
Robust Ranking of Uncertain Data

Da Yan and Wilfred Ng

The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{yanda,wilfred}@cse.ust.hk

Abstract. Numerous real-life applications are continually generating
huge amounts of uncertain data (e.g., sensor or RFID readings). As a
result, top-k queries that return only the k most promising probabilistic
tuples become an important means to monitor and analyze such data.
These “top” tuples should have both high scores in term of some ranking
function, and high occurrence probability. The previous works on ranking
semantics are not entirely satisfactory in the following sense: they either
require user-specified parameters other than k, or cannot be evaluated
efficiently in real-time scale, or even generating results violating the un-
derlying probability model. In order to overcome all these deficiencies,
we propose a new semantics called U-Popk based on a simpler but more
fundamental property inherent in the underlying probability model. We
then develop an efficient algorithm to evaluate U-Popk. Extensive exper-
iments confirm that U-Popk is able to ensure high ranking quality and
to support efficient evaluation of top-k queries on probabilistic tuples.

1 Introduction

Many emerging applications, such as environmental surveillance and mobile ob-
ject tracking, involve the generation of uncertain data which are inherently fuzzy
and noisy. As a result, various probabilistic DBMSs are developed to support
the storage and querying of these uncertain data [2–4]. Since precise query ex-
pressions like SQL may not be ideal to evaluate such data, top-k queries become
an important means to extract information from them.

Top-k queries on deterministic data have been well studied [5, 6]. Unlike
top-k queries on deterministic data, ranking probabilistic tuples requires taking
both the tuple score and its occurrence probability into account, which gives
rise to new challenges in defining the query semantics. Despite the many recent
attempts to study top-k query semantics in the context of probabilistic relations
[1, 7–10], these seemingly natural semantics lead to quite different query results.

Recently, [11] proposes a unified framework that incorporates several of the
semantics and gives an approach to learn the ranking function from user pref-
erence. [12] proposes to return a number of typical top-k results to users. While
these works mitigate the inconsistency of the previous semantics and provide
more flexibility, they exert extra burden on users by requiring their intervention.

The work of [1] proposes five intuitive properties for top-k queries, and shows
that only ExpectedRank satisfies all of them and it is considerably more efficient

2 Da Yan and Wilfred Ng

to evaluate than the previous semantics. However, ExpectedRank has two sig-
nificant deficiencies: First, its results may contradict with the probability model,
which will be detailed in Section 4. Second, its results deviate considerably from
the results of the other semantics, which will be detailed in Section 6.1.

In this paper, we first identify a simple but fundamental property inherent in
the probability model, which any robust ranking semantics for probabilistic data
should satisfy. Then we describe our new semantics, U-Popk, that is founded on
this property to rank probabilistic tuples. It can be proved that U-Popk satisfies
all the five properties of [1]. The efficiency of our evaluation algorithm and the
ranking quality of U-Popk are evaluated using both real and synthetic datasets.

Compared to the state-of-the-art semantics, our proposal has many desirable
features. First, U-Popk gives more reasonable results than ExpectedRank in
general, with comparable evaluation cost. Second, unlike the work in [11, 12], U-
Popk requires no user intervention except for the parameter k, and is thus easier
to use. Finally, the evaluation of U-Popk takes considerably less time than other
semantics, and thus U-Popk paves a much better way towards real time analyses.

The rest of the paper is organized as follows. Section 2 defines our probabilis-
tic data model. We review the related work in Section 3. The robustness property
and our ranking semantics are proposed in Section 4, and the corresponding al-
gorithms are presented in Section 5. Extensive experiments are conducted in
Section 6 to demonstrate the efficiency of our algorithm and the ranking quality
of our semantics. Finally, we conclude the paper in Section 7.

2 Probabilistic Data Model

Among the many uncertain data models proposed in the literature, the tuple-
level probabilistic model [1, 8–12] is one of the most important models. In this
model, each tuple t is accompanied with the probability p of its occurrence. The
model is able to capture the form of uncertain data that is common in many
real life applications, such as sensor readings with confidence on their sensor
states, and data tuples with confidence on their information sources. We adopt
the tuple-level probabilistic model throughout the paper due to its popularity
in real life applications.

Figure 1(a) shows our running example relation conforming to the tuple-level
model, where the ranking score is defined according to the attribute “Speed”,
which records the car speed readings detected by different radars in a sampling
moment. In this relation, a confidence field “Conf.” is attached with each tuple
to indicate its occurrence probability. The occurrence probability of t1, denoted
as Pr(t1), is 0.4. In contrast, the probability of the event that t1 does not occur
is given by Pr(¬t1) = 1 − Pr(t1) = 0.6.

Note that both tuples t2 and t6 record the speed reading of the same car.
Since a car can only have one speed in a given moment, t2 and t6 cannot co-
exist, which we denote as t2⊕ t6. We call such a constraint an exclusion rule. We
have another exclusion rule t3 ⊕ t5 defined in the relation for a similar reason.
Different forms of constraints can be adopted in a probabilistic relation [3, 2] but

Robust Ranking of Uncertain Data 3

Radar Location Car Make Plate No. Speed Confidence

L1 Honda X-123 130 0.4

L2 Toyota Y-245 120 0.7

L3 Mazda W-541 110 0.6

L4 Nissan L-105 105 1.0

L5 Mazda W-541 90 0.4

L6 Toyota Y-245 80 0.3

Possible World Probability

PW1={ t1, t2, t4, t5 } 0.112

PW2={ t1, t2, t3, t4 } 0.168

PW3={ t1, t4, t5, t6 } 0.048

PW4={ t1, t3, t4, t6 } 0.072

PW5={ t2, t4, t5 } 0.168

PW6={ t2, t3, t4 } 0.252

PW7={ t4, t5, t6 } 0.072

PW8
={ t3, t4, t6 } 0.108Exclusion Rules: (t2 t6), (t3 t5)

t1

t2

t3

t4

t5

t6

(a) (b)

Fig. 1. (a)Probabilistic Relation with Exclusion Rules (b)Possible World Space

exclusion rules are the most popular in the literature due to their simplicity and
usefulness. We considered only exclusion rules in this paper.

