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Abstract—Core decomposition has been applied widely in
the visualization and analysis of massive networks. However,
existing studies of core decomposition were only limited to
non-temporal graphs, while many real-world graphs can be
naturally modeled as temporal graphs (e.g., the interaction
between users at different time in online social networks, the
phone call or messaging records between friends over time,
etc.). In this paper, we define the problem of core decomposition
in a temporal graph, propose efficient distributed algorithms
to compute the cores in massive temporal graphs, and discuss
how the technique can be used in temporal graph analysis.

I. INTRODUCTION

In recent years, a lot of attention has been paid on
graph analysis due to the ubiquity of graph data in many
application domains such as online social networks, mobile
communication networks, the Web, online e-commerce net-
works, etc. One important problem in graph analysis is to
identify cohesive subgraphs, for example, (maximal) cliques,
quasi-cliques, n-cliques, k-plexes, n-clans, k-cores [19], k-
trusses [20], and other types of densest subgraphs.

In this paper, we study the cohesive subgraphs, k-cores,
which are a type of hierarchical graph substructures. Since
each k-core is a subgraph of the (k − 1)-core, k-cores
are widely used in the visualization of massive graphs at
different granularities [1]. There are also studies that used
k-cores to analyze the hierarchies, self-similarity, centrality,
and connectivity in large networks [2], as well as to interpret
cooperative processes in complex networks [1], [6].

The problem of computing k-cores, also called core
decomposition, is to compute the largest subgraph (of the
input graph) in which every vertex has degree at least k
within the subgraph, for all k that the k-core is not an
empty graph. The problem has been extensively studied [5],
[7], [15], [19] in the literature. However, existing studies
focused on the analysis of non-temporal graphs, including
incremental updates on non-temporal graphs [12], [18]. The
study of core decomposition, or other visualization tools,
in temporal graphs is still missing, even though temporal
graphs are very common in real world [9], [22]. In view
of this, we propose the problem of core decomposition in a
temporal graph in this paper.

A temporal graph is a graph in which two vertices
may communicate with each other at multiple time in-
stances/intervals. For example, in Figure 1(a), the 3 edges
between a and b indicate that there is communication
between a and b at time 1, 3 and 4 (e.g., Day 1, Day 3, and
Day 4). Many real-world graphs can be naturally modeled
as temporal graphs, e.g., users call or send messages to each
other at different time in phone call networks and messaging
networks, users comment on others’ postings at different
time in social networks, etc.

Temporal graphs are much more difficult to handle than
non-temporal graphs due to the extra time information
and the existence of multiple temporal edges between two
vertices. One may discard the time information on edges and
condense the multiple edges between any two vertices into
a single edge, thus obtaining a non-temporal version of the
graph, called a de-temporal graph. But a de-temporal graph
loses all temporal information and even presents erroneous
information that leads to serious incorrect understanding of
the graph or relationship between objects [10], [22].

The definition of k-core, however, is not well formulated
in a temporal graph. In fact, as we will show later in
Section III, there is information loss by simply considering
k-core in a temporal graph. Instead, we define the (k, h)-
core, where h accounts for the number of multiple temporal
edges between two vertices. Given a temporal graph G, the
(k, h)-core of G is the largest subgraph H of G such that
every vertex v in H has at least k neighbors, where there
are at least h temporal edges between v and each of these
neighbors in H . We list a few applications of (k, h)-core as
follows.

• Visualization. Effective visualization can be useful for
analyzing a large graph. Apart from trivially breaking
down a temporal graph into snapshots of non-temporal
graphs, visualization methods have rarely been studied
for temporal graphs. Note that the number of snapshots
is often too large for efficient analysis of a temporal
graph (e.g., one dataset used in our experiment has
134,074,906 snapshots), as it is difficult to analyze the
temporal relationship of vertices across a large number



of snapshots. The (k, h)-cores offer a natural way of
visualizing a temporal graph at different granularities in
two different dimensions, where k controls the connec-
tivity among vertices while h controls the intensity of
temporal activity between any two vertices. The results
can then be used to analyze the hierarchies, centrality,
connectivity and evolution of networks over time [2].

• Evolution of important vertices and their connec-
tions. The (k, h)-cores can be used to measure the
importance of vertices in a temporal graph, where a
vertex appearing in a (k, h)-core with larger values of
k and h is considered more important because of the
higher connectivity within the core and the stronger
intensity of communication between pairs of vertices.
Consider that the temporal graph as a data stream,
modeled as a landmark window, where edges are added
at the time when they become active. We can compute
the (k, h)-cores for the temporal graph in each current
landmark window, so that we can compare and study
the changes of important vertices over time (e.g., their
emergence and life cycle as important vertices).

• Densest subgraph. Identifying subgraphs with high
density has many applications in social network analy-
sis, e.g., community detection, link spam detection, etc.
The densest at-least-k subgraph is to find an induced
subgraph with the highest density among all subgraphs
with at least k vertices [3]. For a temporal graph, we
consider the multiple temporal edge connections by
requiring at least h temporal communications between
two vertices in the subgraph. The problem is NP-hard,
but we can apply the (k, h)-cores to obtain a (1/3)-
approximation solution for any given h.

Note that other applications of k-core in non-temporal
graphs (see more related work on applications of k-core
in [7]) can also be generally transformed into corresponding
applications of (k, h)-core for temporal graphs.

We first propose a distributed algorithm based on Pregel’s
vertex-centric computing model [14] for core decomposition
in large temporal graphs. We highlight the performance
bottleneck in the vertex-centric algorithm, and improve the
algorithm by devising an efficient block-centric distributed
algorithm based on Blogel’s computing model [23]. Ex-
perimental results show that our block-centric distributed
algorithm is efficient and scalable. We also show how (k, h)-
cores can be used to analyze temporal graphs.

Paper organization. Sections II and III give the notations
and problem definition. Section IV presents the distributed
algorithms. Section V reports experimental results. Sec-
tion VI discusses related work and Section VII concludes
the paper.

