Monochromatic and Bichromatic Reverse Nearest
Neighbor Queries on Land Surfaces

Da Yan, Zhou Zhao and Wilfred Ng
The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{yanda, zhaozhou, wilfred}@cse.ust.hk

ABSTRACT

Finding reverse nearest neighbors (RNNs) is an important opera-
tion in spatial databases. The problem of evaluating RNN queries
has already received considerable attention due to its importance in
many real-world applications, such as resource allocation and dis-
aster response. While RNN query processing has been extensively
studied in Euclidean space, no work ever studies this problem on
land surfaces. However, practical applications of RNN queries in-
volve terrain surfaces that constrain object movements, which ren-
dering the existing algorithms inapplicable.

In this paper, we investigate the evaluation of two types of RNN
queries on land surfaces: monochromatic RNN (MRNN) queries
and bichromatic RNN (BRNN) queries. On a land surface, the dis-
tance between two points is calculated as the length of the short-
est path along the surface. However, the computational cost of the
state-of-the-art shortest path algorithm on a land surface is quadratic
to the size of the surface model, which is usually quite huge. As a
result, surface RNN query processing is a challenging problem.

Leveraging some newly-discovered properties of Voronoi cell
approximation structures, we make use of standard index structures
such as an R-tree to design efficient algorithms that accelerate the
evaluation of MRNN and BRNN queries on land surfaces. Our pro-
posed algorithms are able to localize query evaluation by accessing
just a small fraction of the surface data near the query point, which
helps avoid shortest path evaluation on a large surface. Extensive
experiments are conducted on large real-world datasets to demon-
strate the efficiency of our algorithms.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS

Keywords

Reverse nearest neighbor, land surface, terrain

1. INTRODUCTION

Recent technological advances in remote sensing have made avail-
able high resolution terrain data of the entire Earth surface. As a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’12, October 29-November 2, 2012, Maui, HI, USA.

Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

result, many online Earth visualization platforms emerge, such as
“Google Earth™” and “Bing Maps for Enterprise”. Other exam-
ples involving geo-realistic rendering of surfaces include computer
games such as “Counter-Strike” and “Call of Duty”. However,
these applications focus mainly on the rendering of land surfaces
rather than the processing of spatial queries on them.

Due to the ubiquity of high resolution terrain data, it is becom-
ing more and more important to develop geographic information
systems (GISs) that support efficient query processing on land sur-
faces. Such systems would enable many novel and useful applica-
tions in the terrain context.

The shortest path problem has been studied on land surfaces by
many works such as [5, 6, 7, 8], and the best-known exact algo-
rithm is Chen and Han’s algorithm, which takes O(n?) time on a
surface model of size n. Recently, several works [1, 2, 3, 4] begin
to study k-nearest neighbor (k-NN) queries on land surfaces, which
is termed surface k-NN (SkNN) queries.

We call a reverse nearest neighbor (RNN) query on land surfaces
as a surface RNN (SRNN) query, which, to our knowledge, has not
been studied before. There are two popular types of RNN queries
in the literature:

e Given a data point set O and a query point g, a monochro-
matic reverse nearest neighbor (MRNN) query finds all the
data points o € O that have q as their nearest neighbor (NN).

e Given a site point set .S, a data point set O and a query
point g € S, a bichromatic reverse nearest neighbor (BRNN)
query finds all the data points o € O that are closer to ¢ than
any other point in S.

SRNN queries have many real world applications. For example,
bichromatic SRNN (BSRNN) queries are important in the domain
of disaster response: when a disaster (e.g. earthquake/tsunami) hap-
pens, the transportation system may stop functioning, and thus res-
cue teams have to find ways within the disaster area, instead of
using the blocked/damaged roads, to save the lives of the suffered.
In this case, a victim should be reached by the rescue team near-
est to him/her, and therefore, it is important for the rescue teams to
keep track of their RNNs among the victims. Other applications of
BSRNN queries include supply distribution during military opera-
tions, and wild animal rescue in nature reserves.

Besides BSRNN queries, monochromatic SRNN (MSRNN) queries

are also useful in many application domains, such as outdoor activ-
ities and military operations. Consider the activity of mountaineer-
ing: in order to keep the mountaineers safe, it is important for each
member to keep track of his/her RNNs among all the other moun-
taineers, so that if a member encounters an accident such as a land-
slide, he/she can get help from his/her nearest neighbor who tracks
him/her (e.g. through GPS devices). Similar situations happen in

5.2184
5.2186

5.905 5.904 5.903 5902 5.2188 x 10°
Y

x 10° X
Figure 1: Triangular Irregular Network (TIN)

military operations, where a troop would reinforce one of its re-
verse nearest neighbor troop if that troop suffers severe casualty.

In this paper, we study RNN queries on land surfaces, includ-
ing both MSRNN and BSRNN queries. Unlike traditional RNN
queries, the evaluation of SRNN queries is more challenging due
to the following two reasons:

e The size of the surface model data is huge. Unlike query
processing in the Euclidean space, queries on land surfaces
also involve the environmental data (i.e. the surface model)
besides the object data. A land surface is usually represented
by the Triangulated Irregular Network (TIN) model [1, 4],
a mesh derived from the Digital Elevation Model (DEM)
of sampled ground positions at regularly spaced interval (cf.
Figure 1). The surface data are usually collected with high
resolution, e.g. terrain data with 10m sampling interval can
be easily accessed from [25]. As a result, a typical land sur-
face data contains at least millions of TIN vertices.

e Finding shortest surface path is computationally expen-
sive. The best-known algorithm for exact shortest surface
path computation is Chen and Han'’s algorithm, which takes
O(n?) time on a terrain data with n triangular faces. It is
reported in [3] that, for some moderately large areas (a few
square kilometers), Chen and Han’s algorithm may take tens
of minutes on a modern PC machine to compute a shortest
surface path. The poor scalability of Chen and Han’s al-
gorithm poses a challenge for SRNN query processing, since
the definition of RNNs on land surfaces is based on the short-
est surface path distances.

As aresult, efficient SRNN query evaluation requires that (1) the
shortest surface path computation should be avoided whenever pos-
sible, by efficient pruning methods; and that (2) only a small frac-
tion of the surface data near the query point should be accessed, so
that shortest surface path computations are done on a small surface.

To achieve these two goals, we adopt the Voronoi cell [24] ap-
proximation structures (i.e. tight/loose cells) to accelerate SRNN
query processing. The concepts of tight/loose cells are first pro-
posed in [1] for processing SENN queries. The algorithms of [1]
achieve significant pruning power when answering SENN queries,
by using several properties of the relationship between a cell and a
query points, which we call the cell-point properties.