Note that each exclusion rule corresponds to an entity (e.g. a car in our
example) of the relation. Thus, each tuple appears in at most one exclusion
rule. In our example, the rule t2 ⊕ t6 means that the speed of the “Toyota” car
takes the value 120 with probability 0.7 and 80 with probability 0.3. In general,
given an exclusion rule ti1 ⊕ ti2 ⊕ · · · ⊕ tim , we have (1) Pr(ti1) + Pr(ti2) +
· · · + Pr(tim) ≤ 1, and (2) at most one tuple in {ti1 , ti2 , . . . , tim} can occur.
There is still an event that no tuple in the rule occurs, which has probability
(1 − Pr(ti1) − Pr(ti2) − . . . − Pr(tim)).

If a tuple ti is independent of all other tuples, we say ti itself is in a trivial rule.
In addition, any two tuples from different rules are assumed to be independent.
Thus, we have four rules in the example as follows: t1, t2⊕t6, t3⊕t5 and t4, where
t1 and t4 are in trivial rules, and t2 and t3 are independent. This assumption
simplifies the computation of the probabilities of possible worlds, which will be
further elaborated when discussing the algorithm issues in Section 5.

In the tuple-level model, a possible world (PW) is a subset of the tuples in the
probabilistic relation. Figure 1(b) shows the possible world space for the relation
in Figure 1(a). The probability of each world is computed as the joint probability
of the “occurrence events” of the tuples in the world, and the “absence events”
of all the other tuples. For example, the probability of PW 1 = {t1, t2, t4, t5} is
Pr(PW 1) = Pr(t1) × Pr(t2) × Pr(t4) × Pr(t5) = 0.112. Multiplication is used
here because the occurrence events of t1, t2, t4 and t5 are independent of each
other, and the absence events of t3 and t6 are already implied in the occurrence
events of t5 and t2 due to the exclusion rules. Similarly, the probability of PW 5 =
{t2, t4, t5} is Pr(PW 5) = Pr(¬t1) × Pr(t2) × Pr(t4) × Pr(t5) = 0.168.

3 Related Work

Several semantics for top-k queries on uncertain data have recently been pro-
posed, such as U-Topk[8], U-kRanks[8], Global-Topk[9], PT-k[10] and Expecte-

4 Da Yan and Wilfred Ng

dRank[1], all of which are defined on the possible world model. We now illustrate
their semantics by performing a top-2 query on the relation in Figure 1(a).

1) U-Topk returns the most probable top-k tuples that belong to a valid
possible world. Consider U-Top2 and define ⟨ti, tj⟩ to be the event that ti is
ranked the first and tj the second in a possible world. By merging the possible
worlds in Figure 1(b) whose top-2 tuples are the same, we have Pr(⟨t1, t2⟩) =
Pr(PW 1) + Pr(PW 2) = 0.28, which is the largest among all possible top-2
combinations. Therefore, the result of U-Top2 is ⟨t1, t2⟩.

However, there can be a large number of valid possible worlds. As a result,
the most probable top-k tuples that belong to a valid possible world can occur
with a very small probability. [12] proposes to return c typical top-k tuple vectors
in terms of the distribution of the total score of top-k tuples, from which users
need to choose one, which is itself a non-trivial task for users.

2) U-kRanks returns the set of most probable top-i th tuples across all
possible worlds, where i = 1, . . . , k. Let us compute U-2Ranks. First, consider
the most probable tuple to appear in the 1st position. Tuple t2 appears in the 1st
position with probability Pr(PW 5)+Pr(PW 6) = 0.42, since it appears the first
only in PW 5 and PW 6. Similarly, t1 appears in the first position with probability
Pr(PW 1) + Pr(PW 2) + Pr(PW 3) + Pr(PW 4) = 0.4. After considering all the
tuples, we can see that t2 appears in the 1st position with maximum probability.
Thus the first answer to U-2Ranks is t2. The second answer to U-2Ranks should
be the most probable tuple to appear in the 2nd position, and similarly, we find
that tuple t3 appears in the 2nd position with maximum probability Pr(PW 4)+
Pr(PW 6) = 0.324. To sum up, the result of U-2Ranks is ⟨t2, t3⟩.

Since a tuple may be the most probable tuple to appear in more than one
position, the same tuple may be listed multiple times in the result of U-kRanks,
which is a very unnatural answer to users.

3) PT-k returns all tuples whose probability values of being in the top-
k answers in possible worlds are above a threshold; Global-Topk returns k
highest-ranked tuples according to their probability of being in the top-k answers
in possible worlds.

As for Global-Top2 and PT-2, we check for each tuple the probability that it
is within top-2. Tuple t2 is within top-2 in worlds PW 1, PW 2, PW 5 and PW 6,
and thus with probability Pr(PW 1)+Pr(PW 2)+Pr(PW 5)+Pr(PW 6) = 0.7.
Similarly, the probability to be within top-2 is 0.4 for t1, 0.432 for t3, 0.396 for
t4, 0.072 for t5 and 0 for t6. Global-Top2 picks the two tuples with maximum
probability to be within top-2, namely t2 and t3. On the other hand, PT-2 picks
all the tuples with probability to be within top-2 higher than a pre-specified
threshold. If the threshold is set to be 0.5, then only t2 is returned. However, if
the threshold is set to be 0.3, then the result would become {t2, t1, t3, t4}.