II. NOTATIONS

Let G = (V,E) be an undirected temporal graph, where
V is the set of vertices of G and E is the set of edges of
G. An edge e ∈ E is a triplet (u, v, t), where u, v ∈ V , t
is the time that e is active, or the active time of e (e.g., u
communicates/interacts with v during t). The active time t
can be expressed as a period t = [ts, te] that starts at time
ts and ends at time te, with the duration λ = te − ts. For
simplicity, we assume that λ is a fixed time unit for all edges.
Note that longer duration can be expressed as a sequence of
consecutive time units (e.g., an edge (u, v, [day-1, 2 days])
can be represented by two edges (u, v, day-1) and (u, v,
day-2), with the time unit λ equal to 1 day specified for
all edges). In this paper, we focus on undirected temporal
graphs.

Two vertices, u and v, may communicate with each
other at multiple times. We denote the set of temporal
edges between u and v in G by Π(u, v), i.e., Π(u, v) =
{(u, v, t) : (u, v, t) ∈ E}. We denote the number of
temporal edges between u and v in G by π(u, v), i.e.,
π(u, v) = |Π(u, v)|. We also define the maximum number
of temporal edges between u and v, for any u and v in G, by
π = max{π(u, v) : (u, v) ∈ (V × V )}. The value of π can
be large for some real world temporal graphs (e.g., in one of
the temporal graphs used in our experiments, π = 285, 521).

Given two temporal edges e1 = (u1, v1, t1) ∈ E and
e2 = (u2, v2, t2) ∈ E, we have e1 = e2 iff (u1 = u2 ∧ v1 =
v2 ∧ t1 = t2) or (u1 = v2 ∧ v1 = u2 ∧ t1 = t2).

If we remove the temporal information from G and
condense each Π(u, v) into a single edge (u, v), we obtain
the de-temporal graph of G, denoted by G− = (V −, E−),
where V − = V and E− = {(u, v) : (u, v, t) ∈ E}. Let
Gi = (Vi, Ei) be a subgraph of G−, where Vi = V and
Ei = {(u, v) : (u, v, t) ∈ E, π(u, v) ≥ i} for i ≥ 1. Note
that G1 = G−.

We define the number of vertices in G and G− as n =
|V | = |V −|, and the number of edges in G as M = |E|
and in G− as m = |E−|. We define the number of vertices
and edges in Gi as ni = |Vi| and mi = |Ei|, respectively.
We define the set of neighbors of a vertex u in G, G− or
Gi as Γ(u,G) = Γ(u,G−) = {v : (u, v, t) ∈ E} = {v :
(u, v) ∈ E−}, or Γ(u,Gi) = {v : (u, v) ∈ Ei}. We define
the degree of u in G as d(u,G) =

∑
v∈Γ(u,G) π(u, v), in

G− as d(u,G−) = |Γ(u,G−)|, and in Gi as d(u,Gi) =
|Γ(u,Gi)|.

Figure 1(a) shows a temporal graph G and its de-
temporal graph G− is shown in Figure 1(b). The num-
bers on the edges are the active time of the edges. We
have Γ(b,G) = Γ(b,G−) = {a, c, e, f}, Π(a, b) =
{(a, b, 1), (a, b, 3), (a, b, 4)} and thus π(a, b) = 3, d(b,G) =
3 + 1 + 1 + 1 = 6 and d(b,G−) = 4. Also, Γ(b,G3) = {a},
and d(b,G3) = 1.



a

f

cb

e

1

3

4

2

5

2

11
3

a

f

cb

e

( a ) Temporal Graph ( b ) De-temporal Graph

d d

1 2 5

Figure 1. A temporal graph G and its de-temporal graph G−

III. DEFINITIONS OF TEMPORAL CORE

In a de-temporal graph (or any non-temporal graph),
G− = (V −, E−), a k-core is the largest subgraph, H−, of
G− such that every vertex of H− has at least k neighbors
in H−. We define the core number of a vertex v ∈ V − as
φ(v) = k such that v is in the k-core of G− but v is not in
the (k + 1)-core of G−.

Core decomposition in G− is to compute every non-
empty k-core of G− for k ≥ 1. Alternatively, we can
compute φ(v) for every vertex v ∈ V −, as the k-core is
simply the subgraph of G− induced by S = {v : v ∈
V −, φ(v) ≥ k}.

Technically speaking, isolated vertices, i.e., vertices with
degree 0, are in the 0-core. We do not consider isolated
vertices in this paper as they can be trivially handled.

We can define the k-core of a temporal graph in a similar
way.

Definition 1 (Temporal k-core): The k-core of a temporal
graph G = (V,E) is the largest subgraph, H , of G such that
for every vertex v in H , d(v,H) ≥ k. �

The following example shows the concept of temporal
k-core and also reveals its weakness.

Example 1: Figure 1(a) shows a temporal graph G. Ac-
cording to Definition 1, the k-core of G is just G itself for
k ∈ {1, 2, 3}, since d(v,G) ≥ k for every vertex v in G,
while the 4-core of G does not exist.

We can see that a is closely connected to b and d as there
are more temporal edges between them, while {b, c, e, f}
forms a different community. However, such differences are
not distinguished in the k-cores of G since the k-cores are
the same for 1 ≤ k ≤ 3, nor can the core numbers of
the vertices reveal any difference between the vertices since
φ(a)=φ(b)=φ(c)=φ(d)=φ(e)=φ(f)=3. �

The problem of Definition 1 is that it does not consider the
temporal connections between two vertices, i.e., the number
of temporal edges between the two vertices. To fix this
problem, we define temporal core as follows.