However, the cell-point properties along are not sufficient for an-
swering SRNN queries. We discover several (non-trivial) proper-
ties of the relationship between two cells, termed the cell-cell prop-
erties, which is essential in SRNN query processing. Furthermore,
our MSRNN algorithm requires the loose cell of the query point,
but [1] only gives an offline algorithm that computes the loose cells
of all data points together. Therefore, we also study how to effi-
ciently compute the loose cell of the query point online.

While [1] designs a cell index dedicated to SENN query pro-
cessing, we find that its algorithm may not return the exact kNN,
due to a flawed cell-cell property it assumes. Therefore, we do not
follow that indexing methods, but rather use standard index struc-
tures such as R-tree in our algorithms. Extensive experiments on
large real-world datasets have demonstrated the efficiency of our
algorithms for MSRNN and BSRNN queries.

The rest of the paper is organized as follows. We formally define
MSRNN and BSRNN queries in Section 2. In Section 3, we review
the concept of tight/loose cells, as well as the cell-point properties.
Our cell indexing method is explained in Section 4, where we also
present the algorithm of surface NN query processing using the in-
dex. In Section 5, we prove two new cell-cell properties and present
our algorithm for NN queries among the data objects (rather than
the query point), which is a fundamental operation in our MSRNN
algorithm. Our online algorithm for constructing tight/loose cells
is introduced in Section 6, and our algorithms for MSRNN and
BSRNN queries are described in Section 7. Extensive experiments
are conducted in Section 8 on large real-world datasets to verify the
efficiency of our algorithms. Finally, we review the related work in
Section 9, and conclude the paper in Section 10.

2. MSRNN & BSRNN QUERIES

A land surface can be regarded as a continuous function that
assigns every point (x,y) on a horizontal plane to a unique z-
coordinate value. The TIN model is the most popular model to
represent a land surface, which is constructed from the sampled
ground positions at regularly spaced intervals, by Delaunay trian-
gulation [24], to form a set of non-overlapping triangles whose
vertices are these sampled points. We call the graph defined by
the sampled vertices and the edges of the triangles as the model
network. Figure 1 shows a piece of land surface represented by
the TIN model, where the red lines correspond to the edges of the
model network.

Before presenting the formal definition of SRNN queries, let us
first define some distance metrics between two points on the TIN
model, as well as the corresponding notations.

DEFINITION 1. Let p1 and p2 be two points on a land surface.

e The surface distance between p1 and p, denoted ds(p1, p2),
is the length of the shortest path connecting p1 and p2 along
the surface.

e The Euclidean distance between p1 and p2, denoted dg(p1, p2),

is the length of the straight line connecting p1 and pa.

o The network distance between vertices p1 and p2, denoted
dn(p1,p2), is the length of the shortest path connecting p1
and p2 along the model network.

It is obvious that for any two given vertices p; and p2 on a land
surface,

dr(p1,p2) < ds(p1,p2) < dnv(p1,p2),)

where the second inequality is because the shortest network path
is also a path along the surface. Therefore, the Euclidean distance
and the network distance are the lower bound and the upper bound
of the surface distance, respectively.

Now, we are ready to formally define SRNN queries:

DEFINITION 2 (MSRNN). Given a data point set O and a
query point q on a land surface, a monochromatic surface reverse
nearest neighbor (MSRNN) query finds all the data points o € O
such that Vo' € O — {o},ds(0,q) < ds(o,0").

DEFINITION 3 (BSRNN). Given a site point set S, a data
point set O and a query point ¢ € S on a land surface, a bichro-
matic surface reverse nearest neighbor (BSRNN) query finds all
the data points o € O such thatV's € S—{q},ds(0,q) < ds(o, s).

3. TIGHT CELL & LOOSE CELL

Voronoi diagram [24] is a powerful tool for processing NN queries.
Given a set O of data objects, a Voronoi diagram divides the space
into disjoint cells, where each cell belongs to one object. If a query
point g falls into the Voronoi cell of object o € O, then o is guar-
anteed to be the NN of ¢ among all objects in O.

Many algorithms have been proposed for computing Voronoi di-
agrams in 2D Euclidean space, among which the most commonly
used one is Fortune’s plain-sweep algorithm [24], whose time com-
plexity is O(nlogn) with n = |O).

However, as pointed out by [1], it is very expensive to construct
the exact Voronoi diagram on a land surface. Therefore, [1] pro-
poses two approximation structures of Voronoi cells that can be
computed without the necessity of shortest surface path evaluation:

DEFINITION 4 (TIGHT CELL). Given a data point set O on
a land surface S, the tight cell of a data object o € O, denoted
as TC(0), is a polygon area around o, defined by TC(0) = {q €
S |dn(o,q) <dgr(d,q), Vo' € O — {o}}.

DEFINITION 5 (LOOSE CELL). Given a data point set O on
a land surface S, the loose cell of a data object o € O, denoted
as LC(0), is a polygon area around o, defined by LC(0) = {q €
S| de(o,q) <dn(0,q), Yo' € O —{o}}.

Note that we can always assume an object o € O to be on a
vertex, since otherwise, we can split the face that the object is on as
three faces by connecting the three face vertices to o.

We can rewrite the definitions of tight and loose cells in the fol-
lowing equivalent forms:

TC(OZ) = {q eSS | dN(Ozaq) < dE(Okaq)7
or = argminojeo,{oi}dE(Oj,Q)})
LC(0;) = {q€ S|dg(oi,q) <dn(ok,q),

o = argminojeo_{oi}dj\r(oj,q)}. 3)

Figure 2 shows the tight and loose cells of 6 objects (01 to o¢)
on a surface, where the blue cells are the tight cells of the objects
in them, and the green (purple) cell is the loose cell of 01 (06).

Next, we review the cell-point properties proposed in [1], which
are necessary in both the SKNN and our SRNN query processing.

Summary of cell-point properties. Let us use NNg(q | O) to
denote the surface nearest neighbor of ¢ among the data objects
in O. Note that if ¢ € O, then ¢ = NNgs(¢q | O). Theorem 1
summarizes the cell-point properties that correspond to Properties 1
to 4 in [1], the proof of which can be found therein.