One limitation of PT-k is that the number of returned tuples may not be k
but depends on the user-specified threshold, which is difficult for a user to set.

4) ExpectedRank(k) returns k tuples whose expected ranks across all pos-
sible worlds are the highest. However, if a tuple does not appear in a possible
world, its rank is then undetermined. To solve this, in a possible world with m

Robust Ranking of Uncertain Data 5

tuples, ExpectedRank ranks absent tuples to be in the (m+1)th position. Thus,
t2 and t5 are both ranked 5th in PW 4 shown in Figure 1(b), although t2 have
both higher score and higher occurrence probability than t5. As a more detailed
illustration, we consider tuple t5 which is ranked 4th in PW 1, 5th in PW 2 due
to its absence, 3rd in PW 3, 5th in PW 4 due to its absence, 3rd in PW 5, 4th
in PW 6 due to its absence, 2nd in PW 7, and 4th in PW 8 due to its absence.
Therefore the expected rank for t5 is 0.112 · 4 + 0.168 · 5 + 0.048 · 3 + 0.072 · 5 +
0.168 · 3 + 0.252 · 4 + 0.072 · 2 + 0.108 · 4 = 3.88. Similarly, we have the expected
rank 2.8 for t1, 2.3 for t2, 3.02 for t3, 2.7 for t4, 4.1 for t6. Therefore, the result
of ExpectedRank(2) is {t2, t4}, since their expected ranks are the highest.

In fact, ExpectedRank defines an order on the tuples, e.g. t2 ≻ t4 ≻ t1 ≻
t3 ≻ t5 ≻ t6 in the previous example, while the ranking function of Global-Topk
and PT-k is dependent on k, which means that a tuple in the top-k result may
not appear in the top-(k + 1) result.

5) PRF [11] presents a unified framework that uses parameterized rank-
ing functions (PRF) for ranking probabilistic data. The work proposes a basic
function called PRF e and employs a linear combination of PRF e functions to
approximate PRF by using Discrete Fourier transformation. This approach is
able to achieve good performance at the expense of result quality.

PRF also gives a learning algorithm that learns the parameter from user
preference. The training data come from explicit user feedback, which assumes
that users know the interplay between high score and high occurrence probability
of the tuples. However, users usually expect reasonable score-probability tradeoff
automatically in the evaluation of such top-k queries and assume no extra effort
to give explicit feedback. Another problem is that high-quality training data may
not be available from casual users, even if they are willing to give feedback.

4 Robust Ranking Semantics

In this section, we first formalize a property called top-1 robustness, which is
founded on the tuple-level probability model. Then a fundamental property of
ranking deterministic data, which is called top-stability, is extended to rank prob-
abilistic tuples. Top-stability enables repeated applications of top-1 robustness,
based on which we define our new semantics.

Property 1 (Top-1 Robustness). The top-1 query on an uncertain relation D
returns the tuple t ∈ D such that ∀t′ ∈ D, Pr(r(t) = 1) ≥ Pr(r(t′) = 1), where
r(t) denotes the rank of t.

From now on, we will use “top-1 probability” to denote the probability for
a tuple to be ranked top-1. Property 1 states that any top-k query semantics
for probabilistic tuples should return the tuple with maximum top-1 probability
when k = 1. Note that the semantics of U-Top1, U-1Ranks and Global-Top1
are equivalent, and they all satisfy Property 1. Although the number of tuples
returned by PT-1 is determined by the threshold, the top-1 tuple defined in
Property 1 must appear in the result of PT-1 if the result is not empty.

6 Da Yan and Wilfred Ng

Unfortunately, ExpectedRank may violate this robustness property. Consider
an example relation {t1, t2, t3, t4, t5} with an exclusion rule t1 ⊕ t2 ⊕ t3 ⊕ t5,
where tuples t1 to t5 are already sorted in descending order of their scores. We
use pi to denote the occurrence probability of ti, and p1 = p2 = p3 = 0.2, p4 =
0.45, p5 = 0.4. For top-1 query on this relation, t5 should be returned since its
top-1 probability (1−p4)p5 = 0.22 is the highest. However, ExpectedRank picks
t4 whose top-1 probability (1−p1−p2−p3)p4 = 0.18 is smaller, which contradicts
Property 1 and thus the underlying probability model.

Property 2 (Top-Stability). The top-(i + 1)th tuple should be the top-1st after
the removal of the top-i tuples.

Property 2 is intuitive in the context of certain data. Top-stability implies
that, in principle, we are able to adopt the following approach to obtain the
top-k tuples: The top-1 tuple is repeatedly removed from the current relation
until k tuples are obtained. To generalize this approach to ranking probabilistic
tuples for answering a top-k query, we define a new semantics U-Popk as follows:

Definition 1 (U-Popk). Tuples are picked in order from a relation according
to Property 2 until k tuples are picked, where the top-1st tuple is defined according
to Property 1.

According to Definition 1, when a tuple is picked as the result, it is removed
from the relation and thus will never be considered again in later evaluation.
This avoids the problem of multiple occurrences of the same tuple in the result.

Although U-Popk changes the probabilistic relation in each round of evalua-
tion and hence the set of possible worlds, this enables the use of top-1 robustness
to pick the result tuple in each round. If k is small compared with the size of
the relation, which is not unusual in applications, the modified relation in each
round is still a good approximation of the original one. Besides, by removing
the “top” tuples from the relation, we only need to make comparison among the
remaining tuples in the pool from which the next “top” tuple will be picked.