Definition 2 (Temporal (k,h)-core): The (k, h)-core of a
temporal graph G = (V,E) is the largest subgraph, H ,
of G such that for every vertex v in H , |{u : u ∈
Γ(v,H), π(u, v) ≥ h}| ≥ k. �

In Definition 2, on top of the number of neighbors, we
enforce that every vertex v in H must have at least k
neighbors, where each such neighbor u must be connected
to v with at least h temporal edges (u and v communicate
with each other for at least h times).

Let H be the (k, h)-core of a temporal graph G. Note that
there can be vertices, u, v, in H such that π(u, v) < h. These
edges between u and v can be excluded from H such that
for every v in H , we still have |{u : u ∈ Γ(v,H), π(u, v) ≥
h}| ≥ k. In our work, we simply preserve these edges in H .

Example 2: Based on Definition 2, a and d are in the
(1, 3)-core; c, e and f are in the (3, 1)-core; and b is in the
(1, 3)-core, as well as in the (3, 1)-core. Thus, the (1, 3)-
core and the (3, 1)-core of G clearly distinguish the close
temporal relationship between a and b, from a different com-
munity which b forms with c, e and f . This example shows
that the temporal (k, h)-cores are useful for understanding
the temporal structures in graphs. �

We define the core numbers of a vertex v ∈ V in a
temporal graph G = (V,E) as Φ(v) = {(k, h) : v is in
the (k, h)-core of G but v is not in the (k′, h′)-core of G,
where k′ ≥ k and h′ ≥ h and (k′ 6= k or h′ 6= h)}. Let
S = {v : v ∈ V,∃(k′, h′) ∈ Φ(v), k′ ≥ k, h′ ≥ h}. The
(k, h)-core of G is simply the subgraph of G induced by S.

The problem we study in this paper is to compute Φ(v)
for every vertex v in a temporal graph G. Due to space
limitation, we only present distributed algorithms in this
paper, while the sequential algorithms can be found in
in [21].

We have following lemmas for Φ(v) (proofs can be found
in [21]).

Lemma 1: Let (k, h) ∈ Φ(v). Then, φ(v) = k for v in
Gh.
Based on Lemma 1, we can simply compute the core
numbers in Φ(v) from Gi for each i, where 1 ≤ i ≤ π.

Let φi(v) be the core number of v in Gi, where 1 ≤ i ≤ π.
If φj(v) = φi(v), where j < i, we say (φi(v), i) dominates
(φj(v), j) and hence we can remove (φj(v), j) from Φ(v).
Note that for any vertex v in Gj and Gi, φj(v) ≥ φi(v)
since Gj is a supergraph of Gi.

Lemma 2: The total size of Φ(v) for all v ∈ V is O(n+
m).

IV. DISTRIBUTED ALGORITHMS

Massive graphs have become common today and se-
quential algorithms become unsuitable due to limitation in
both memory and CPU resources. To process large graphs,
distributed algorithms offer a good recourse [15]. We first
present a vertex-centric distributed algorithm, and then we
identify the computational bottlenecks in the vertex-centric
algorithm, and propose an efficient block-centric algorithm
as a solution.



Algorithm 1: Vertex-centric distributed core decompo-
sition in a non-temporal graph

Input : An undirected non-temporal graph F = (VF , EF )
Output : The core number, φ(v), for each vertex v ∈ VF

1 Each vertex v ∈ VF keeps four fields: Γ(v, F ), Γ′(v, F ),
d(v), and φ(v);

2 Initially, all vertices are active, the master initializes k = 1
and calls v.compute() for each v ∈ VF to start the
computation;

3 When all vertices vote to halt and there is no message
pending for the next superstep, the master sets k = k + 1,
sets all vertices to be active, and calls v.compute() for each
vertex;

4 Each vertex v sends the master a value of 1 when φ(v)← k
is executed (or if d(v, F ) = 0, i.e., v is an isolated vertex),
the master aggregates the values and terminates the program
when the aggregated value is equal to n;

5 v.compute(messages):
6 begin
7 if superstep # = 1 then // executed when k = 1
8 if d(v, F ) = k then
9 φ(v)← k;

10 Send a message < v > to each vertex in
Γ(v, F );

11 else if d(v, F ) > k then
12 Γ′(v, F )← Γ(v, F );
13 d(v)← d(v, F );
14 φ(v)← −1;

15 else if superstep # > 1 and φ(v) = −1 then
16 foreach message, < u >, received in messages do
17 Remove u from Γ′(v, F );

18 d(v)← d(v)− i, where i is the number of messages
in messages;

19 if d(v) ≤ k then
20 φ(v)← k;
21 Send a message < v > to each vertex in

Γ′(v, F );

22 v votes to halt;

A. Vertex-Centric Distributed Algorithm

The vertex-centric distributed algorithm for core decom-
position is based on Pregel’s computing model [14] (see
Section VI-A for a review). We first discuss the distributed
algorithm for core decomposition in a non-temporal graph
F , as shown in Algorithm 1. The main idea is: starting from
k = 1, recursively delete all the vertices with degree less
than or equal to k, along with their incident edges, from the
graph. The details are as follows.

The algorithm proceeds in rounds, and the k-th round
computes the core number for any vertex v where φ(v) = k.
The master activates all vertices and the workers exe-
cute v.compute() for each vertex v ∈ VF in parallel.
In v.compute(), we assign φ(v) to be k if d(v) ≤ k,
where d(v) is the current degree of v in the k-core of F

Algorithm 2: Vertex-centric distributed core decompo-
sition in a temporal graph

Input : An undirected temporal graph G = (V,E)
Output : The core numbers, Φ(v), for each vertex v ∈ V

1 Each vertex v ∈ V keeps two fields: Γ(v,G) and Φ(v);
2 Initially, all vertices are active, the master calls v.compute()

for each v ∈ V to compute the de-temporal graph G− of G.
During the process, the master receives C(v) from each
v ∈ V , and computes C =

⋃
v∈V C(v). The master then

sorts C in ascending order;
3 foreach i ∈ C in order do
4 The master calls v.compute() for each v ∈ V to

compute Gi (note that G1 is computed already in Line 9,
while Gi is to be computed by each v in Line 12);

