Integer Representations and Arithmetic

Yan Huang

Decimal Numbers

• Examples:

5

123

8920

• Base-10

The Concept of Bases

- Base-16 (Hexadecimal)
 - Ounces and Pounds
 - How many ounces is 32 pounds?
- Base-12
 - Feet and Inches
 - How many inches are there in 6 feet?
- Base-8
 - Gallons and Pints
- Base-4
 - Dollars and Quarters, Gallons and Quarts
- Base-2 (Binary)

12×6

16 × 32

Base-10 Representation

- Ten states: 0, 1, ..., 9.
- Need more than one digit to denote numbers greater than or equal to 10.
 - -e.g., 10, 11
- •139
- •8901

Binary Numbers

•
$$(0)_2 = (0)_{10}$$

• $(1)_2 = (1)_{10}$
• $(10)_2 = (2)_{10}$
• $(11)_2 = (2)_{10}$
• $(110)_2 = (2)_{10}$
• $(1001)_2 = (4)_{10}$
• $(1100)_2 = (12)_{10}$

0(11 = 7) $\left(\left| \right| \right) = \left(\left| \right\rangle \right)_{L_{0}}$

Octal Numbers 0~1 10247384 f 5651 • (0)₈ = (0)₁₀ • (1)₈ <u>()</u> •(10)₈ – (§)_{(o} •(11)₈ = (9)₁₀ • (1001)₈ = ()₀ • (2671)₈ = 1465 ZX512+6×64 +7×8+1

1408 257 $1 \times 8^3 + D \times 8^2 + O \times 8 + 1 \times 8$ $= [\times 8^{3} + [\times 8^{\circ} = 5]]$

Base-b Numbers to Decimal Numbers

$$\begin{array}{c} (d_{n-1}d_{n-2}\cdots d_{1}d_{0})_{b} \\ = & \left(d_{0} + d_{1} \times b + d_{2} \times b^{2} + \cdots + d_{n-1} \times b^{n-1} \right)_{(o)} \end{array}$$

$$= \sum_{i=0}^{n-1} d_i \times b^i$$

Base-*b* Numbers to Decimals (b<10)

• In Haskell

toDecimal :: Int -> [Int] -> Int

Base-*b* Numbers to Decimals (b<10)

Decimals to Base-b Numbers $(23 - d_{2})$ (b) $M^{m}b$ $d_{0} + d_{1} \times b + d_{2} \times b^{2} + \dots + d_{n-1} \times b^{n-1}$ $= (d_{n-1}d_{n-2} \cdots d_{1}d_{0})_{b^{l}}$ d 0= 12 7 modi - 3 120/8=15 $\left(\begin{bmatrix} 23 \\ 0 \end{bmatrix} = \left(\begin{bmatrix} 173 \\ 29 \end{bmatrix} \right)$ 15 m-d8 = 715 - 7 = 8/8 = 1- IX82-F7X8F3

1×6° + 3×6 +4 = 36+18+4=58 $(58)_{10} = (?)_{6} (?34)_{b}$

do= t8 moel 6 = 4 $d_1 = \overline{(58 - 4)}/6$ | mod $6 = \frac{9}{4}$ mod 6 = 3 $d_2 = 7(9-3)/6$ Mod 6 = \mathcal{O}_{32} \mathcal{O}

Decimals to Base-*b* Numbers (b<10)

toBaseb :: Int -> Int -> [Int]

Decimals to Base-*b* Numbers (b<10)

General Cross Base Translations

• $(72)_9 = (?)_4$

 $(72)_{9} = (7\times9-52)_{0} = (65)_{10}$ $\sum_{n} (100) = 200$

Arbitrary Precision Arithmetic (Addition)

Adding Binary Numbers

• (100101)₂+ (1101)₂

0000 $\setminus 0$ 0000

add :: [Int] -> [Int] -> [Int]

