
INFO-231:	Introduction	to	
Mathematical	Foundations	of	

Security
Yan	Huang

yh33@indiana.edu

Yan	Huang

Research	Interests:	
Security
Algorithms
Functional	Programming	Systems
Cryptography

I	am	looking	for	motivated undergraduate	researchers.

Course	Administrivia

• Web	site:	http://homes.soic.indiana.edu/yh33/Teaching/I231-2016/syllabus.html

• TA:	Ruiyu Zhu	(zhu52@indiana.edu)

Office	Hours:	Tuesday	1-2.	GA	1st	floor	Lobby

• Textbooks:	(both	from	Cambridge	University	Press)
-[required]	Programming	in	Haskell,	Graham	Hutton
-[required]	A	Cryptography	Primer:	Secrets	and	Promises,	
Philip	Klein
-[recommended]	An	Introduction	to	Mathematical	
Cryptography,	J.	Hoffstein,	J.	Pipher,	J.	H.	Silverman

Goals	of	this	course

• Stimulate	your	interests	in
-Mathematics
-Computer	programming

• Some	useful	Math	ideas
-Prepare	for	later	courses
-Benefit	your	future	career

Components	of	this	course

Haskell	
programming Algebra Probability

Computational	
Complexity Applications

Grades

Home	work 40%
Quiz 20%
Final 40%

ü Every	homework	assignment	counts.
ü No	late	homework	will	be	accepted.
ü Final	grades	are	curved	at	the	end	of	the	semester.

Homework	Policy

• You	can	discuss	the	problems	with	other	students	in	
the	class,	but	everyone	should	type	up	the	answers	
independently.	
•On	your	submitted	paper
-Credit	who	you	have	obtained	help	from	
-Write	down	who	you	have	offered	help	to

•Plagiarism will	always	be	reported	and	cause	a	failure	
of	this	course.

More	policies

• Quizzes
- Closed	book,	Closed	notes
- Can	happen	during	any	lecture
- Zero	point	on	quizzes	in	lectures	of	your	absence	
- Three	worst	scores	automatically	dropped	(e.g.,	due	to	missing	attendance)
- Class	attendance	is	required	unless	you	demonstrate	to	me	that	you	mastered	
the	lecture	contents	in	advance.		Must	obtain	permission	to	skip	lectures.	

• Final
- Open	book,	take	home
- No	collaboration
- Must	type	up	and	submit	electronically

How	to	get	an	A+?

• Factorize	the	following	number
189721033099831854220700797842841354892470928484226462861838184732495
886835944169521825942409750174014649148448296440574720913526137987437
473357773230905553892237303084784011168818947451081579379097447822881
667432882904379382192765785334484626092964491724567613895658573635823
440320704164445430154614611228964821896107965926838383389899407160291
009707165203728441693191054364480704346562993029545686786243942022722
547324163598311076715637428198166427036328133401910860218006553001325
991055259400990064904499288444751897045897700726555141998311062645769
93649173200857755181189779752280025089963275809434722408052661993

• Finish	your	assignments	reasonably	well	and	demonstrate	your	ability	of	
proactive	learning
- Study	relevant	materials	not	covered/required	in	class
- Implement	challenging	stuff	
- Solve	optional	problems Do	talk	to	me	in	advance	to	

settle	down	your	specific	plans

Environment	Setup

Bring	your	laptop	to	class
-Quizzes
- Try	out	ideas	on	the	fly.

Madoko
• https://www.madoko.net/
- Connects	well	with	Dropbox,	Github,	Onedrive etc.

• Detailed	reference	manual:	
http://research.microsoft.com/en-
us/um/people/daan/madoko/doc/reference.html

• You	are	required	to	type	up	your	assignments	using	either	
Madoko or	LaTeX.

Daan Leijen,	creator	of	Madoko.

Madoko

• Italic
important =>				important

• Boldface	
important =>			important

• Inline	math
$ f(x) = x^2 + 1 $

•Displayed	math
~ Equation { #eqn-label }
W = F \cdot s
~

Madoko

• Superscripts	(^)	and	Subscripts	(~)
- E.g.,	Black_pit_, Ball~sky~

• Strike	out	(~~,	two	tildes)
- E.g.,	There is a ~~strike out~~ here.

• Links
- E.g.,	[Google](http://www.google.com).

• Images
![bfly]
[bfly]: images/butterfly-200.png "A Monarch" { width:
100px }

Madoko Blocks

• Equivalently
~ Begin Equation

W = F \cdot s
~

•Block	for	Displayed	math
~ Equation
W = F \cdot s
~

• Nested	blocks
~ Equation
F=ma

~~ Equation
An nested equation distinguished by double tildes

~~
~

Madoko 1
𝑛

\frac{1}{n}

𝑥$ x_1

Lim \lim

mod \mod

→ \rightarrow

∞ \infty

• $...$	marks	the	region	where	

LaTeXmath-mode applies

• LaTeX symbol	lookup:	

http://detexify.kirelabs.org/cl

assify.html

Madoko

• Embedding	program	code

``` haskell
main = print “Hello World!”
```


Why	Haskell?

•Present	math	ideas
-Precise
-Succinct
-Easy	to	experiment

•A	bonus	skill	to	your	adventurous	future
§Functional	programming:	the	basic	method	of	
computation	is application	of	functions	to	arguments

Why	Haskell?
A	language	that	doesn't	affect	the	
way	you	think	about	programming	
is	not	worth	knowing.