5 Then the master activates each v in Gi to compute φ(v)
by Algorithm 1 with F = Gi, where F = Gi is
constructed in Line 13 of Algorithm 2. For each v in Gi,
if φ(v) ≥ 1, v adds (φ(v), i) to Φ(v), and remove any
(φ′(v), j) from Φ(v) if φ′(v) = φ(v) and j < i;

6 v.compute(messages):
7 begin
8 if i = 1 then
9 Γ(v,G−)← {(u, π(v, u)) : u ∈ Γ(v,G)};

10 Send C(v)← {π(v, u) : u ∈ Γ(v,G)} to the master;

11 else if i > 1 then
12 Γ(v,G−)← {(u, π(v, u)) : (u, π(v, u)) ∈

Γ(v,G−), π(v, u) ≥ i};
13 Γ(v, F )← {u : (u, π(v, u)) ∈ Γ(v,G−)};
14 v votes to halt;

(d(v) = d(v, F ) initially), since v is currently in the k-core
of F and v cannot be in the (k+1)-core of F . After φ(v) is
determined, we can delete v and all edges incident to v. We
do not explicitly delete v since this incurs extra cost and is
not necessary, instead we use “φ(v) = k 6= −1” as a mark
that v is implicitly deleted. To remove the edges incident to
v, we send a message < v > to each vertex u ∈ Γ′(v, F ),
where Γ′(v, F ) is the set of neighbors of v in the k-core
of F (Γ′(v, F ) = Γ(v, F ) initially); and when u receives
the message < v >, u removes v from Γ′(u, F ) and at the
same time decrements d(u). The process repeats for each
active vertex until all vertices vote to halt and there is no
more message pending for the next superstep (note that a
vertex becomes active in the next superstep if it receives
a message). Then, the master increments k to k + 1 and
activates all vertices to start the (k+ 1)-th round, until φ(v)
is determined for all v ∈ VF .

The correctness of Algorithm 1 follows directly from the
definition of k-core.

The distributed algorithm for core decomposition in a
temporal graph G, as shown in Algorithm 2, makes use of
Algorithm 1 to compute φ(v) for each vertex v in each
Gi of G. The algorithm first computes the de-temporal
graph G− of G, which is done in parallel by the workers



calling v.compute() for each v ∈ V to obtain (v, u, π(v, u))
for each u ∈ Γ(v,G), as stored in Γ(v,G−) (Line 9).
Meanwhile, the set C = {π(u, v) : (u, v, t) ∈ E} is also
computed and the elements in C are sorted in ascending
order of their values.

Then, the algorithm proceeds in |C| rounds. For each i ∈
C in order, the round consists of two phases: (1)compute Gi

from Gj (Line 12), where j is the element ordered before i
in C, i.e., Gj is the graph processed in the previous round
(except for G1 = G−); and (2)call Algorithm 1 with F = Gi

to compute φ(v) for each v in Gi, and then update Φ(v) with
(φ(v), i) as in Line 5.

Theorem 1: Algorithm 2 correctly computes Φ(v) for
each v ∈ V .
Performance bottleneck of the vertex-centric algorithm.
There are four main costs in running an algorithm in
Pregel-like systems [17], [25]: (1)communication cost per
superstep; (2)computation cost per superstep; (3)memory
used per superstep; and (4)the total number of supersteps.
Costs (1)-(3) of Algorithm 2 are linear in the size of the input
graph. However, the total number of supersteps required
by Algorithm 2 can be large, since Algorithm 1 may take
O(n) supersteps in the worst case. Thus, large superstep
number becomes the bottleneck of Algorithm 2, which is
also verified in our experiments.

B. Block-Centric Distributed Algorithm

To eliminate the performance bottleneck in the vertex-
centric algorithm, we adopt Blogel’s block-centric mod-
el [23] (see Section VI-A for a review). The main idea is to
partition the vertex set of each Gi into disjoint partitions,
construct a subgraph of Gi for each partition, and then
apply the Blogel framework for core decomposition on each
subgraph in parallel. We first present the algorithm in details,
and then discuss how the block-centric algorithm eliminates
the performance bottleneck in the vertex-centric algorithm.

We first define the notion of extended subgraph. Let
F = (VF , EF ) be a non-temporal graph. Given a subset
of vertices, VB ⊆ VF , the extended subgraph of F w.r.t. VB
is defined as B = (VB ∪ VB+ , EB), where VB is the set of
internal vertices of B, VB+ = (

⋃
v∈VB

Γ(v, F )) \ VB is the
set of extended vertices of B, EB =

⋃
v∈VB

{(v, u) : u ∈
Γ(v, F )} is the set of edges of B.

Given a non-temporal graph F = (VF , EF ), we partition
VF into p disjoint partitions VF = {VF1

, . . . , VFp
}, and

construct the extended subgraph Bi of F w.r.t. VFi . For each
extended subgraph Bi, we call Algorithm 3 to compute the
core number for each vertex v in Bi locally in a worker.
We use ϕ(v) to denote the core number of v computed
by Algorithm 3, which is an upper bound of the real core
number φ(v).