THEOREM 1. Given a set of objects O = {01, 02, ..
a land surface, the following statements hold:

.,0n} on

1. Ifaquery point q & O iswithinTC(0;), theno; = NNs(q | O).

2. If a query point q & O is outside LC(0;), then o; is guaran-
teed not to be NNg(q | O).

3. All the edges of the tight cells are also the edges of the loose
cells.

4. If o, = NNs(q | O), then the shortest surface path from q
to 0; is within LC(0;).

4. CELL INDEXING

In this section, we first point out a problem with the existing cell
index for SKNN query processing [1], which explains why we do
not follow that framework for indexing. Instead, we propose to
index the loose cells of all data objects by an R-tree, which is used
to answer surface NN and SRNN queries. Finally, we present an
algorithm of surface NN query processing using the index.

Problem with the existing SKNN algorithm. Based on State-
ment 3 in Theorem 1, [1] defines the neighbors of an object o € O
as NL(o) = {0’ € O — {0} | TC(0") and LC(0) have common
edges}. For example, in Figure 2, N L(01) = {02, 03,04, 05}.

For each data object o € O, its neighbor list N L(0) is stored
with o in the cell index of [1], and used to find the k¥ NNs incre-
mentally on the surface. However, the underlying property of that
incremental algorithm (Property 6 in [1]) is based on the following
statement:

If 0; and o; are not neighbors, then LC(0;) N LC (o) = 0, and
thus a point m on the shortest surface path between o; and a point
q within LC(0;) should exist outside both LC(0;) and LC(0;).

Nevertheless, this claim is not proved in [1], and in fact, it is not
correct. One counterexample is given by Figure 2: although og ¢
NL(o01), we have LC(0g) N LC(01) # 0; moreover, the shortest
surface path between og and o; is totally within LC(0s) ULC(01).

Therefore, the incremental method is not guaranteed to be cor-
rect even when k goes from 1 to 2. This result is not surprising
since Voronoi cells are dedicated to 1-NN queries.

In order to study how frequently the claim is breached in general,
we randomly generate an object set O on a fraction of the Eagle
Peak land surface dataset [25], and check how many objects 0; € O
has its loose cell LC(0;) overlapping with that of a non-neighbor
object o; € N L(o;), by using the following approach.

We bulk-load an R-tree T.¢ from the loose cells {LC(0) | 0 €
O} using the Sort-Tile-Recursive (STR) algorithm [10]. For each
object 0; € O, we find the set of objects C = {o; € O —
{0i} | LC(0;) N LC(0;) # 0} by an intersection query on Trc
with query window LC'(0;). Then, for each o; € C, we check
whether LC(0;) N TC(0;) # 0. If o; € NL(o;), we know
that LC(o0;) and T'C'(0;) have common edges and thus LC'(0;) N
TC(0;) # 0. Otherwise, we find a breach of the claim.

The experimental results are surprising: we find that 70% to 80%
of the objects in O breach of the claim (which is very high), and
the larger the object set size |O|, the smaller the breach frequency.

Cell index. While the tight/loose cells of the data objects provide
great pruning power in surface NN and SRNN query processing,
cell construction is time-consuming. As a result, they are usually
pre-computed offline, and organized by a spatial index.

We have shown that the neighbor information maintained by the
cell index of [1] is no longer useful for correctly answering SENN
queries. Fortunately, only 1-NN queries are necessary in SRNN
query processing, and therefore, we do not adopt the index structure
of [1], but rather use the R-tree T over all the object loose cells
as the cell index, which has already been used in breach checking.

The R-tree T ¢ is sufficient for answering surface NN and SRNN
queries. We now present our algorithm for surface NN queries,
namely Algorithm 1, which makes use of T7.c.

Algorithm for finding NNg(q | O). According to Statements 2
and 4 in Theorem 1, we can use Algorithm 1 to find NNs(q | O)
for a query point ¢ ¢ O. Specifically, we first issue a point intersec-
tion query on the R-tree 717.¢ to find the objects whose loose cells
contain ¢ (Line 1). If there is only one such object o (Line 2),
this implies that Yo' € O — {0}, LC(0’) does not contain g,
and according to Statement 2 in Theorem 1, only o has chance to
be NNs(q | O), which is returned in Line 4. In fact, we have

700

/47);
P asy,
650 DK
I TITR
X el T =)
600 ,4%%%(%
2 2 e DDA
N =% DR Ss \
XA 5 7 Vil =
Bl T e S s
e ISl) B & S VA A AN
150 s 2 LT NS AV TR CTATAT S
450 a?f;: 92 ”“?ﬁ%’?ﬁgﬁ?ﬁ“\ﬁ‘ VO SIS
52191 e e

59145 5914 591

Y (m)

A

59115 5911 5.9105

5912

35 5913 5.9125
10
X (m) X

Figure 2: Tight Cells & Loose Cells

Algorithm 1 QO-NN(q, O, Tr.c)

Input: query point ¢ & O; object set O; R-tree T7,c bulk-loaded
from {LC(0) | 0 € O}

Output: NNs(q| O)

1: Find the object set C = {o € O | ¢ is within LC(0)} by a

point intersection query on 7' c with query point ¢

2: if |C|=1 then

3 {C={o})

4: return o

5: min < 00, Omin < NULL

6: for each o € C do

7. Invoke Chen and Han’s algorithm to compute dgs(o,q) on
LC(o)

8: ifds(o,q) < min then

9: min — ds(o,q)

10: Omin < O

11: return omin

g € TC(o) in this case. Otherwise, we check all the candidates
o € (' and return the one with the smallest shortest surface path
length (Lines 5 to 11). Note that we compute ds(o,q) on LC(0)
rather than on the whole surface, and therefore the shortest surface
path between ¢ and o found on LC(0) may not be the global short-
est surface path. However, according to Statement 4 in Theorem 1,
we are able to find the shortest surface path to NNs(gq | O), which
guarantees the correctness of Algorithm 1.

S. OBJECT NN QUERIES

In this section, we study object NN queries: Given an object o €
O, find its nearest neighbor in O on the surface, i.e. NNg(o | O —
{0}). As we shall see, an object NN query is a fundamental opera-
tion in our MSRNN algorithm in Section 7.

Cell-cell properties. Before describing our algorithm for pro-
cessing object NN queries, we first present two underlying cell-cell
properties which guarantee the correction of our algorithm.

Theorem 2 prunes all the objects whose loose cells do not inter-
sect with LC'(0), from being NNg(o | O — {o}).

THEOREM 2. Any object o' € O that satisfies LC(0)NLC(0") =
(0 cannot be NNs(o | O — {o}).