Our approach shares a similar spirit of the work that uses a simplification
assumption to facilitate the application of a robust property. For example, a
näıve Bayes classifier uses the simplification assumption that all observations
are independent to the facility of the evaluation of the robust property (i.e., the
Bayes’ rule), and so does maximum likelihood estimation. Even in top-k queries
on uncertain data, we have the independence assumption among tuples from
different exclusion rules to simplify the computation of the probability of possible
worlds, where the possible world model is robust. For U-Popk, the simplification
property is top-stability and the robust property is top-1 robustness.

Tuples are assumed to be pre-sorted in the descending order of tuple scores in
all previous work, since a tuple t′ with a score lower than another tuple t will be
ranked lower in any possible world and thus has no influence on the probability
computation for the rank of t, which is also adopted in U-Popk. Recall that the
tuples in Figure 1(a) are already pre-sorted according to the attribute speed. The
following example illustrates how U-Pop2 works for the relation in Figure 1(a):

Robust Ranking of Uncertain Data 7

Example The first step is to compute the top-1 tuple in the relation. Tu-
ple t1 is ranked the first with probability Pr(t1) = 0.4. The probability is
Pr(¬t1)Pr(t2) = 0.42 for t2, since t1 must not occur and t2 must occur in
this case, while the other tuples are immaterial. Since the probability that a
tuple other than t1 and t2 is ranked the first is Pr(¬t1)Pr(¬t2) = 0.18, which is
smaller than the probability for t2 to be ranked the first, we can conclude that
t2 is ranked the first with maximum probability and is thus picked.

After removing t2 from the relation, we have the tuples t1, t3, t4, t5, t6 re-
mained in the pool. Tuple t1 is ranked the first with probability Pr(t1) = 0.4.
The probability is Pr(¬t1)Pr(t3) = 0.36 for t3. Since the probability that a tu-
ple other than t1 and t3 is ranked the first is Pr(¬t1)Pr(¬t3) = 0.24, which is
smaller than the probability for t1 to be ranked the first, we thus conclude that
t1 is ranked the first with maximum probability and it is thus picked.

Therefore, the result for U-Pop2 on the relation in Figure 1(a) is ⟨t2, t1⟩.

5 U-Popk Algorithms

In this section, we first present the algorithms to evaluate U-Popk for the case
that all tuples are independent of each other (i.e., no exclusion rule is considered).
Then, we extend them to handle the general case that exclusion rules are given.

5.1 Algorithm for Independent Tuples

We consider the special case where all tuples in a given probabilistic relation are
independent of each other, and assume that tuples are pre-sorted in descending
order of score.

Consider a relation having tuples {t1, t2, . . . , tn}, where t1 to tn are already
sorted and pi is the occurrence probability of ti. In order to rank ti as top-1,
t1 to ti−1 should not appear but ti should appear, while all tuples after ti (i.e.,
tuples with lower scores) are immaterial. Therefore, the top-1 probability of ti
is (1 − p1)(1 − p2) · · · (1 − pi−1)pi.

If we define accumi = (1 − p1)(1 − p2) · · · (1 − pi−1) with the special case of
accum1 = 1, we have accumi+1 = accumi(1 − pi), and the probability for ti to
be top-1 can be written as accumi · pi.

Algorithm 1 Find the Top-1 Tuple
1: accum←− 1; max←− −∞; result←− null
2: while accum > max and there are more tuples do
3: {Process the next tuple ti}
4: top1Prob←− accum · pi

5: if top1Prob > max then
6: max←− top1Prob; result←− ti

7: accum←− accum · (1− pi)
8: return result

8 Da Yan and Wilfred Ng

Algorithm 1 finds the top-1 tuple among a list of pre-sorted tuples. The
parameter accum is initialized to 1 in Line 1, and updated after each iteration
(Line 7). Lines 2–7 check the tuples one by one, and in each iteration a tuple
ti is read and its probability to be top-1 is computed as top1Prob (Line 4). If
top1Prob is found to be larger than the maximum top-1 probability currently
found (Line 5), i.e., max, it is updated and ti is recorded (Line 6).

Note that we do not need to check all the tuples. Suppose we have checked ti
and updated accum to (1− p1)(1− p2) · · · (1− pi), where the current maximum
top-1 probability is max. If accum ≤ max, then the tuple with top-1 probability
equal to max must be the result. This is because the top-1 probability of any
succeeding tuple tj(for j > i) is (1 − p1)(1 − p2) · · · (1 − pi)(1 − pi+1) · · · (1 −
pj−1)pj ≤ (1 − p1)(1 − p2) · · · (1 − pi) · 1 · · · 1 · 1 ≤ max.

Intuitively, the parameter accum acts as an upperbound of the top-1 proba-
bilities for the tuples to be checked, which enables early termination (Line 2).

It is straightforward to construct a näıve algorithm for U-Popk that uses
Algorithm 1: All the sorted tuples are read into a memory buffer first. Then in
each iteration, a top-1 tuple is picked from the current tuple buffer using Algo-
rithm 1, removed from the buffer and added to the result set. This is repeated
until k tuples are obtained.

However, the näıve approach is not efficient enough and can be much im-
proved by reusing the parameters obtained from previous computation. To illus-
trate this, we suppose that t3 have been checked, that the iteration stops due to
accum ≤ max, and that t2 is found to have maximum top-1 probability. Then
after removing t2, the top-1 probability of t1 is still p1, which can be reused,
while that of t3 is now (1 − p1)p3 rather than (1 − p1)(1 − p2)p3.