Since Algorithm 3 does not operate on the complete
graph, we need extra information from the extended vertices,

Algorithm 3: Core decomposition in an extended sub-
graph

Input : The extended subgraph, B = (VB ∪ VB+ , EB), of
a non-temporal graph F = (VF , EF ) w.r.t. VB ; and
the upper-bound core number, ϕ(v), for every
vertex v ∈ VB+

Output : The upper-bound core number, ϕ(v), for each
v ∈ VB

1 Initialize d(v) = d(v,B) for each v ∈ VB ;
2 S ← VB , S+ ← VB+ ;
3 Sort the vertices v ∈ S in ascending order of d(v), let
dmin = min{d(v) : v ∈ S};

4 Sort the vertices v ∈ S+ in ascending order of ϕ(v), let
ϕmin = min{ϕ(v) : v ∈ S+};

5 while |S| > 0 do
6 while ϕmin < dmin do
7 Let u be the vertex ordered at the first position in

S+;
8 foreach v ∈ Γ(u,B) do
9 d(v)← d(v)− 1;

10 reorder the vertices in S;

11 Remove u from S+;
12 Update ϕmin and dmin;

13 Let v be the vertex ordered at the first position in S;
14 ϕ(v)← d(v);
15 foreach u ∈ Γ(v,B) and u ∈ S do
16 if d(u) > d(v) then
17 d(u)← d(u)− 1;
18 reorder the vertices in S;

19 Remove v from S;
20 Update dmin;

i.e., VB+ . Specifically, the algorithm requires ϕ(u) for every
vertex u ∈ VB+ . Note that if ϕ(u) = φ(u) for every
u ∈ VB+ , then φ(v) of each internal vertex v ∈ VB can
be computed from the extended subgraph B alone based on
the following property.

Property 1: Given a non-temporal graph F=(VF , EF )
and an edge (u, v) ∈ EF , let φmin = min{φ(u), φ(v)},
then (u, v) is in the φmin-core but not in the (φmin + 1)-
core of F . �

Let v ∈ VB and u ∈ VB+ , where u ∈ Γ(v, F ), i.e.,
(u, v) ∈ EB . If φ(v) > φ(u), we can remove u since (u, v)
is not in the φ(v)-core. If φ(v) ≤ φ(u), then (u, v) is in the
φ(v)-core according to Property 1. Since we compute φ(v)
from the φ(v)-core, the presence of such edge (u, v) in the
φ(v)-core means that the extended subgraph B contains all
the information needed for the computation of φ(v) for each
internal vertex v ∈ VB .

Algorithm 3 recursively removes extended vertices from
VB+ whose ϕ(.) value is smaller than dmin, where dmin

is the smallest degree of an internal vertex in VB , because
these extended vertices are not in the dmin-core according
to Property 1. Upon the removal of each extended vertex



Algorithm 4: Block-centric distributed core decomposi-
tion in a non-temporal graph

Input : An undirected non-temporal graph F = (VF , EF )
Output : The core number, φ(v), for each vertex v ∈ VF

1 The vertex set VF is divided into p disjoint partitions
VF = {VF1 , VF2 , . . . , VFp};

2 Construct the extended subgraph Bi = (VBi ∪ VB+
i
, EBi) of

F for 1 ≤ i ≤ p, where VBi = VFi ; initialize
φ(v)← d(v, F ) for each v ∈ VBi and the upper-bound core
number ϕ(u)← d(u, F ) for each u ∈ V

B+
i

;
3 Initially, all blocks Bi for 1 ≤ i ≤ p are active, the master

calls Bi.compute() for each Bi to start the computation
(which terminates when all blocks vote to halt and there is no
message pending for the next superstep);

4 B.compute(messages):
5 begin
6 foreach message, < u, k >, received in messages, if any

do
7 if k < ϕ(u) then
8 ϕ(u)← k;

9 Call Algorithm 3 with input B to compute an
upper-bound core number ϕ(v) for each v ∈ VB ;

10 foreach v ∈ VB do
11 if ϕ(v) < φ(v) then
12 φ(v)← ϕ(v);
13 foreach u ∈ Γ(v,B) and u ∈ VB+ do
14 if φ(v) < ϕ(u) then
15 Let B′ be the extended subgraph where

u ∈ VB′ ;
16 Send a message < v, φ(v) > to the

block B′;

17 B votes to halt;

Algorithm 5: Block-centric distributed core decomposi-
tion in a temporal graph

Input : An undirected temporal graph G = (V,E)
Output : The core numbers, Φ(v), for each vertex v ∈ V

1 Each vertex v ∈ V keeps three fields: Γ(v,G), φ(v), and
Φ(v);

2 Compute C = {π(u, v) : (u, v, t) ∈ E}, where elements in
C are sorted in ascending order, as in Line 2 of Algorithm 2;

3 foreach i ∈ C in order do
4 Compute Gi as in Lines 8-14 of Algorithm 2;
5 Call Algorithm 4 with input F = Gi; but starting from

the second call of Algorithm 4, replace the initialization
“φ(v)← d(v, F )” in Line 2 of Algorithm 4 by
“φ(v)← min{φ(v), d(v, F )}”. Meanwhile, update Φ(v)
as in Line 5 of Algorithm 2;

u, we also decrement the degree of each of u’s neighbors
in B. If the original graph B should not be modified, we
can make a copy S+, S and d(v) for VB+ , VB and d(v,B),
respectively, and make changes on the copies.

When there is no extended vertex whose ϕ(.) value is
smaller than dmin, it implies that all the vertices are now
in the dmin-core. Thus, each vertex v ∈ VB , where d(v) =
dmin, has ϕ(v) = d(v). We recursively remove each vertex
v, when ϕ(v) is determined, and decrement the degree of
each neighbor u of v, if u is also an internal vertex in B
and d(u) > d(v). Note that if d(u) = d(v), u is also in the
dmin-core and will be removed next, and hence d(u) does
not need to be updated. The above process repeats until ϕ(v)
for all v ∈ VB is determined.

The following lemma (see proof in [21]) is vital for
Algorithm 3 to be applied in block-centric distributed core
decomposition.

Lemma 3: Given ϕ(u), where ϕ(u)≥φ(u), for each ex-
tended vertex u ∈ VB+ , ϕ(v) computed by Algorithm 3 is an
upper bound of the true core number φ(v), for each internal
vertex v ∈ VB .

