	4	5	6	7	8	9	10	11	12
$P(5)$	$1 / 36$	$1 / 18$	$1 / 12$	$1 / 95 / 36$	$1 / 6$	$5 / 36$	$1 / 9$	$1 / 12$	$4 / 88$	$1 / 36$	

$$
E(X)=2 \times \frac{1}{36}+3 \times \frac{1}{8}+\cdots+12 \times \frac{1}{36}=7 .
$$

Linearity of Expectation

- For random variables X and Y (which may be dependent),

$$
E[X+Y]=E[X]+E[Y]
$$

- More generally, for random variables $X_{1}, X_{2}, \ldots, X_{n}$ and constants

$$
\begin{aligned}
& c_{1}, c_{2}, \ldots, c_{n} \\
& \quad E\left[c_{1} X_{1}+\cdots+c_{n} X_{n}\right]=c_{1} E\left[X_{1}\right]+\cdots+c_{n} E\left[X_{n}\right]
\end{aligned}
$$

Better way

- Expected outcome of rolling a dice twice? What is the expectation of the sum of the two outcomes.
X_{i} : the random variable of the first roll
$x_{2}: \cdots$ second $r o l l$

$$
E\left[x_{1}+x_{2}\right]=E\left[x_{1}\right]+E\left[x_{2}\right]=7 / 2+7 / 2=7
$$

Exchanging Gifts

- At a Christmas party, n friends each bought a gift box and mixed them together. Later, each person randomly draw a gift box from the pile. On average, how many people will get back their own gift?
$3!=6$

Exchanging Gifts

- At a Christmas party, n friends each bought a gift box and mixed them together. Later, each person randomly draw a gift box from the pile. On average, how many people will get back their own gift?

Exchanging Gifts

- At a Christmas party, n friends each bought a gift box and mixed them together. Later, each person randomly draw a gift box from the pile. On average, how many people will get back their own gift?

$$
X_{i}= \begin{cases}1, & \text { the } i^{\text {th }} \text { person gets back his/her own gift } \\ 0, & \text { otherwise } \\ E\left(X_{i}\right)=1 \times \frac{1}{n}+0 \times \underset{n}{n-1}=\frac{\Gamma}{n}\end{cases}
$$

Binary random variable like X_{i} is called an indicator random variable.

$$
E\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\sum_{i=1}^{n} E\left[X_{i}\right)=\sum_{i=1}^{n} \frac{1}{n}=1
$$

