
Higher-order	Functions

Yan	Huang

Introduction

A	function	is	called	higher-order if	it	takes	a	function	as	
an	argument	or	returns	a	function	as	a	result.

twice :: (a ® a) ® a ® a
twice f x = f (f x)

twice	is	higher-order because	it
takes	a	function	as	its	first	argument.

Why	Are	They	Useful?

z Common	programming	idioms can	be	encoded	as	
functions	within	the	language	itself.

z Domain	specific	languages can	be	defined	as	
collections	of	higher-order	functions.

z Algebraic	properties of	higher-order	functions	can	
be	used	to	reason	about	programs.

The	Map	Function

The	higher-order	library	function	called	map applies	a	
function	to	every	element	of	a	list.

map :: (a ® b) ® [a] ® [b]

For	example:

> map (+1) [1,3,5,7]

[2,4,6,8]

Alternatively,	for	the	purposes	of	proofs,	the	map	
function	can	also	be	defined	using	recursion:	

The	map	function	can	be	defined	in	a	particularly	simple	
manner	using	a	list	comprehension:

map f xs = [f x | x ¬ xs]

map f [] = []

map f (x:xs) = f x : map f xs

The	Filter	Function

The	higher-order	library	function	filter selects	every	
element	from	a	list	that	satisfies	a	predicate.

filter :: (a ® Bool) ® [a] ® [a]

For	example:

> filter even [1..10]

[2,4,6,8,10]

Alternatively,	it	can	be	defined	using	recursion:

Filter	can	be	defined	using	a	list	comprehension:

filter p xs = [x | x ¬ xs, p x]

filter p [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

Examples:

sum [] = 0
sum (x:xs) = x + sum xs

and [] = True
and (x:xs) = x && and xs

product [] = 1
product (x:xs) = x * product xs

v = 0
Å = +

v = 1
Å = *

v = True
Å = &&

The	Foldr	Function

A	number	of	functions	on	lists	can	be	defined	using	the	
following	simple	pattern	of	recursion:

f [] = v
f (x:xs) = x Å f xs

f	maps	the	empty	list	to	some	value	v,	and	any	
non-empty	list	to	some	function	Å applied	to	

its	head	and	f	of	its	tail.

The	higher-order	library	function	foldr (fold	right)	
encapsulates	this	simple	pattern	of	recursion,	with	the	
function	Å and	the	value	v	as	arguments.

For	example:

sum = foldr (+) 0

product = foldr (*) 1

or = foldr (||) False

and = foldr (&&) True

Foldr itself	can	be	defined	using	recursion:

foldr :: (a ® b ® b) ® b ® [a] ® b

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

sum [1,2,3]

foldr (+) 0 [1,2,3]=
foldr (+) 0 (1:(2:(3:[])))=

1+(2+(3+0))=
6= Replace each (:)

by (+) and [] by 0.

It	is	best	to	think	of	foldr non-recursively,	as	simultaneously	
replacing	each	(:)	in	a	list	by	a	given	function,	and	[]	by	a	given	value.

product [1,2,3]

foldr (*) 1 [1,2,3]=

foldr (*) 1 (1:(2:(3:[])))=

1*(2*(3*1))=

6=
Replace each (:)

by (*) and [] by 1.

Other	Foldr	Examples

Even	though	foldr encapsulates	a	simple	pattern	of	
recursion,	it	can	be	used	to	define	many	more	
functions	than	might	first	be	expected.

length :: [a] ® Int

length [] = 0

length (_:xs) = 1 + length xs

length [1,2,3]

length (1:(2:(3:[])))=

1+(1+(1+0))=
3=

Hence,	we	have:

length = foldr (\ _ n ® 1+n) 0

Replace	each	
(:)	by	l _	n	® 1+n;	and	

[]	by	0.

Now	recall	the	reverse	function:

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

reverse (1:(2:(3:[])))=
(([] ++ [3]) ++ [2]) ++ [1]=
[3,2,1]=

For	example:
Replace	each	

(:)	by	lx	xs® xs ++	[x]	
and	[]	by	[].

Hence,	we	have:

reverse =
foldr (lx xs ® xs ++ [x]) []

Finally,	we	note	that	the	append	function	(++)	has	a	
particularly	compact	definition	using	foldr:

(++ ys) = foldr (:) ys Replace	each	(:)	
by	(:) and	[]	by	ys.

Why	Is	Foldr	Useful?
z Some	recursive.	functions	on	lists,	such	as	sum,	are	
simpler to	define	using	foldr.

z Properties	of	functions	defined	using	foldr can	be	
proved	using	algebraic	properties	of	foldr,	such	as	
fusion and	the	banana	split rule.

z Advanced	program	optimizations can	be	simpler	if	
foldr is	used	in	place	of	explicit	recursion.

Other	Library	Functions

The	library	function	(.)	returns	the	composition of	two	
functions	as	a	single	function.

(.) :: (b ® c) ® (a ® b) ® (a ® c)
f . g = lx ® f (g x)

For	example:

odd :: Int ® Bool
odd = not . even

The	library	function	all decides	if	every	element	of	a	list	
satisfies	a	given	predicate.

all :: (a ® Bool) ® [a] ® Bool
all p xs = and [p x | x ¬ xs]

For	example:

> all even [2,4,6,8,10]

True

Dually,	the	library	function	any decides	if	at	least
one	element	of	a	list	satisfies	a	predicate.

any :: (a ® Bool) ® [a] ® Bool
any p xs = or [p x | x ¬ xs]

For	example:

> any (== ’ ’) "abc def"

True

The	library	function	takeWhile selects	elements	from	a	
list	while	a	predicate	holds	of	all	the	elements.

takeWhile :: (a ® Bool) ® [a] ® [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

For	example:

> takeWhile (/= ’ ’) "abc def"

"abc"

Dually,	the	function	dropWhile removes	elements	while	
a	predicate	holds	of	all	the	elements.

dropWhile :: (a ® Bool) ® [a] ® [a]
dropWhile p [] = []
dropWhile p (x:xs)

| p x = dropWhile p xs
| otherwise = x:xs

For	example:

> dropWhile (== ’ ’) " abc"

"abc"

Exercises

(3) Redefine	map	f	and	filter	p	using	foldr.

(2) Express	the	comprehension	[f	x	|	x	¬ xs,	p	x]	
using	the	functions	map	and	filter.

(1) What	are	higher-order	functions	that	return	
functions	as	results	better	known	as?