We now present our block-centric algorithm for dis-
tributed core decomposition in a non-temporal graph
F=(VF , EF ), as shown in Algorithm 4. The master calls
Bi.compute() for each block, i.e., each extended subgraph
Bi, and the workers operate on each Bi in parallel. Within
Bi.compute(), the algorithm calls Algorithm 3 to compute
an upper-bound core number for every vertex in VBi

.
For each block B, Line 2 of Algorithm 4 initializes φ(v)

to be d(v, F ) for each v∈VB and ϕ(u) to be d(u, F ) for each
u∈VB+ . Within B.compute(), whenever ϕ(v) returned by
Algorithm 3 is smaller than the current φ(v), for any v ∈ VB ,
we update φ(v) to be ϕ(v). Note that v may be in VB′+ for
another extended subgraph B′, and Algorithm 3 with B′ as
input will require ϕ(v). Thus, in Lines 13-16 of Algorithm 4
we refine ϕ(v) in B′ with a smaller value, i.e., the newly
updated φ(v). But note that, let u be the neighbor of v in B′,
if the newly updated φ(v) is not smaller than ϕ(u) in this
block B, then it means that u is removed before v during
the core decomposition in B′ regardless of whether ϕ(v) in
B′ is updated or not, and hence we can skip the update.

The above process repeats until the algorithm converges,
i.e., when φ(v) is not changed for all v ∈ VBi

, for 1 ≤ i ≤ p.
In this case, no more message will be sent in Line 16 of
Algorithm 4, and no block will be activated again for the
next superstep.

We devise a distributed block-centric algorithm for core
decomposition in a temporal graph, as shown in Algorithm 5,
by calling Algorithm 4 to compute φ(v) in each Gi, for
i ∈ C = {π(u, v) : (u, v, t) ∈ E}, and then update Φ(v)
with (φ(v), i).

We can speed up the convergence of the algorithm as
follows. Given two elements (φi(v), i) and (φj(v), j) in
Φ(v), according to the definition of Φ(v), if i > j, then
φi(v) < φj(v). We utilize this property of Φ(v) as follows.
Let φi(v) and φj(v) be the value of φ(v) to be computed
from Gi and Gj , respectively, where i > j and @k ∈ C s.t.



Table I
DATASETS

Dataset |V | |E−| |E| davg(u,G−) davg(u,G) π |TG|
amazon 2,146,057 11,486,264 11,553,320 5.35 5.38 28 3,329
arxiv 28,093 6,296,894 9,193,606 224.14 327.25 262 2,337
dblp 1,103,412 8,451,372 11,957,392 7.66 10.84 38 70
delicious 4,535,197 163,985,560 439,161,184 36.16 96.83 1,070 1,583
edit 21,504,191 244,130,836 533,503,390 11.35 24.80 285,521 134,074,906
flickr 2,302,925 45,676,552 49,394,886 19.83 21.45 2 134
wikiconf 118,100 4,055,742 5,835,548 34.34 49.41 562 273,909
wikipedia 1,870,709 73,065,062 78,446,030 39.06 41.93 2 2,198

i>k>j. We initialize φi(v) = φj(v) in Line 2 of Algorith-
m 4 when we compute φi(v) from Gi. This initialization of
φ(v) can speed up the convergence of the computation on
Gi.

The proofs to the correctness of Algorithm 4 and Algo-
rithm 5 can be found in [21].

V. EXPERIMENTAL EVALUATION

We ran our experiments on a cluster of 15 machines,
where each machine has 24 cores (two Intel Xeon E5-2620
CPU) and 48GB RAM, running 64-bit CentOS 6.5 with
Linux kernel 2.6.32. The connectivity between any pair of
nodes in the cluster is 1Gbps.
Datasets. We used 8 real temporal graphs, which are from
the Koblenz Large Network Collection (http://konect. uni-
koblenz.de/), and we selected one large temporal graph
from each of the following categories: amazon-ratings
(amazon) from the Amazon online shopping web-
site; arxiv-HepPh (arxiv) from the arxiv net-
works; dblp-coauthor (dblp) from the DBLP coau-
thor networks; delicious-ut (delicious) from
the network of ‘delicious’; edit-enwiki (edit)
from the edit network of the English Wikipedia;
flickr-growth (flickr) from the social network
of Flickr; wikiconflict (wikiconf) indicating pos-
itive and negative conflicts between users of Wikipedia;
wikipedia-growth (wikipedia) from the hyperlink
network of the English Wikipedia. In the experiments, we
transform these datasets into undirected temporal graphs by
inserting one edge (v, u, t) into the graphs for every edge
(u, v, t).

Table I lists the number of vertices and edges in G and
G−, and the average degree in G (denoted by davg(u,G))
and in G− (denoted by davg(u,G−)). The table also shows
that the value of π varies significantly for different datasets,
indicating different levels of temporal activity between ver-
tices. We also give the number of distinct time instances in
G, denoted by |TG|, which shows that G can span over
a large time interval. For example, if we break G into
snapshots such that all edges with the same starting time
belong to the same snapshot, then the edit graph consists
of 134,074,906 snapshots.

A. Block-Centric vs. Vertex-Centric

We first show the effects of the block-centric computing
model and the vertex-centric computing model on distributed
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Table II
COMPUTATION TIME IN SECONDS

Dataset V Giraph MonGiraph V Graphlab MonGraphlab Block

amazon 383.55 102.89 170.85 78.50 12.05
arxiv 5,540.89 492.18 2,639.19 374.44 21.75
dblp 1,099.57 208.86 596.56 146.30 21.62
delicious 17,385.96 7,078.84 20,060.00 9,720.81 1,412.68
edit - 14,975.74 - 57,321.40 1,751.42
flickr 3,450.12 115.72 1453.84 91.70 56.84
wikiconf 2,852.86 549.33 1463.21 466.04 22.54
wikipedia 1,981.79 89.73 791.08 76.11 32.14

core decomposition. We implemented our vertex-centric
algorithm, i.e., Algorithm 2, in Giraph [4] and Graphlab [8],
denoted by VGiraph and VGraphlab, since Giraph and
Graphlab are the two most popularly used vertex-centric
graph computing systems. We implemented our block-
centric algorithm, i.e., Algorithm 5, in a block-centric graph
computing system called Blogel [23], denoted by Block.