Figure 3: Illustration of the Proof of Theorem 2

PROOF. Let us illustrate the idea by Figure 3, where o2 corre-
sponds to o in Theorem 2, and o5 corresponds to o’. In Figure 3,
the green (purple) cell is LC'(02) (LC/(0s)).

Since LC(0) N LC(0’) = 0, a point m on the shortest path
between o and o’ (the orange path in Figure 3) should exist outside
both LC(0) and LC(0').

Since m is outside of LC(0’), according to Definition 5, we
know that 30" € O — {0}, dg(0’;m) > dn (0", m). We now
prove that 30" € O — {0, 0}, dg(o’,m) > dn (0", m).

We prove by contradiction. If o is the only object in O— {0’} that
satisfies dg (o', m) > dn (o, m), thenVo" € O—{0’, 0}, dg(o’,m)
< dn(0",m). Since dg(o’,m) > dn(o,m) > dg(o,m), we
have dy(o',m) > dg(o’,m) > dg(o,m) and Yo" € O —
{0',0}, de(o,m) < dr(o’,m) < dn(0”,m). Therefore, we
obtain Vo'’ € O — {o},dr(0,m) < dn(0”,m). According to
Definition 5, this implies that m is inside LC(o0), which contra-
dicts our assumption of m.

Now that we know 30" € O—{0', 0}, dg(0',m) > dn (0", m)
(in Figure 3, 01 corresponds to 0o”’), we have ds (o', m) > dg (o', m)
> dn(0",m) > ds(0”,m). Thus, ds(o’,0) = ds(o',m) +

ds(m,o0) > ds(0”,m) + ds(m,0) > ds(0”,0), which implies
that o” is closer to o than o', i.e. o' # NNg(o | O — {o}). O

Theorem 2 provides the candidates of N Ns (o | O—{o}) for fur-
ther refinement. To find the exact NNg(o | O — {o}) among the
candidates, we have to invoke Chen and Han’s algorithm to com-
pute the lengths of shortest surface paths from o to these candidates.

Figure 4: Illustration of the Proof of Theorem 3

Since the time cost of Chen and Han’s algorithm is quadratic to the
number of triangular faces, we would like to evaluate the shortest
surface paths on a small fraction of the surface, which is made pos-
sible by the following theorem:

THEOREM 3. Ifo; = NNs(o; | O — {0i}), then the shortest
surface path from oj to o; is within LC(05) U LC(0;).

PROOF. Let us prove by contradiction. Note that LC(0;) must
intersect with LC(0;) according to Theorem 2. Suppose that a
point m on the shortest path between o; and o; exists that is outside
both LC(0;) and LC(o0;) (see Figure 4).

Since m is outside of LC'(0;), according to Definition 5, we
have Jor, € O — {0;}, dr(oj, m) > dn(ok, m). We now prove
that 3o, € O — {04,0;}, de(oj,m) > dn(ok, m).

We prove by contradiction. If o; is the only object in O —
{o,} that satisfies dg(0;,m) > dn(0s,m), then Vo, € O —
{0i,0;}, de(oj,m) < dn(ok, m). Since dg (0, m) > dn(0;, m)
> dg(0i,m), we have dn(0;,m) > dg(o;,m) > dg(0;, m) and
Yo, € O — {Oj,Oi}, dE(oi,m) < dE(oj,m) < dN(ok,m).
Therefore, we have Yo, € O — {0:},de(0;,m) < dn(0ok, m).
According to Definition 5, this implies that m is inside LC(o;),
which contradicts our assumption of m.

Now that we know Jo, € O—{04,0;}, de(o;, m) > dn (o, m)
(see Figure 4), we have ds(oj,m) > dg(oj,m) > dn(ok, m) >
ds(ox,m). Thus, ds(0;,0;) = ds(0j,m)+ds(m,0;) > ds(ox,
m)+ds(m,0;) > ds(ok,0:), which implies that oy, is closer to o;
than o;, contradicting the assumption 0; = NNg(0; | O — {os})
in the theorem. [

Algorithm for finding NNg (o | O — {0}). Our MSRNN query
processing only requires to compute the surface distance between
an object o € O and its surface nearest neighbor in O, i.e. NNs(o |
O —{o0}). According to Theorems 2 and 3, we can use Algorithm 2
to compute this distance. Note that Algorithm 2 can be easily ex-
tended to find NNg(o | O — {o}) by tracking the object with min-
imum current distance.

Since the computation of ds(o, NNs(o | O — {o})) for objects
o € O is a basic operation in our MSRNN query processing, one
method is to pre-compute the value for each object o € O. How-
ever, unlike Algorithm 1 which may not require any shortest surface
path computation, Algorithm 2 requires to perform this expensive
computation for |C| times. Thus, the pre-computation phase takes
a long time and is only worthwhile for those applications where
the object set O is static and they are frequently queried. In our
implementation, ds(o, NNs(o | O — {o})) is computed online.

Intersection judgement. Algorithm 1 requires a point intersec-
tion query on R-tree Tc, and if the query point q is found to

Algorithm 2 OO-NN(o, O, Tr.c)

Input: query point o € O; object set O; R-tree Trc bulk-loaded
from {LC(0) | 0 € O}

Output: ds(o, NNs(o| O — {0}))

1: Find the set C = {0’ € O — {0} | LC (") N LC(0) # 0} by
an intersection query on Tc with query window LC'(0)

2: min < 0o

: for each o’ € C do

4: Invoke Chen and Han’s algorithm to compute ds(0,0’) on

LC(0") U LC(0)

if ds (o0, 0') < min then
min «— ds(0,0")

7: return min

w

A

be within the minimum bounding box (MBR) of a leaf node en-
try corresponding to LC'(0), a refinement step is required to check
whether ¢ is within the polygon LC(0). Note that all the inter-
section judgements can be done simply on the xy-plane, without
considering the z-coordinate values. We regard ¢ as being within a
polygon P even if g is on the boundary of P.

(b) Right Vertical Boundary

2 crossin
_____________ g >

(a) Ray Casting (c) Top Horizontal Boundary

Figure 5: Illustration of the Ray Casting Algorithm

To determine whether a point ¢ is within a polygon P, we use the
ray casting algorithm. The method counts the number of times the
horizontal ray extending to the right of g crosses a polygon bound-
ary edge. If this number is even, the point is outside; otherwise, the
point is inside. Figure 5(a) illustrates the idea of the ray casting al-
gorithm. However, due to the edge crossing rules of the algorithm,
a point on a right or top edge is considered outside, and therefore
we check these special cases (e.g. the cases shown in Figures 5(b)
and (c)) to ensure the correctness of intersection judgement.

