Consolidation & Homeworks

Yan Huang

Goal for Today

* Consolidate your learning from the past few lectures
e HW2

List Comprehension and zip

Using “zip” we can define a function that returns the list
of all positions of a value in a list:

For example:

List Comprehension and zip

Using zip we can define a function that returns the list
of all positions of a value in a list:

For example:

String Comprehensions

A string is a sequence of characters enclosed in double
guotes. Internally, however, strings are represented as
lists of characters.

[—® 0, ’c'] :: [Char]. |

Because strings are just special kinds of lists, any
polymorphic function that operates on lists can also
be applied to strings. For example:

Similarly, list comprehensions can also be used to

define functions on strings, such as counting how many
times a character occurs in a string:

For example:

Similarly, list comprehensions can also be used to

define functions on strings, such as counting how many
times a character occurs in a string:

For example:

Recursive Functions and Quick Sort

Quick Sort

Quick Sort

The quicksort algorithm for sorting a list of values can
be specified by the following two rules:

The empty list is already sorted;

Non-empty lists can be sorted by sorting the tail
values < the head, sorting the tail values > the
head, and then appending the resulting lists on
either side of the head value.

Using recursion, this specification can be translated
directly into an implementation:

Using recursion, this specification can be translated
directly into an implementation:

7 This is probably the simplest implementation of
quicksort in any programming language!

For example (abbreviating gsort as q):

gsort [3,2,4,1,5]

<

gsort [2,1] ++ [3] ++ gsort [4,5]

< <

gsort [1] ++ [2] ++ qgsort [] gsort [] ++ [4] ++ qsort [5]

< < & <

[1] [] [] [5]

Homework 2

