INFO-231: Introduction to
Mathematical Foundations of
Security

Yan Huang
vh33@indiana.edu

Yan Huang

Research Interests:
Security
Algorithms
Functional Programming Systems
Cryptography

| am looking for motivated undergraduate researchers.

Course Administrivia

e Web site: http://homes.soic.indiana.edu/yh33/Teaching/1231-2016/syllabus.html|

* TA: Ruiyu Zhu (zhu52@indiana.edu)
Office Hours: Tuesday 1-2. GA 1st floor Lobby

* Textbooks: (both from Cambridge University Press)

required] Programming in Haskell, Graham Hutton
required] A Cryptography Primer: Secrets and Promises,
Philip Klein

recommended] An Introduction to Mathematical
Cryptography, J. Hoffstein, J. Pipher, J. H. Silverman

Goals of this course

 Stimulate your interests in
- Mathematics
- Computer programming

* Some useful Math ideas

- Prepare for later courses
- Benefit your future career

Components of this course

Haskell

: Algebra Probability
programming

Computational

Complexity Applications

Home work 40%
Quiz 20%
Final 40%

v’ Every homework assignment counts.
v No late homework will be accepted.
v’ Final grades are curved at the end of the semester.

Homework Policy

* You can discuss the problems with other students in
the class, but everyone should type up the answers
independently.

* On your submitted paper
- Credit who you have obtained help from
- Write down who you have offered help to

* Plagiarism will always be reported and cause a failure
of this course.

More policies

* Quizzes
- Closed book, Closed notes
- Can happen during any lecture
- Zero point on quizzes in lectures of your absence
- Three worst scores automatically dropped (e.g., due to missing attendance)

- Class attendance is required unless you demonstrate to me that you mastered
the lecture contents in advance. Must obtain permission to skip lectures.

* Final
- Open book, take home
- No collaboration
- Must type up and submit electronically

How to get an A*?

* Factorize the following number

18972103309983185422070079784
88683594416952182594240975017
47335777323090555389223730308
2274328829043793821927657853
0

3
032070416444543015461461122
0970716520372844169319105436
547732416359831107671563742819
991055259400990064904499288444°75189 9770072655514 62645769
936491732008577551811897797522800250899632758094347224 61993

* Finish your assignments reasonably well and demonstrate your ability of
proactive learning
- Study relevant materials not covered/required in class
- Implement challenging stuff
- Solve optional problems

2
4
4
£
8
4
8

dJdBP OO
OOWWODR
INBRFEN 6T YN
U1y YY) 00 00 N
00 LW U1 (O 00 b

NOO O
ON) I 00O
OO ONIWO
WONORON
W WU 10y
RO WWWON

O O N ~J LW 00 WO

00 O 00 00O ~J O

O 0000 OHYLO UTWO W

GTWON OO UT

N OB OUTONW

Do talk to me in advance to
settle down your specific plans

Environment Setup

Bring your laptop to class
- Quizzes

- Try out ideas on the fly.

Madoko

e https://www.madoko.net/
- Connects well with Dropbox, Github, Onedrive etc.

e Detailed reference manual:

http://research.microsoft.com/en-
us/um/people/daan/madoko/doc/reference.html

* You are required to type up your assignments using either
Madoko or LaTeX.

Daan Leijen, creator of Madoko.

Madoko

* |talic * Inline math
important => important $f(X)=xA2+1%

* Displayed math

~ Equation { #eqn-label }
impOl’tant => important W _ F \Cdot S

e Boldface

~S

Madoko

e Superscripts () and Subscripts (™)
- E.g.,,Black pit , Ball~sky-~
e Strike out (~~, two tildes)
- E.g.,, There i1s a ~~strike out~~ here.

* Links
- E.g.,, [Google] (http://www.google.com).

* [mages
![bfly]
[bfly]: images/butterfly-200.png "A Monarch" { width:
100px }

Madoko Blocks

e Block for Displayed math *Equivalently
~ Equation ~ Begin Equation
W = F \cdot s W =F \cdot s

~S
~S

* Nested blocks
~ Equation
F=ma
~~ Equation
An nested equation distinguished by double tildes

P~ P~

~

Madoko

¢ S...S marks the region where

LaTeX math-mode applies

* LaTeX symbol lookup:

http://detexify.kirelabs.org/cl

\frac{1l}{n}

x 1

\lim

\mod

assify.html|

\rightarrow

\infty

Madoko

* Embedding program code

" haskell
main = print “Hello World!”

Why Haskell?

* Present math ideas
-Precise
-Succinct
-Easy to experiment

* A bonus skill to your adventurous future

" Functional programming: the basic method of
computation is application of functions to arguments

Why Haskell?