Algorithm 2 requires an intersection query on R-tree T, with a
polygon window win, and if the MBR of win is found to intersect
with the MBR of a leaf node entry corresponding to LC'(0), a re-
finement step is needed to check whether polygon LC(0) intersects
with win.

The general problem of determining whether two polygons P;
and P> intersect cannot be answered by simply checking whether
there exists a vertex of P; that is within P> (see Figure 6(a)), and
requires more advanced techniques such as the Bentley-Ottmann
algorithm [24].

However, both win and LC(0) in our problem are loose cells,
whose boundary must have a vertex on an edge of the model net-
work whenever it crosses the edge (see Section 6). Therefore, we
have the following theorem:

THEOREM 4. Two loose cells LC, and LC' intersect with each
other, if and only if, there exists a vertex of LC that is within LC'.

PROOF. Suppose that part of the edge de of LC is inside LC
but both d and e are outside of LC5, then de crosses at least two

(b) (©

Figure 6: Polygon Intersection

edges of L', such as edges ab and bc in Figures 6(b) and (c). Let
us call a horizontal or vertical line of model network edges as a
model line. Note that there are two possible cases: (1) If b is not
collinear with a and ¢ on a model line, then there exist at least 3
model lines between a and c (see Figure 6(b)) and de must cross
the model line in between. (2) If b is collinear with a (or ¢) on a
model line as shown in Figure 6(c), then de must cross the model
line of ab (or bc). Thus, in either case, there is another vertex on
de, contradicting the fact that de is an edge of LC,. [

Note that we can use the ray casting algorithm described before
to determine whether a vertex of L' is within LC5.

6. CELL CONSTRUCTION

In this section, we present our approach for cell construction,
which is important due to the following reasons. (1) In order to ac-
celerate SRNN query processing, we need to pre-compute 7°C'(0)
and LC(o) for all 0 € O. Recall that we also need to bulk-load
an R-tree Tc from the loose cells LC(0). (2) Our MSRNN algo-
rithm requires to obtain the loose cell of the query point online.

The work of [1] proposes to compute the tight/loose cells by con-
tracting/expanding the Voronoi cells of the object set O in 3D Eu-
clidean space. However, it is not easy to compute the 3D Voronoi
cells and then to map them onto the surface. Besides, this approach
constructs the cells of all objects in O at once, and cannot support
efficient cell evaluation for an individual point g, which is a funda-
mental operation in our MSRNN algorithm.

Therefore, we propose to construct the cells of a point online, by
a breadth-first traversal of the faces starting from that point. We
first describe the data structures relevant cell construction.

Vertex inverted index. We build an inverted index [f,c.s Where
each entry corresponds to a vertex v of the TIN model. Each entry
of Ifqces has format (v, L(v)), with L(v) being the list of all the
faces whose vertices include v. For example, in Figure 7, the list
L(b) contains six faces marked by 1 to 6.

One usage of Iqces is to get the seeding faces for our breadth-
first cell construction algorithm, and the other usage is to obtain
the gluing relationships of faces, which are required as part of the
input to Chen and Han’s algorithm. Referring to Figure 7 again,
suppose that we want to obtain the face next to Face 6 by the edge
ab. This can be done by first computing L(a) N L(b) = {5,6} and
then picking the face that is not itself (i.e. Face 5). For a face on the

© Vertex Triangular Faces
23
l 4C " w
6 9 —
NEZEE % :5:6:7:11:12:13:14|15|
14 71*11|410/¢ —|1]2]3]4]|5]6
1312

Figure 7: Vertex Inverted Index for Faces

(@) (b)

Figure 8: Exact Cell Vertex Computation

boundary of the land surface, its neighboring face along a boundary
edge does not exist, and we denote it by NULL.

The above approach requires two f4ces look-ups (i.e. two I/O
operations) to get one neighboring face of a given face. An alterna-
tive method is to pre-compute the three neighboring faces of each
face in the TIN model, so that only one I/O operation is required to
obtain all the three neighboring faces for a given face. We do not
adopt this alternative to avoid the additional space overhead.

Tight cell vertex computation. Let us consider how to find the
vertices of T'C'(0;). Given a vertex v of the model network, let
o, be the NN of v among O — {o;} in the Euclidean space, i.e.
op = argmin, co_y,.1de(0;,v). We bulk-load an R-tree To
from the object points in O beforehand, so that oy, can be found by
a best-first NN search [12] using query point v, where object o; is
filtered out during the R-tree traversal.

To decide whether v is within T'C'(0;), according to Equation (2),
we need to compute and compare dn(0i,v) and dg(og,v). If
dn(0i,v) < dg(ok,v), we say that vertex v is on o0;’s side, de-
noted as v 1 0;; otherwise, we say that v A o;.

For an edge uv of the model network, if u 4 o, and v A 0;,
then dn(0i,u) < dg(ok,u) and dn(0s,v) > dg(ok,v), and
therefore there must exist at least one split point s on uv such that
dn(o0i,s) = de(ok, s). The split point s is a vertex of T'C'(0;).

There can be more than one split point on an edge uv, which
can be found by solving a quartic equation. Consider a point p
on edge (u,v) with |up| = z. From Figure 8(a) we can see that
dn(0i,p) = min{dn(0i,u) + z,dn(0s,v) + (Juv] —)} is a
piecewise linear function of = with at most 2 pieces. In Figure 8(b),
by Cosine law, we can obtain dg(ox,p)® = dg(ok,u)* + 2 —
2 - dg(ok,u) - x - cos Loguv. Thus, we can solve the equation
dn(0i,5)* = dg(ok, s)? to compute split points s.

The work of [1] mistakenly assumes that at most one split point
s exists on an edge uv. To avoid the complication of solving quar-
tic equations, we follow their assumptions by finding a split point
inside the exact T'C'(0;). Although cells computed in this way are
not the exact ones, they do not influence the correctness of SRNN
evaluation, but just slightly reduce the pruning power of the cells,
due to the following intuitive principle:

Making the tight cells smaller and the loose cells larger than the
exact ones does not influence the correctness of the cell properties.