In general, we can reuse the already computed top-1 probabilities of those
tuples whose positions are before the picked top-1 tuple ttop1, since the removal
of ttop1 does not change their top-1 probabilities. Figure 2 shows an example
where ti is picked due to accum ≤ max, after checking tj and updating accum.
The top-1 probabilities for t1 to ti−1 can be reused, ti is removed from the buffer,
and the top-1 probabilities for ti+1 to tj should be updated (i.e., re-scanned).
The update is simply to divide the original probability by (1 − pi) so as to rule
out the consideration for ti. After the update, the next iteration starts from tj+1.
We define (j − i) to be the rescan length for this iteration.

t1 t2 … ti … tj tj+1 …

reuse

tuples read into memory

rescanmax accum < max, stop

Fig. 2. Snapshot of the End of an Iteration

In order to delete the picked top-1 tuple from the memory buffer in O(1)
time for each iteration, we organize the buffer as a doubly-linked list and attach
each tuple t in the buffer with the following three fields: (1) t.prob: its top-1

Robust Ranking of Uncertain Data 9

probability, (2) t.id: its index in the original sorted tuple list, and (3) t.max: the
tuple whose top-1 probability is the maximum before t being put in the buffer.

Note that if ti is picked as top-1, ti.max already records the tuple with max-
imum top-1 probability among the tuples whose positions are before ti in the
buffer (i.e., the current maximum top-1 probability for the tuples with position
before ti+1). While updating the top-1 probabilities from ti+1, we update the
current maximum top-1 probability if the updated probability is larger. There-
fore, after all the updates, we get the current maximum top-1 probability for all
the tuples with position before tj+1. Then, the next iteration starts from tj+1.

Algorithm 2 shows the process of top-1 probability adjustment between con-
secutive iterations discussed above, where ti has already been identified as top-1.

Algorithm 2 Top-1 Probability Adjustment between Iterations
1: maxTuple←− ti.max
2: if maxTuple == null then
3: max←− −∞
4: else
5: max←− maxTuple.prob
6: for each tuple t after ti in buffer do
7: t.prob←− t.prob/(1− pi); t.max←− maxTuple
8: if t.prob > max then
9: max←− t.prob; maxTuple←− t

10: Delete ti from buffer

The variable maxTuple records the tuple with the maximum top-1 probabil-
ity currently, and max is its probability. Before updating from tuple ti+1 (Line
6), maxTuple is set to ti.max. However, ti.max may be null, because for t1, no
tuple with the maximum top-1 probability exists before it. In this case, max is
set to −∞. Otherwise, it is set to maxTuple.prob which is the maximum top-1
probability among the tuples before ti.

For each tuple t after ti, t.prob is divided by (1 − pi) and t.max records
maxTuple (Line 7). If t.prob > max, t now has the maximum top-1 probability,
and thus maxTuple and max are updated accordingly (Line 9). Finally, ti is
removed from the doubly-linked list buffer in O(1) time in Line 10.

Algorithm 3 is a more efficient algorithm for U-Popk on independent tuples,
which makes use of Algorithm 2. After the initialization in Lines 1–2, tuples
are read into the memory buffer one by one in Line 3. For each tuple, its fields
are set in Line 4, and it is added to the end of buffer (Line 5). If its top-1
probability is larger than the current maximum, the current maximum is updated
accordingly (Lines 6–7). Then accum is updated in Line 8 and checked in Line
9. If accum ≤ max, the current top-1 is found to be maxTuple, which is thus
put into the result set (Line 10). Then Algorithm 2 is called to update buffer to
reflect the removal of maxTuple (Line 13), and so does accum (Line 14).

10 Da Yan and Wilfred Ng

Algorithm 3 U-Popk Algorithm for Independent Tuples
1: Create an empty doubly-linked list buffer
2: accum←− 1; resultSet←− ϕ; maxTuple←− null; max←− −∞
3: for each tuple ti do
4: ti.prob←− accum · pi; ti.max←− maxTuple
5: Append ti to the end of the doubly-linked list buffer
6: if ti.prob > max then
7: max←− ti.prob; maxTuple←− ti

8: accum←− accum · (1− pi)
9: if accum ≤ max then

10: Put maxTuple into resultSet
11: if |resultSet| == k then
12: return resultSet
13: accum←− accum/(1− pmaxTuple.id)
14: Call Algorithm 2 to adjust buffer
15: while |resultSet| < k and buffer is not empty do
16: Put maxTuple into resultSet
17: if |resultSet| == k then
18: return resultSet
19: accum←− accum/(1− pmaxTuple.id)
20: Call Algorithm 2 to adjust buffer
21: return resultSet

If k results are picked, we do not need to read in more tuples (Lines 11–12).
However, it is possible that all tuples are read into buffer before k results are
picked. Thus, after the for loop in Lines 3–14, if there are still less than k results,
we need to pick maxTuple into the result set (Line 16), and use Algorithm 2 to
adjust the buffer and set the next maxTuple (Line 19). This process is repeated
until k results are picked, which is done by the while loop in Lines 15–20.

At most n tuples are read into buffer where n is the total number of tuples
in the probabilistic relation. Since all the steps in the for loop in Lines 3–14
take constant time except the adjustment in Line 13, they take O(n) time in
total. The adjustment of Lines 13 and 19 is executed exactly k times, since
whenever a top-1 tuple is picked, Lines 14–19 or 23–28 are executed once, and
thus Algorithm 2. It is straightforward to see that Algorithm 2 takes O(L) where
L is the rescan length for an iteration. The time complexity of Algorithm 3 is then
O(n + k ·Lavg), where Lavg is the average rescan length among the k iterations.