Figure 2 shows the number of supersteps needed by the
vertex-centric algorithm and the block-centric algorithm,
for running on different datasets. Note that the number of
supersteps needed by VGiraph and VGraphlab is the same,
while both VGiraph and VGraphlab cannot finish in 24 hours
on the edit dataset. The figure shows that the vertex-
centric algorithm uses 5 times to 40 times more super-
steps than the block-centric algorithm. As we discussed in
Section IV-A, the performance bottleneck of vertex-centric
algorithm lies with the large number of supersteps. Thus,
this result demonstrates that the block-centric algorithm can
effectively address the performance bottleneck of the vertex-
centric algorithm.

B. Performance Comparison

To evaluate the performance of our algorithms, we modi-
fied existing distributed k-core algorithms to compute Φ(v)
for every vertex v in a temporal graph. Specifically, we
adopt the state-of-the-art, vertex-centric distributed k-core
algorithm proposed by Montresor et al. [15]. We also
implemented their algorithm in both Giraph and Graphlab,
denoted by MonGiraph and MonGraphlab.

Tables II reports the running time of the algorithms. The
sign ‘-’ indicates that the corresponding algorithm cannot
finish in 24 hours. The results show that our block-centric
algorithm Block is significantly faster than all the other
algorithms. MonGiraph and MonGraphlab are faster than our
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Figure 3. Performance on synthetic graphs with different n, π, davg (u,G), and davg (u,G−)

vertex-centric algorithms VGiraph and VGraphlab, but they
are from a few times to over an order of magnitude slower
than our block-centric algorithm. This result demonstrates
the efficiency of our block-centric algorithm.

We also observe that the performance of VGraphlab is
faster than VGiraph in graphs with a small π value, but
slower in graphs with a large π value. This is because that
Graphlab does not support graph mutation, while Giraph
supports the removal of vertices and edges from the graph.
When the value of π is large, there are many Gi. As i
becomes larger, more vertices and edges are removed, and
Gi becomes smaller. Thus, when i is larger, VGiraph is
run on a small graph Gi, while VGraphlab is still run on
the original large input graph since vertices and edges are
not really removed but only marked as “removed”. Similar
results are also observed for MonGraphlab and MonGiraph.

C. Scalability Study

We now test the scalability of our block-centric algorith-
m. We generate synthetic temporal graphs with different
number of vertices n, different π value, different average
degree in G (denoted by davg(u,G)) and in G− (denoted
by davg(u,G−)). We generate synthetic temporal graphs
using the idea similar to random graph generator [16]. As
default values, we set n = 100M (M = 106), π =
200, davg(u,G−) = 10, davg(u,G) = 40, and |TG| =
100, 000. Then, we vary the value of n, π, davg(u,G) and
davg(u,G−), respectively, while fixing other parameters as
their default values.

As Figure 3(a) shows, when we vary the number of
vertices from 50M to 200M, the running time of Block
increases approximately linearly with the number of vertices.
As Figure 3(b) shows, the running time of Block increases
sub-linearly as π increases from 100 to 800. Similarly,
Figures 3(c) and 3(d) show that the running time of Block
increases sub-linearly when davg(u,G) and davg(u,G−)
increase. Thus, the results verify the scalability of our block-
centric algorithm with respect to the increases in n, π,
davg(u,G), and davg(u,G−).

As a comparison, we show the running time of Mon-
Giraph, since it is the fastest among all the four vertex-
centric algorithms for processing these synthetic datasets.
We can see from the figures that, though they show a

similar trend in the change of performance as the values of
different parameters change, Block is approximately an order
of magnitude faster than MonGiraph in almost all cases.

D. Analysis of Temporal Cores

In the following set of experiments, we analyze the
properties of temporal cores, by comparing with the cores
of the corresponding de-temporal graphs. Our objective is to
show that temporal cores are more useful and carrying more
accurate information for analyzing temporal graphs than the
cores of their de-temporal graphs.

Vertex Ranking in Temporal Graphs:
As shown in [11], the core number of a vertex is a direct

indicator of the expected spread of a vertex. The larger
the core number of a vertex is, the higher the probability
that the vertex is an influential spreader. Thus, the core
number of a vertex indicates its importance in the graph.
Let φi(v) be the core number of a vertex v in Gi, we use
the value of

∑
i φi(v) to rank the vertices in a temporal

graph. Note that although
∑

i φi(v) is a simple summation,
edges that appear in more Gi’s essentially contribute to
more times in the summation since they appear in the
cores of more Gi’s, which implies that higher intensity of
communication between two vertices is given higher weight
in the summation.

We then select the top-k vertices according to the above-
described ranking. As a comparison, we also rank the
vertices according to their core number in the de-temporal
graphs. To show why the core number computed in the
temporal graph should be used for ranking, we report the
following measures. Let Ts(G) and Ts(G

−) be the top-s
vertices ranked by their core number in the temporal graph
and in the de-temporal graph, respectively.

We first compute the normalized discounted cumulative
gain (NDCG) of Ts(G) with reference to Ts(G−). Note that
here we only use NDCG to show the difference between the
two rankings rather than to measure the quality of Ts(G).
We report the result in Table III, where a value closer
to 1 indicates that Ts(G) and Ts(G

−) are more similar,
and a value closer to 0 indicates dissimilarity. The result
shows that Ts(G) and Ts(G

−), where 100 ≤ s ≤ 500,
are significantly different from each other except for the



wikipedia dataset. Especially when s is smaller, the
difference is obvious; for example, for the dblp and edit
datasets, the top-100 vertices in Ts(G) and Ts(G

−) are
totally disjoint.