We compute the split point s on an edge as follows. Consider
face Adef in Figure 9, where e = 0; and f A 0;. We compute the
split point s on ef as follows: Let us denote = = | fs|, we compute
s by solving the equation

de(ok, f) + = = (lef| — x) + dn(0i,€) “

The solution is = (|ef| + dn(0i,€) — dr(ok, f))/2, and the
— — —
coordinate of s is computed as Os = Of + = - fe. We now prove
that all the split points we compute is inside T'C'(0;): the R.H.S. of
Equation (4) equals dn (0s, s), and the L.H.S. is at least dg ok, s),
which implies that dn (04, s) < dg(ok, s), or s is inside T'C'(0;).

Figure 9: Relaxed Cell Vertex Computation

The work of [1] differentiates 4 possible cases for a face: (1) all
three vertices are on o;’s side (e.g. Face 1 in Figure 9), in which
case the face is totally contained in T'C'(0;); (2) all three vertices
are not on o;’s side (e.g. Face 4 in Figure 9), in which case the face
is totally outside of T'C'(0;); (3) only one vertex is on o;’s side (e.g.
Face 3 in Figure 9), in which case two split points can be computed
as illustrated by face Aabc in Figure 9; (4) two vertices are on 0;’s
side (e.g. Face 2 in Figure 9), in which case two split points can be
computed as illustrated by face Adef in Figure 9. In the last two
cases, a cell edge of T'C'(0;) is defined by the two split points. We
also adopt this approach in our implementation.

Loose cell vertex computation. The vertices computation for
LC(0;) is similar but more tricky. Given a vertex v of the model
network, let o = argmin, co_1,,3dn(05,v). According to
Equation (3), to decide whether v is within LC(0;), we need to
compute and compare dg(0;,v) and dn (0k, v).

Due to the large size of the TIN model network (typically with
millions of vertices) and the object set O, it is not practical to find
or, by evaluating dn (05, v) for all o; € O — {0;}. Besides, since
the computation of LC'(0;) works in a breath-first manner, the net-
work distance computation for different vertices v can be shared
rather than done individually, so as to utilize the locality property.

Our approach of network distance computation when evaluat-
ing LC(o;) is as follows. We maintain a pool of partial results
obtained from the Dijkstra algorithm for different source vertices
or € O — {o0;} during the computation of LC(0;). Whenever
a network distance computation dy (ox,v) is required, we check
whether the partial result of oj exists in the pool: (1) if the par-
tial result exists, we check whether dn (o, v) is already available.
If it is available, it is returned directly; otherwise, we continue to
run the Dijkstra algorithm until dn (ox,v) is computed. (2) if the
partial result does not exist, we create and initialize a new partial
result for oy, run Dijkstra until dn (ox,v) is computed, and add the
partial result to the pool.

Our approach is efficient since only a small number of partial re-
sults are kept in the pool. To see this, consider the example in Fig-
ure 10, where vertex c of face Aabc is being evaluated. Note that
oks is so far from o; that dg (oks, ¢) > dn(0ks, ¢), thus dn (0ks, €)
is even larger and o5 can be safely pruned. In general, if dg (o, v)
is found to be larger than min,, {dn (0;,v)} (named upper bound)
for all checked objects o;, then o, can be pruned.

Figure 10: Pruning Candidates of oy,

S Pk

(a) (b) (©) ()

Figure 11: Boundary Cells

To get a tight upper bound in the very beginning, we find the
nearest neighbor of v among objects in O — {0;} in the Euclidean
space, say oy, using the object R-tree index To mention before,
and initialize the upper bound as dn (on, v).

The split point computation is similar to that of TC'(0;).

Breath-first cell edge collection. To collect all the edges of
TC(0;) and LC(0;), we check the faces in a breadth-first manner,
starting from o;. Specifically, we first initialize a queue Q) with the
faces whose vertices contain o;, which can be obtained by looking
up L(0;) from Ifqces. Then, whenever @) is not empty, we fetch
the next face in), check the three face vertices, and evaluate split
points for T'C'(0;) and LC(0;) on the face. If at least one vertex is
on o;’s side in terms of LC'(0;), we add the non-visited neighboring
faces (if exists) to @Q); otherwise, we know that the face is totally
outside of LC(0;) and we do not further expand faces.

Recall that during this process, we maintain a pool of partial Di-
jkstra results for different source vertices oy,. Since LC'(0;) covers
only a very small fraction of the whole surface, we can expect that
objects far away from o; will never require a network distance com-
putation to a vertex on a traversed face. Thus, the pool is kept small
(usually less than 10 source objects), and even for those source ob-
jects in the pool, the Dijkstra algorithm is run on just a small frac-
tion of the whole surface, as illustrated by the circles in Figure 10.

Boundary cells. For most of the cells, the edges collected form
a closed curve (see Figure 11(a)), and thus the polygon cell can be
easily constructed. However, there are cases where the edges form
one open curve (see Figures 11(b) and (c)), and additional edges or
vertices from the boundary of the surface are required to form the
polygon cell. To decide which side of the curve is inside, we check
whether object o is in the resulted polygon. In our experiments, we
also find other rare cases such as the one shown in Figure 11(d).
Therefore, for all the other cases, we set T'C'(0) to be the point o
and LC(0) to be the MBR of the collected split points.

7. SRNN QUERY PROCESSING
7.1 MSRNN Query Processing

Given an object set O and a query point ¢ on a land surface, a
MSRNN query returns the set of objects {0 € O | NNg(o | O U
{q} — {o}) = q}. Equivalently, an object o is the MSRNN of ¢, if
and only if

ds(o, NNs(o| O —{o})) = ds(0,q). (5)

To obtain the MSRNN candidates, we compute LC(g) among
the set O U {¢} online using our breadth-first cell construction al-
gorithm described in Section 6, with an important additional oper-
ation: whenever we obtain a split point s for the loose cell LC(q)
on edge uwv, according to Equation (3) we have

de(q,s) = dn(0,8), 0 = argmin, codn(0i, 8), (6)

and we collect o into the MSRNN candidate set C. The following
theorem guarantees that the MSRNNs of ¢ must be in C'.