A	good	programming	language	is	a	
conceptual	universe	for	thinking	
about	programming.

-- Alan	Perlis
Professor	of	Yale

The	first	Turing	Award	Laureate

Historical	Background

1930s:

Alonzo	Church	develops	the	lambda	calculus,	a	
simple	but	powerful	theory	of	functions.

Historical	Background

1950s:

John	McCarthy	develops	Lisp,	the	first	functional	
language,	with	some	influences	from	the	lambda	
calculus,	but	retaining	variable	assignments.

Historical	Background

1970s:

John	Backus	develops	FP,	a	functional	
language	that	emphasizes	higher-order	
functions and	reasoning	about	programs.

Historical	Background

1970s:

Robin	Milner	and	others	develop	ML,	the	first	
modern	functional	language,	which	introduced	type	
inference and	polymorphic	types.

Historical	Background

1987:

An	international	committee	of	researchers	
initiates	the	development	of	Haskell,	a	
standard	lazy	functional	language.

Historical	Background

1990s:

Phil	Wadler and	others	develop	type	classes and	
monads,	two	of	the	main	innovations	of	Haskell.

Historical	Background

2003:

The	committee	publishes	the	Haskell	Report,	
defining	a	stable	version	of	the	language;	an	
updated	version	was	published	in	2010.

Historical	Background

2010-date:

Standard	distribution,	library	support,	new	
language	features,	development	tools,	use	in	
industry,	influence	on	other	languages,	etc.

Example	Practical	Uses

• Haxl — Facebook's	anti-spam	program
• Cryptol — A	language	and	toolchain	for	developing	and	
verifying	cryptography	algorithms
• seL4 — The	first	formally	verified	microkernel
…

Example	Haskell	Code

• Summing	the	integers	1	to	10	in	Java:

• In	Haskell,	this	is	simply	a	one-liner

int total = 0;
for (int i = 1; i <= 10; i++)
total = total + i;

sum [1..10]

The	method	of	computation	is variable	assignment.

Installing	Haskell

GLASGOW	HASKELL	COMPILER	(GHC)
• Freely	available

https://​www.​haskell.​org/​platform/​
• A	leading	implementation	of	Haskell	comprising	a	compiler	
ghc and	an	interpreter ghci
• The	interactive	nature	of	the	interpreter	makes	it	well-suited	
for	teaching	and	prototyping

Starting	GHCi

“Prelude λ:” prompts	for	Haskell	expressions	to	evaluate.

$ ghci

GHCi, version X: http://www.haskell.org/ghc/ :? for help

Prelude λ:

GHCi as	a	desktop	calculator

Prelude λ: 2+3*4

14

Prelude λ: (4+1)*5

25

Prelude λ: 3^2

9

Prelude λ: sqrt (3^2 + 4^2)

5.0

The	Standard	Prelude

Haskell	comes	with	a	large	number	of	standard	
library	functions.		E.g.,	the	library	also	provides	
many	useful	functions	on	lists.

z Select	the	first	element	of	a	list:

Prelude λ: head [1,2,3,4,5]
1

z Remove	the	first	element	from	a	list:

Prelude λ: tail [1,2,3,4,5]
[2,3,4,5]

z Select	the	nth	element	of	a	list:	(list	index	starts	from	0)

Prelude λ: [1,2,3,4,5] !! 2
3

z Select	the	first	n	elements	of	a	list:

Prelude λ: take 3 [1,2,3,4,5]
[1,2,3]

z Remove	the	first	n	elements	from	a	list:

Prelude λ: drop 3 [1,2,3,4,5]
[4,5]

z Calculate	the	length	of	a	list:

Prelude λ: length [1,2,3,4,5]
5

z Calculate	the	sum	of	a	list	of	numbers:

Prelude λ: sum [1,2,3,4,5]
15

z Calculate	the	product	of	a	list	of	numbers:

Prelude λ: product [1,2,3,4,5]
120

z Append	two	lists:

Prelude λ: [1,2,3] ++ [4,5]
[1,2,3,4,5]

z Reverse	a	list:

Prelude λ: reverse [1,2,3,4,5]
[5,4,3,2,1]

Function	Application

In	mathematics,	function	application	is	denoted	using	
parentheses,	and	multiplication	is	often	denoted	using	
juxtaposition	or	space.

f(a,b) + c d

Apply	the	function	f to	a and	b,	and	add	the	
result	to	the	product	of	c and	d.

In	Haskell,	function	application	is	denoted	using	
space,	and	multiplication	is	denoted	using	*.

f a b + c*d

As	previously,	but	in	Haskell	syntax.

Moreover,	function	application	is	assumed	to	
have	higher	priority than	all	other	operators.

f a + b

Means	(f a) + b,	rather	than	f (a + b).

Examples
Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y

f(-1) f (-1)

Useful	GHCi	Commands
Command Meaning

:load name load script name
:reload reload current script
:set editor name set editor to name
:edit name edit script name
:edit edit current script
:type expr show type of expr
:? show all commands
:quit quit GHCi

Charge

• Haskell
- Install	Haskell	Platform	on	your	computer.
- Try	out	the	GHCi evaluations	covered	in	this	lecture.

• Madoko
- Read	through	Madoko’s reference	manual
- Try	out	Madoko tricks	as	you	read	the	manual.

• Homework	0	announced
- Start	early!
- Submit	through	Canvas

