Higher-order Functions

Yan Huang




Introduction 1) = lnt = [nt

A function is called higher-order if it takes a function as
an argument or returns a function as a result.

twice (a—>a —o>a—a
twice f x =f (f x)

TN

Ltwice is higher-order because it

takes a function as its first argument.




Why Are They Useful?

Common programming idioms can be encoded as

functions within the language itself.
£ 44 = e

Domain specific languages can be defined as
collections of higher-order functions.

Algebraic properties of higher-order functions can
be used to reason about programs.




The Map Function

The higher-order library function called map applies a
function to every element of a list.

For example:




The map function can be defined in a particularly simple
manner using a list comprehension:

Alternatively, for the purposes of proofs, the map
function can also be defined using recursion:




The Filter Function

The higher-order library function filter selects every
element from a list that satisfies a predicate.

For example:




Filter can be defined using a list comprehension:

Alternatively, it can be defined using recursion:




Examples:




The Foldr Function

A number of functions on lists can be defined using the
following simple pattern of recursion:

4 , )
f maps the empty list to some value v, and any

non-empty list to some function @ applied to

its head and f of its tail.
\ J




The higher-order library function foldr (fold right)

encapsulates this simple pattern of recursion, with the
function @ and the value v as arguments.

For example:




Foldr itself can be defined using recursion:




It is best to think of foldr non-recursively, as simultaneously
replacing each (:) in a list by a given function, and [] by a given value.

Replace each (:)
by (+) and [] by O.




Replace each (:)
by (*) and [] by 1. J




Other Foldr Examples

Even though foldr encapsulates a simple pattern of
recursion, it can be used to define many more
functions than might first be expected.




/k

Replace each

L ~[Ibyo.

~

(:) by A _n — 1+n; and

)

Hence, we have:




Now recall the reverse function:

For example:

-

Replace each
(:) by Ax xs — xs ++ [X]
and [] by [].

~

)




Hence, we have:

Finally, we note that the append function (++) has a
particularly compact definition using foldr:

Gy =folarys ﬁ Replace each () J

by (:) and [] by vs.




Why Is Foldr Useful?

Some recursive. functions on lists, such as sum, are
simpler to define using foldr.

Properties of functions defined using foldr can be
proved using algebraic properties of foldr, such as
fusion and the banana split rule.

Advanced program optimizations can be simpler if
foldr is used in place of explicit recursion.




Other Library Functions

The library function (.) returns the composition of two
functions as a single function.

For example:




The library function all decides if every element of a list
satisfies a given predicate.

For example:




Dually, the library function any decides if at least
one element of a list satisfies a predicate.

For example:




The library function takeWhile selects elements from a
list while a predicate holds of all the elements.

For example:




Dually, the function dropWhile removes elements while
a predicate holds of all the elements.

For example:




Exercises

What are higher-order functions that return
functions as results better known as?

Express the comprehension [f x | x < xs, p X]
using the functions map and filter.

Redefine map f and filter p using foldr.