Algorithm 3 Finding the MSRNNSs of Query Point ¢

Algorithm 4 Finding the BSRNNs of Query Site g

I: MRNN «(

2: Compute LC(g) among O U {q} and collect candidates to set
C

3: for each o € C' do

4: if LC(0) N LC(q) # 0 then

5 ds(o,NNs(o| O —{o})) «<OO-NN(o, O, Trc)

6 Invoke Chen and Han'’s algorithm to compute ds (o, ¢) on

LC(o) U LC(q)

7 if ds(o, NNs(o| O — {o})) > ds(o, q) then

8: MRNN « MRNN U {o}

9: return M RNN

1: BRNN «(

2: Perform a range query on 7o with query window LC(q) to
find the object set C' = {0 € O | o is within LC(q)}

3: for each 0 € C' do

4: if o is within T'C'(¢) then

5 BRNN < BRNN U {o}

6 else

7 nn <—QO0-NN(o, S, TLc)

8 if nn = ¢ then

9 BRNN « BRNN U {o}

10: return BRNN

THEOREM 5. Any object o ¢ C'in O cannot be q’s MSRNN.

PROOF. Note that the polygon LC'(q) computed in the context
of O |J{q} is the same as the polygon LC(q) computed in the con-
text of C'(J{q}. Therefore, for any point v outside LC'(g), it holds
that Jo. € C, dr(q,v) > dn(0c,v).

For an object o € C'in O, it must be outside of LC'(¢) according
to the definition of loose cells, and therefore Jo. € C, dg(q,0) >
dn (067 0). Thus ds(Qv O) > dE(q7 O) >dn (067 0) > ds(007 O) >
ds(o, NNs(o| O—{o})), and according to Equation (5), o cannot
be an MSRNN. []

Algorithm 3 shows our algorithm for MSRNN queries. In Line 2,
we first compute the MSRNN candidate set C' by evaluating LC(q)
among OU{q} using the breadth-first approach. We filter out those
candidates o that satisfy LC'(0) N LC(q) = @ in Line 4. This is
because, according to Theorem 2, any point p € O U {q} that
satisfies LC'(0) N LC(q) = () cannot be NNs(o| OU{q} — {o}),
where LC'(0) is computed in the context of O U {q}, denoted as
LC(o| O U {q¢}). Note that the LC(0) in Algorithm 3 is the pre-
computed one in the context of O, i.e. LC(o | O). According
to Definition 5, it can be easily proved that LC'(o | O U {q}) C
LC(o| O). Therefore, if Line 4 finds that LC (o | O)NLC(q) = 0,
then LC'(0 | OU{q})NLC(q) = @ and g cannot be NNs(o | OU

{g} —{o}).

For each non-pruned candidate o, we compute ds (o, NNg(o | O—

{0})) in Line 5 using the object NN query described in Section 5,
compute ds(o,q) in Line 6, and then determine whether o is an
MSRNN of ¢ by checking Equation (5) in Line 7. Note that in
Line 6, we only need to evaluate the shortest surface path on LC (o |
O)ULC(q) (2 LC(o| OU{q})ULC(q)) according to Theorem 3.
If ds(o, NNs(o | O — {o})) is pre-computed for all 0 € O,
Algorithm 3 only require one shortest surface path computation.
Otherwise, it needs to compute several shortest surface paths.

7.2 BSRNN Query Processing

To process BSRNN queries, we pre-compute the cells for all sites
s € S and bulk-load an R-tree T7,¢ from {LC(s) | s € S}. During
cell construction, an R-tree T's is bulk-loaded for nearest neighbor
queries when computing the cells. Besides, we also bulk-load an
R-tree T for range queries used in the BSRNN query processing.

Algorithm 4 shows our algorithm for BSRNN queries. Accord-
ing to Statement 2 in Theorem 1, only those objects within LC(q)
have chance to be BSRNNS, and they are obtained as the candidate
set C'in Line 2. For each candidate o, if it is within T'C(g), it is
guaranteed to be a BSRNN of ¢ according to Statement 1 in Theo-
rem 1. Otherwise, we find the nearest site to o in Line 7 and check
whether it is g in Line 8 to determine whether o is a BSRNN.

The algorithm can also support BSRNN queries on a moving
object set O, by maintaining To as a TPR*-tree [23].

8. EXPERIMENTS

In this section, we evaluate the performance of our algorithms
for MSRNN and BSRNN queries on two large real-world datasets
downloaded from [25]: Eagle Peak (Eagle) and Bearhead (BH),
which have also been used in previous studies such as [1] and [2].
The statistical information of the datasets is given in Table 1.

Table 1: Statistics of Real Datasets
Number of Vertices | Number of Faces

1,381,481 2,762,693
1,318,844 2,637,538

Eagle Peak
Bearhead

We use the most recent implementation of Chen and Han'’s algo-
rithm [9] for surface shortest path computation. All our programs
are written in JAVA, and the executable program of [9] is called on
the localized surface regions for surface shortest path computation.

The pre-computation of the index structures, such as the vertex
inverted index Ifqces and the loose cell R-tree Trc, are carried
out on a public Linux server with eight 3GHz Intel Xeon X5450
CPU and 32GB memory. All the experiments on queries are done
on a computer with 3GHz Intel Core2 Duo E8400 CPU and 2GB
memory, where the huge model network and all the index structures
are disk-based.

Let G = (V, E) be the model network, we define object (site)
density as |O|/|V] (|S|/|V]). We test our algorithms with differ-
ent object densities. For each density configuration, we randomly
generate 100 query points and run our algorithms with each query
point. All the reported measures are averaged on the 100 runs.

8.1 Results of Index Construction

The operation of breadth-first cell construction for all objects
o € O dominates the time cost of the index construction phase.
Figure 12(a) shows the number of source objects whose partial Di-
jkstra results is in the pool when computing 7'C'(0) and LC(0)
averaged over all the objects in O, with varying object density. We
can see from Figure 12(a) that, as object density increases, the pool
size also increases. The pool size is usually around 7 to 8, which
verifies the effectiveness of our Euclidean distance based pruning
of network distance computation.

Figure 12(b) shows the time of constructing cells for all the ob-
jects o € O, with varying object density. We can see from the
figure that the cell construction time increases almost linearly with
the increment of object density. This is because, given a specific
surface data, object number is proportional to object density.

