
Consolidation	&	Homeworks

Yan	Huang

Goal	for	Today

• Consolidate	your	learning	from	the	past	few	lectures
• HW2

List	Comprehension	and	zip

Using	“zip”	we	can	define	a	function	that	returns	the	list	
of	all	positions of	a	value	in	a	list:

positions :: Eq a Þ a ® [a] ® [Int]

For	example:

> positions 0 [1,0,0,1,0,1,1,0]
[1,2,4,7]

List	Comprehension	and	zip

positions :: Eq a Þ a ® [a] ® [Int]

Using	zip	we	can	define	a	function	that	returns	the	list	
of	all	positions of	a	value	in	a	list:

positions :: Eq a Þ a ® [a] ® [Int]

positions x xs =

[i | (x’,i) ¬ zip xs [0..], x == x’]

For	example:

> positions 0 [1,0,0,1,0,1,1,0]
[1,2,4,7]

String	Comprehensions

A	string is	a	sequence	of	characters	enclosed	in	double	
quotes.		Internally,	however,	strings	are	represented	as	
lists	of	characters.

"abc" :: String

Means	[’a’,	’b’,	’c’]	::	[Char].

Because	strings	are	just	special	kinds	of	lists,	any	
polymorphic function	that	operates	on	lists	can	also	
be	applied	to	strings.		For	example:

> length "abcde"
5

> take 3 "abcde"
"abc"

> zip "abc" [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]

Similarly,	list	comprehensions	can	also	be	used	to	
define	functions	on	strings,	such	as	counting	how	many	
times	a	character	occurs	in	a	string:

count :: Char ® String ® Int

For	example:

> count ’s’ "Mississippi"
4

Similarly,	list	comprehensions	can	also	be	used	to	
define	functions	on	strings,	such	as	counting	how	many	
times	a	character	occurs	in	a	string:

count :: Char ® String ® Int
count x xs =

length [x’ | x’ ¬ xs, x == x’]

For	example:

> count ’s’ "Mississippi"
4

Recursive	Functions	and	Quick	Sort

Quick	Sort

Quick	Sort
The	quicksort algorithm	for	sorting	a	list	of	values	can	
be	specified	by	the	following	two	rules:

z The	empty	list	is	already	sorted;

z Non-empty	lists	can	be	sorted	by	sorting	the	tail	
values	£ the	head,	sorting	the	tail	values	> the	
head,	and	then	appending	the	resulting	lists	on	
either	side	of	the	head	value.

Using	recursion,	this	specification	can	be	translated	
directly	into	an	implementation:

Using	recursion,	this	specification	can	be	translated	
directly	into	an	implementation:

qsort :: Ord a Þ [a] ® [a]
qsort [] = []
qsort (x:xs) =

qsort smaller ++ [x] ++ qsort larger
where

smaller = [a | a ¬ xs, a £ x]
larger = [b | b ¬ xs, b > x]

z This	is	probably	the	simplest implementation	of	
quicksort	in	any	programming	language!

For	example	(abbreviating	qsort as	q):

qsort [3,2,4,1,5]

qsort [2,1] ++ [3] ++ qsort [4,5]

qsort [1] qsort []++ [2] ++ qsort [] qsort [5]++ [4] ++

[1] [] [] [5]

Homework	2