Note that Lavg tends to be small since every factor of accum is at most 1,
which makes accum smaller than max after a few tuples are read into buffer.
For small k, it is not likely that all n tuples are read into buffer, but just a few
top ones, the number of which is defined to be scan depth in [8].

The tricky case is when pi = 1, where accum will be updated to 0 in Line 8,
and thus accum ≤ max and Algorithm 2 is then called in Line 13. So, ti+1 can
never be read into buffer until ti is picked, and therefore Line 7 in Algorithm 2
is not executed and it does not cause division by 0. However, we cannot restore
accum using Line 14. Instead, if pi = 1, we save accum before executing Line 8

Robust Ranking of Uncertain Data 11

for later restoration when ti is picked. The saved value is updated using Line 14,
if other tuples are picked before the restoration. These details are not included
in Algorithm 3 in order to make it more readable.

5.2 Algorithm for Tuples With Exclusion Rules

Now, we present the general case where each tuple is involved in an exclusion
rule ti1 ⊕ ti2 ⊕ · · · ⊕ tim(m ≥ 1). We assume that ti1 , ti2 , . . . , tim in the rule are
already pre-sorted in descending order of the tuple scores.

The upper bound of the top-1 probability for all the tuples starting from ti
is no longer accumi = (1 − p1)(1 − p2) · · · (1 − pi−1). We denote tj1 , tj2 , . . . , tjℓ

to be all the tuples with position before ti and in the same exclusion rule of
ti. Then, there is a factor (1 − pj1 − pj2 − . . . − pjℓ

) in accumi. Let us define
accumi+1 = accumi · (1 − pj1 − pj2 − . . . − pjℓ

− pi)/(1 − pj1 − pj2 − . . . − pjℓ
),

which changes the factor of ti’s rule, in the top-1 probabilities of the tuples after
ti, from (1−pj1 −pj2 − . . .−pjℓ

) to (1−pj1 −pj2 − . . .−pjℓ
−pi). Now the top-1

probability of ti is accumi · pi/(1− pj1 − pj2 − . . .− pjℓ
), where the denominator

rules out the influence of the tuples exclusive with ti.
Consider the factor in accumi that corresponds to rule tj1 ⊕ tj2 ⊕ · · · ⊕ tjℓ

⊕
· · · ⊕ tjm . If the tuples tj1 , tj2 , . . . , tjℓ

(ℓ < m) are now before the current tuple
considered, then the factor is (1−pj1 −pj2 − . . .−pjℓ

). Within the same iteration,
this factor can only be decreasing as we read in more tuples. For example, if we
read in more tuples such that tjℓ+1 is also positioned before the current tuple,
the factor then becomes (1 − pj1 − pj2 − . . . − pjℓ

− pjℓ+1), which is smaller.
The top-1 probability for ti is no longer accumi · pi < accumi, but accumi ·

pi/(1−pj1−pj2−. . .−pjℓ
) to rule out the factor corresponding ti’s rule. Therefore,

if we keep track of the factors corresponding to all the rules, where factormin

is the smallest, the top-1 probability upper bound is accumi/factormin for all
the tuples starting from ti. This is due to two reasons. First, the top-1 proba-
bility of ti is computed as accumi

factor × pi(< accumi

factormin
), where factor is the factor

corresponding to ti’s rule. Second, the factors in accum that correspond to the
rules can only decrease as i increases. We organize the rules in the memory by
using MinHeap on factor. Thus, factormin can be retrieved from the top of the
heap immediately, and the upper bound can be computed in O(1) time. We call
this MinHeap Active Rule set and denote it AR.

Note that we do not need to keep all the rules in AR. If all the tuples in a
rule are after the current tuple, we do not need to fetch it into AR. Otherwise,
if the rule of the current tuple is not in AR, we insert it into AR, which takes
O(log |AR|) time. For each rule r in AR, we attach it with the following two
fields: (1) r.pivot: the last tuple in rule r that is before the current tuple, and (2)
r.factor: the current factor of r in accum. Suppose r = ti1⊕ti2⊕· · ·⊕tiℓ

⊕· · ·⊕tim

and r.pivot = tiℓ
, then r.factor = (1 − pi1 − pi2 − . . . − piℓ

).
After checking a tuple and updating accum, if the upper bound is smaller

than the current maximum top-1 probability, the tuple must be top-1 and thus
the iteration terminates. Before next iteration, we need to update the top-1

12 Da Yan and Wilfred Ng

probabilities of the tuples after the picked one. In this case, we need to update
their probabilities segment by segment as illustrated in Figure 3.

t1 ... ti1 ... ti2 ... ti (l-1) ... til ... tcur

prob·(1-pi1) /(1-pi1-pi2)

max current
prob·(1-pi1-pi3-…-pi(l-1)) /(1-pi1-pi2-pi3-…-pi (l-1))

prob·(1-pi1-pi3-…-pil) /(1-pi1-pi2-pi3-…-pil)

Fig. 3. Top-1 Probability Adjustment

In Figure 3, we assume that after processing the current tuple tcur, the upper
bound is smaller than tuple ti2 ’s top-1 probability, which is the current maxi-
mum, and thus the iteration ends. Besides, assume that ti1 , . . . , til

are the tuples
in ti2 ’s rule and they are positioned before tcur. Then the top-1 probability prob
of a tuple after ti2 and between tih

and tih+1 (defined to be a segment) in the
buffer should be updated as prob · (1− pi1 − pi2 − pi3 − pih

)/(1− pi1 − pi3 − pih
)

to reflect the removal of ti2 from buffer.
This actually changes the factor of ti2 ’s rule in the top-1 probabilities, which

can be done by a single pass of the tuples after ti2 , and a single pass over ti2 ’s
rule. Note that the top-1 probabilities of ti1 , ti3 , . . . , til

remain the same.
After the removal of the current top-1 tuple (i.e., ti2 in the above example)

and the update of the top-1 probabilities, the tuple is also removed from its rule
r. This increases r.factor (i.e., by pi2 in the above example), and so r’s position
in the MinHeap AR should be adjusted, which takes O(log |AR|) time. If no
tuple remains in a rule after the removal, the rule is deleted from AR.