A language that doesn't affect the
way you think about programming
is not worth knowing.

A good programming language is a
conceptual universe for thinking
about programming.

-- Alan Perlis

Professor of Yale
The first Turing Award Laureate

Historical Background

1930s:

Alonzo Church develops the lambda calculus, a
simple but powerful theory of functions.

Historical Background

1950s:

John McCarthy develops Lisp, the first functional
language, with some influences from the lambda
calculus, but retaining variable assighments.

Historical Background

1970s:

John Backus develops FP, a functional
language that emphasizes higher-order
functions and reasoning about programs.

Historical Background

1970s:

Robin Milner and others develop ML, the first
modern functional language, which introduced type
inference and polymorphic types.

Historical Background

1987:

Haskell

A Purely Functional Language

An international committee of researchers
initiates the development of Haskell, a
standard lazy functional language.

Historical Background

1990s:

Phil Wadler and others develop type classes and
monads, two of the main innovations of Haskell.

Historical Background

2003:

Haskell 98
Langnage and Libraries

1he Revised Report

CAMBRIDGE
UNivERSITY FRESS

The committee publishes the Haskell Report,
defining a stable version of the language; an
updated version was published in 2010.

Historical Background

2010-date:

The Haskell Platform

DS

Download

' J :
e o B
Linux

Windows Mac

Standard distribution, library support, new
language features, development tools, use in
industry, influence on other languages, etc.

Example Practical Uses

* Haxl — Facebook's anti-spam program

* Cryptol — A language and toolchain for developing and
verifying cryptography algorithms

* seL4 — The first formally verified microkernel

Example Haskell Code

* Summing the integers 1 to 10 in Java:

int total = 0;
for (int 1 = 1; 1 <= 10; 1i++)
total = total + i;

The method of computation is variable assignment.

* In Haskell, this is simply a one-liner

sum [1..10]

Installing Haskell

GLASGOW HASKELL COMPILER (GHC)

* Freely available
https://www.haskell.org/platform/

* A leading implementation of Haskell comprising a compiler
ghc and an interpreter ghci

* The interactive nature of the interpreter makes it well-suited
for teaching and prototyping

Starting GHCi (ley

$ ghci
GHC i, version X: http://www.haskell.org/ghc/ :? for help
Prelude A:

“Prelude A:” prompts for Haskell expressions to evaluate.

GHCi as a desktop calculator

Prelude \: 2+3%4

14

Prelude \: (4+1)*5

25

Prelude \: 3A2

9

Prelude A: sqrt (3A2 + 4A2)
5.0

The Standard Prelude

Haskell comes with a large number of standard
library functions. E.g., the library also provides
many useful functions on lists.

Select the first element of a list:

Prelude A: head [1,2,3,4,5]
]

Remove the first element from a list:

Prelude A: tail [1,2,3,4,5]
[21314!5]

Select the nth element of a list: (list index starts from 0)

Prelude A: [1,2,3,4,5] 11 2
3

Select the first n elements of a list:

Prelude A: take 3 [1,2,3,4,5]
[1,2,3]

Remove the first n elements from a list:

Prelude A: drop 3 [1,2,3,4,5]
[4,5]

Calculate the length of a list:

Prelude A: length [1,2,3,4,5]
5

Calculate the sum of a list of numbers:

Prelude A\: sum [1,2,3,4,5]
15

Calculate the product of a list of numbers:

Prelude A: product [1,2,3,4,5]
120

Append two lists:

Prelude A: [1,2,3] ++ [4,5]
[-I ,2!314!5]

Reverse a list:

Prelude A: reverse [1,2,3,4,5]
[5!4!31211]

Function Application

n mathematics, function application is denoted using
narentheses, and multiplication is often denoted using
juxtaposition or space.

500

/N

{ Apply the function f to a and b, and add the }

result to the product of c and d.

In Haskell, function application is denoted using
space, and multiplication is denoted using *.

/N

[As previoygly, but in HaskeTk‘synRx.)9]
A, /\
rgmmﬂ/lm }7/42%/ “/’/VWJFL

Moreover, function application is assumed to
have higher priority than all other operators.

/T

Means (f @) + b, rather than f (a + b).

Examples

Mathematics Haskell

Useful GHCi Commands

Command Meaning

:load name load script name
:reload reload current script

:set editor name set editor to name

:edit name edit script name

redit edit current script -
‘type expr show type of expr > “7|{& \DL”)C
;7 show all commands

:quit quit GHCi

Charge

e Haskell

- Install Haskell Platform on your computer.
- Try out the GHCi evaluations covered in this lecture.

* Madoko

- Read through Madoko’s reference manual
- Try out Madoko tricks as you read the manual.

* Homework 0 announced
- Start early!
- Submit through Canvas