Next, we show that the vertices in Ts(G) are more useful.
We compute (1)the number of vertices that each vertex
v ∈ Ts(G) or v ∈ Ts(G

−) can reach, and (2)the average
minimum duration from v to other reachable vertices [22].
Reachability and duration of a path in a temporal graph
G are defined as follows. A temporal path P in G is
a sequence of vertices P = 〈v1, v2, . . . , vp, vp+1〉, such
that (vi, vi+1, ti) ∈ E is the i-th temporal edge on P for
1 ≤ i ≤ p, and ti ≤ ti+1 for 1 ≤ i < p. The duration of P
is given by (tp− t1). The minimum duration from u to v is
simply the duration of the temporal path from u to v whose
duration is the minimum among all temporal paths from u
to v. We say u can reach v if there exists a temporal path
from u to v.

Let R(v) denote the number of vertices v can reach in
G. The larger value R(v) is, the more likely v is important.
Let f(v) be the average minimum duration from v to other
reachable vertices in G. The value f(v) indicates how long
it takes to spread information from v to other vertices on
average. The smaller value f(v) is, the higher probability
that v is an important vertex. We report the average value
of R(v) and f(v) for top-s vertices in Ts(G) and Ts(G−)
for the arxiv dataset in Figures 4 and 5, respectively.

From Figure 4, the average number of vertices that can
be reached by vertices in Ts(G) is always much larger than
that can be reached by vertices in Ts(G

−). The difference
is especially significant for small values of s as there are
fewer common vertices in Ts(G) and Ts(G

−). Figure 5
shows that the average value of f(v) of vertices in Ts(G−)
is always smaller than that of vertices in Ts(G−), especially
for small values of s. Similar conclusions can also be drawn
in most other datasets and the results are omitted due to
space limitation. The results in these two figures demonstrate
that the top-s vertices ranked by their core number in the
temporal graph are more important, at least with respect to
the scope to which information can be spread from them
and the amount of time they need to spread information,
than those ranked by their core number in the de-temporal
graph. Thus, it is beneficial to analyze temporal graphs using
temporal cores.

VI. RELATED WORK

In this section, we discuss related work on distributed
graph computing and core decomposition.

A. Distributed Graph Computing

Vertex-centric model. Malewicz et al. proposed the vertex-
centric computing model for Pregel [14]. In this model, each
vertex is an independent computational unit. A program in
Pregel implements a user-defined compute() function and

Table III
NDCG VALUES OF Ts(G) AND Ts(G−)

s 100 200 300 400 500
amazon 0.1589 0.2180 0.3007 0.3259 0.3636
arxiv 0.3462 0.4033 0.4006 0.3928 0.3949
dblp 0.0000 0.0773 0.2068 0.4210 0.5585
delicious 0.3027 0.3672 0.3822 0.3856 0.3930
edit 0.0000 0.0047 0.0274 0.0523 0.0685
flickr 0.4383 0.4325 0.4406 0.4388 0.4305
wikiconf 0.3559 0.3558 0.3787 0.4138 0.4371
wikipedia 0.6823 0.7228 0.7319 0.8360 0.9146
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proceeds in iterations, called supersteps, based on the bulk
synchronous parallel (BSP) model. In each superstep, the
program runs compute() for each active vertex, v, in which
v receives incoming messages from its neighbors sent in the
previous superstep, modifies its value, sends messages to its
neighbors (to be received in the next superstep), and votes
to halt. The program terminates when all vertices vote to
halt and there is no pending message for the next superstep.

Giraph [4] is a open source of Pregel, while GraphLab [8]
adopts the edge-centric model to eliminate unbalanced
workload caused by skewed vertex degree. Both Giraph
and GraphLab provide an implementation of the k-core
algorithm as an application, the idea of which is similar to
Algorithm 1. There are also other Pregel-like systems (e.g.,
Pregel+ [24]) proposed in recent years, and we refer readers
to a recent performance study on these systems [13].
Block-centric model. Yan et al. proposed the block-centric
graph computing system, Blogel [23]. Blogel partitions an
input graph into a set of subgraphs called blocks. In the
block-centric computing model, every block is a computa-
tional unit (in contrast to the vertex-centric model in which
every vertex is a computational unit). Blogel works in a
similar way as Pregel, but allows both blocks and vertices
to exchange messages with each other. The block-centric
model was designed to reduce the number of iterations and
the number of messages in the vertex-centric model. This
paper proposes the first block-centric distributed algorithm
for core decomposition.

B. Core Decomposition

The most efficient in-memory algorithm for core decom-
position was proposed in [5]. When main memory is not
sufficient, an I/O-efficient algorithm was proposed in [7].
These sequential algorithms are not efficient for processing



massive graphs; thus, Montresor et al. [15] proposed the first
non-trivial distributed algorithm for k-core decomposition by
iteratively refining the upper bound on the core number of
a vertex based on those of its neighbors. Their algorithm
is essentially a vertex-centric algorithm but they did not
implement it in any Pregel-like systems.

Li et al. [12] presented an efficient incremental algorithm
to maintain the core number of every vertex when the graph
is updated with single edge insertion/deletion. The algorithm
first identifies the set of nodes that may change their core
number after inserting/deleting one edge. Then a recoloring
algorithm is used to determine the set of vertices whose core
number needs to be updated. However, their incremental
algorithm is not linear. In [18], the authors proposed linear
time algorithms to handle single edge insertion/deletion. The
algorithms also first identify a subgraph consisting of a small
subset of vertices that may change their core number in the
case of edge insertion/deletion. Then, the algorithms work
on the subgraph to update the core number in linear time.
However, all these algorithms are not practical when the
input graph is large.

VII. CONCLUSIONS

We studied the problem of core decomposition in a
temporal graph and devised efficient distributed algorithms
to compute (k, h)-cores. In particular, our block-centric
distributed algorithm is significantly faster than the vertex-
centric counterparts. We also showed that (k, h)-cores can
be used for vertex ranking in a temporal graph.
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