Since the adjustment after each iteration includes O(log |AR|) time rule po-
sition adjustment in AR and a scan of the rule of the picked tuple, the total
time is O(k(log |AR| + lenmax)), where lenmax is the largest length of a rule.
Besides, since each rule will be inserted into AR at most once in O(log |AR|)
time, the total time is O(|R| log |AR|), where R is the rule set. So the overall
time complexity is O(n+ |R| log |AR|+k(Lavg + lenmax +log |AR|)). We do not
present the complete algorithm here due to space limitation.

6 Experiments

We conduct extensive experiments using both real and synthetic datasets on
HP EliteBook with 3 GB memory, and 2.53 Hz Intel Core2 Duo CPU. The real
dataset is IIP Iceberg Sightings Databases1, which is commonly used by the re-
lated work such as [10, 11] to evaluate the result quality of ranking semantics. We
study the performance of the algorithms on synthetic datasets. Our algorithms
are implemented in Java.

1 http://nsidc.org/data/g00807.html (IIP: International Ice Patrol)

Robust Ranking of Uncertain Data 13

6.1 Ranking Quality Comparison on IIP Iceberg Databases

The pre-processed verion of IIP by [10] is used to evaluate the ranking quality of
different semantics. Figure 4(a) lists the occurrence probabilities of some tuples
from the dataset, where the tuples are pre-sorted by scores. Figure 4(b) shows
the top-10 query results of different semantics.

U-Popk ExpRank PT-k U-Topk U-kRanks SUM

U-Popk 0 13.5 3 1 5 22.5

ExpRank 13.5 0 13.5 12.5 2.5 42

PT-k 3 13.5 0 2 5 23.5

U-Topk 1 12.5 2 0 4 19.5

U-kRanks 5 2.5 5 4 0 16.5

U-Popk ExpRank PT-k U-Topk U-kRanks SUM

U-Popk 0 10 2 1 4 17

ExpRank 10 0 9 9 0 28

PT-k 2 9 0 1 3 15

U-Topk 1 9 1 0 3 14

U-kRanks 4 0 3 3 0 10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t14 t18
pi 0.8 0.8 0.8 0.6 0.8 0.8 0.4 0.15 0.8 0.7 0.8 0.6 0.8

1 2 3 4 5 6 7 8 9 10

U-Popk t1 t2 t3 t4 t5 t6 t9 t7 t10 t11
ExpRank t1 t2 t3 t5 t6 t9 t11 t18 t23 t33

PT-k t1 t2 t3 t4 t5 t6 t9 t10 t11 t14
U-Topk t1 t2 t3 t4 t5 t6 t7 t9 t10 t11

U-kRanks t1 t2 t3 t5 t6 t9 t9 t11 t11 t18

(a) Occurrence Probabilities of the Tuples

(b) Occurrence Probabilities of the Tuples

(c) Neural Approach to Kendall’s Tau Distance

(d) Optimistic Approach to Kendall’s Tau Distance

Fig. 4. Top-10 Results on IIP Iceberg Databases

Figure 4(b) shows that the results of U-Popk, U-Topk and PT-k are almost
the same. U-Popk ranks t9 before t7, which is more reasonable, since p7 = 0.4
is much smaller than p9 = 0.8 and their score ranks are close. PT-k rules out
t7 but includes t14. However, p14 = 0.6 is not much larger than p7 = 0.4 but t7
has a much higher score rank than t14. Therefore, it is more reasonable to rank
t7 before t14. In fact, the top-11th tuple for U-Popk is t14. However, U-kRanks
returns duplicate tuples. ExpectedRank promotes low-score tuples like t23 and
t33 to the top, which is unreasonable and is also observed in [11]. This deficiency
happens mainly because ExpectedRank assigns rank (ℓ+1) to an absent tuple t
in a world having ℓ tuples. As a result, low-score absent tuples are given relatively
high ranking in those small worlds, leading to their overestimated rank. Overall,
U-Popk gives the most reasonable results in this experiment.

Kendall’s tau distance is extended to gauge the difference of two top-k lists in
[14], which includes an optimistic approach and a neural approach. Figure 4(c)
and (d) show the extended Kendall’s tau distance between the top-10 lists of the
different semantics in Figure 4(b), where the last column SUM is the sum of the
distances in each row. We can see that ExpectedRank returns drastically differ-
ent results from the other semantics, which means that ExpectedRank actually
generates many unnatural rankings.

6.2 Scalability Evaluation

We find that only U-Popk and ExpectedRank are efficient enough to support
real time needs, while other semantics such as PT-k are much more expensive
to evaluate. Figure 5(a1)–(a2) show the results on the IIP dataset described
above, where 4 seconds are consumed by PT-k even when k = 100 and the high

14 Da Yan and Wilfred Ng

probability threshold 0.5, while all the tuples can be ranked by U-Popk and
ExpectedRank within 0.2 seconds. (a2) also shows that U-Popk is faster than
ExpectedRank when k is within 1/10 of the data size and never slower by a factor
of 2. Overall, the efficiency of U-Popk is comparable to that of ExpectedRank.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 1 2 3 4 5 6 7 8 9 10

E
xe

c
T

im
e

(s
)

(a1) k(x 100)

PT-k

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 10 100 1000 10000 100000

E
xe

c
T

im
e

(m
s)

(a2) k

U-Popk
ExpectedRank

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 1 2 3 4 5 6 7 8

E
xe

c
T

im
e

(m
s)

(b1) k(x 104)

Gaussian
Uniform

 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 1 2 3 4 5 6 7 8

S
ca

n
D

ep
th

(b2) k(x 104)

Gaussian
Uniform

 14000
 14500
 15000
 15500
 16000
 16500
 17000
 17500
 18000

 1 2 3 4 5 6 7 8

A
V

G
 R

es
ca

n
Le

ng
th

(b3) k(x 104)

Gaussian
Uniform

 10

 100

 1000

 10000

 50 500 5000 50000

E
xe

c
T

im
e

(m
s)

(c1) Rule Length

Gaussian
Uniform

 100

 1000

 10000

 100000

 1e+06

 50 500 5000 50000

A
V

G
 R

es
ca

n
Le

ng
th

(c2) Rule Length

Gaussian
Uniform

 0
 10
 20
 30
 40
 50
 60
 70
 80

 1 2 3 4 5 6 7 8

A
V

G
 R

es
ca

n
Le

ng
th

(c3) Rule Length

Gaussian
Uniform

Fig. 5. Important Scalability Evaluation on Synthetic Data

We evaluate the scalability of U-Popk on synthetic data sets and show the
important results in Figure 5. We find that the data size is not a major factor
on the performance, and therefore we fix it to be 100K tuples. ExpectedRank
is also not shown here, since it has similar performance in Figure 5(b1). The
results in each experiment are averaged over 10 randomly generated data sets,
whose tuple probabilities conform to either Uniform or Gaussian distribution.

Figures 5(b1)–(b3) show the effect of k on the performance, where the rule
length is set to be 1000. Figures 5(b1)–(b2) show that the execution time and
scan depth are almost linear to k, while in Figure 5(b3) the average rescan length
first increases and then decreases as k increases. The drop happens because
almost all the tuples are read into buffer at the end, and therefore the number
of tuples decreases for each removal of a top-1 tuple.

Figures 5(c1)–(c2) show the effect of rule length on the performance, where
we set all rules to the same length. Since in real life applications it is not likely
to have too many tuples in a rule, we also explore the effect of rule length for
short rules (i.e. less than 10 tuples in a rule). Figure 5(c3) shows that the average
rescan length increases linearly with the rule length for small rule lengths.

Robust Ranking of Uncertain Data 15

The time complexity of U-Popk is shown to be O(n + |R| log |AR| + k(Lavg

+ lenmax + log |AR|)) in Section 5.2, where the O(n) part is actually the scan
depth, which is shown to be almost O(k) in Figure 5(b2). Also, when the max-
imum rule length lenmax is small, we have Lavg = O(lenmax) in Figure 5(c3).
Since AR is a fraction of the rule set, we have |AR| = O(|R|). Thus, the time
complexity can be approximated as O(k · (lenmax +log |R|)+ |R| log |R|), that is
linear to k and lenmax, and O(|R| log |R|) for the rule set R, which scales well.

7 Conclusion

We propose U-Popk as a new semantics to rank probabilistic tuples, which is
based on a robust property inherent in the underlying probability model. Com-
pared with other known ranking semantics, U-Popk is the only semantics that
is able to achieve all the following desirable features: high ranking quality, fast
response time, and no additional user-defined parameters other than k.

Acknowledgements. This work is partially supported by RGC GRF under
grant number HKUST 618509.

References

1. G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic data
and expected ranks. In ICDE, 2009.

2. N. Dalvi, and D. Suciu, Efficient query evaluation on probabilistic databases,
VLDB Journal, vol. 16, no. 4, pp. 523–544, 2007.

3. P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T. Sugihara,
and J. Widom, Trio: A system for data, uncertainty, and lineage, in VLDB, 2006.

4. L. Antova, C. Koch, and D. Olteanu. From complete to incomplete information
and back. In SIGMOD, 2007.

5. R. Fagin, A. Lotem, and M. Naor, Optimal aggregation algorithms for middleware,
in PODS, 2001.

6. I. F. Ilyas, G. Beskales, and M. A. Soliman, Survey of top-k query processing
techniques in relational database systems, ACM Computing Surveys, 2008.

7. C. Re, N. Dalvi, and D. Suciu, Efficient top-k query evaluation on probabilistic
databases, in ICDE, 2007.

8. M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, Top-k query processing in uncertain
databases, in ICDE, 2007.

9. X. Zhang, and J. Chomicki, On the semantics and evaluation of top-k queries in
probabilistic databases, in DBRank, 2008.

10. M. Hua, J. Pei, W. Zhang, and X. Lin, Ranking queries on uncertain data: A
probabilistic threshold approach, in SIGMOD, 2008.

11. J. Li, B. Saha, and A. Deshpande, A unified approach to ranking in probabilistic
databases, in VLDB, 2009.

12. T. Ge, S. Zdonik, and S. Madden, Top-k queries on uncertain data: On score
distribution and typical answers, in SIGMOD, 2009.

13. C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-window top-k queries on
uncertain streams. In VLDB, 2008.

14. R. Fagin, R. Kumar, and D. Sivakumar, Comparing top k lists. In SODA, 2003.