8.2 Results of NN Queries

In this set of experiments, we evaluate the performance of our
algorithm for surface NN queries (Algorithm 1). Recall that no

Pool Size
Exec. Time (x 1000s)

7.6

1.0 1.5 2.0 2,5 3.0 3.5 4.0 45 5.0
Object Density (%)

(a) Pool Size

Object Density (%)
(b) Cell Construction Time

1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0

o
5 % Bear ——
2 Eagle 50] Eagle
3 %% 40 é
z S 2
£ g 30 3
2 3 g
8 S
s s 20 4 &
° S : i
2 10 f cHN::
g .
F P S SRt 0 [t e & n
1.0 1.5 2.0 25 3.0 35 4.0 45 5.0 1 2 3 4

Object Density (%) Number of MRNNs

(e) MSRNN Candidate #

5

(f) MSRNN Set Size Distribution

Bear —o—
- Eagle —x<—

0.54
0.52

%)
z
] 05 |
g &
% 0.48 é
Z o046 K
) E
0.44 - 3
042
0.4 :
2 4 6 8 10 12
lol/ls1 lol/l1s]

(i) LC BSRNN Ratio (j) Number of BSRNNs

Exec. Time (s) Tight Cell Coverage Ratio (%)

Exec. Time (ms)

100

3000

"Bear —o-

2500 , Eagle —<— |
7 \
£ 2000 q)
o
£
F 1500
S 1000 |
w
65 | Bear —5— 500 ¢
60 L [Eagle - _
1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 1.01520253.0354.0455.0
Object Density (%) Object Density (%)
(c) TC Coverage Ratio (d) NN Query Time
12000 100000 Froo——
Bear —o— Bear —5—
10000 ¥ Eagle —x— Eagle —><—
—_ 10000
8000 < \
o
£
6000 ¢ - 1000 ¢
| g
4000 f)
| 4 100 |
2000 r
= ol 0 0 L -
1.01520253.0354.0455.0 1.01520253.0354.0455.0
Object Density (%) Object Density (%)

(g) MSRNN Query Time (h) Log-Scale MSRNN Time

5000
4500 -
4000 -
3500 -
3000 -
2500 -
2000 -
1500 -
1000 -
500 ¢

0

22000 B T T T
{, Bear —&—
20000 R Eagle

Bear o

18000 f\
16000 -\
14000
12000 F\
10000
8000 |
6000
4000 |
2000 |

Exec. Time (ms)

ol T T e
1 15 2 25 3 35 4 45 5
Site Density (%)

(1) BSRNN Time (|O|/|S] = 8)

lol/1s1

(k) BSRNN Time (p = 3%)

Figure 12: Experimental Results

shortest surface path computation is necessary if query point g falls
within the tight cell of some object. For each object density, we
count the number of such queries, denoted N, among the 100 NN
queries tested. The ratio N/100 is called the Tight Cell Coverage
Ratio (TCCR). Figure 12(c) shows the TCCR with varying object
density, where around 80% to 90% NN queries do not need to in-
voke Chen and Han’s algorithm. Figure 12(d) shows the average
NN query processing time with varying object density. The query
processing time is long (1 to 3 seconds) for sparse object distribu-
tion, due to the large areas of loose cells which act as input to Chen
and Han'’s algorithm.

8.3 Results of MSRNN Queries

In this set of experiments, we evaluate the performance of our
algorithm for MSRNN queries (Algorithm 3). Recall that Algo-
rithm 3 performs MSRNN candidate filtering in the beginning in
Line 2. Figure 12(e) shows the average number of candidates with
varying object density, where we can see that there are usually 6 to
7 candidates and the trend is not sensitive to object density. We also
find that the MSRNN count distribution is not sensitive to object
density. Figure 12(f) shows the MSRNN count distribution over
all the MSRNN queries we tested, where almost half of the query
points have exactly one MSRNN, very few of the query points have
four MSRNNSs, and no query point has over four MSRNN.

Figure 12(g) shows the average MSRNN query processing time
with varying object density. The query processing time is quite
long for sparse object distribution, due to the large areas of loose
cells which act as input to Chen and Han'’s algorithm.

To further clarify the trend of query time, we plot the curves in

log-scale in Figure 12(h), where we can see that the performance of
our algorithm is good for reasonably large object densities (>3%).

8.4 Results of BSRNN Queries

In this set of experiments, we evaluate the performance of our
algorithm for BSRNN queries (Algorithm 4). For each site density,
we generate object sets of different sizes, and for each object set,
we perform 100 BSRNN queries.

The objects that fall in T'C'(¢) are guaranteed to be g’s BSRNNs.
Let the percentage of BSRNNs among the objects in LC(q) —
T'C(q) be termed the BSRNN ratio. Figure 12(i) shows the BSRNN
ratio when |O|/|S| varies. The results are averaged over experi-
ments with different site densities, since BSRNN ratio is insensitive
to site density. We can see that around 45% to 50% of the objects
that fall in region LC(q) — T'C(q) are ¢’s BSRNNs.

The average number of BRNNs of a query point is also found
to be insensitive to site density. On the other hand, it is sensitive
to |O|/|S], as Figure 12(j) shows. This is within the expectation,
since each site s € .S has to serve |O|/|S| objects on average.

Figure 12(k) shows the average BSRNN query processing time
on the site set S with site density 3%, when |O|/|S| varies. The
query processing time increases when |O|/|S| increases. This is
because, as |O|/|S| becomes larger, more objects tend to fall in
the region LC(gq) — T'C(q), and therefore more NN queries are
required to check whether each candidate object is g’s BSRNN.

Figure 12(1) shows the average BSRNN query processing time
for different site densities, when |O|/|S| = 8. The query time
increases as site density decreases. This is because smaller site
densities implies larger areas of loose cells, which not only implies

larger input region to Chen and Han'’s algorithm, but also higher
chance that an object falls in region LC(q) — T'C(q).

9. RELATED WORK

The concept of RNN is first introduced in [13]. Since then, many
algorithms have been proposed for finding RNNSs in the Euclidean
space. Algorithms for MRNN query processing include SAA [14],
TPL [15], Finch [20], Influence Zone [21]. Algorithms for BRNN
query processing include [18] and [19]. [22] studies RNN queries
in road networks.

Studies on finding shortest surface paths date back to the 80s
to 90s, when a series of exact and approximation algorithms are
proposed. The most efficient exact algorithms include the one pro-
posed in [7] with O(n? log n) time complexity, and Chen and Han’s
algorithm [8] with O(n?) time complexity, where 7 corresponds to
the number of triangles in the TIN model. Chen and Han'’s algo-
rithm is later implemented in [9].

Recently, [5] proposes an approximate algorithm with O(log n+
\/n) time complexity, by treating the surface paths on the non-
rough areas as straight lines, and [6] studies the problem of find-
ing shortest paths with slope constraint and develops the surface
simplification technique to reduce the model complexity, so as to
reduce the time complexity of finding shortest paths.

As for the research on surface k-NN queries, [2] and [3] first
propose a filter and refinement strategy to answer SENN queries on
multi-resolution terrain models. However, this approach can nei-
ther guarantee accuracy nor provide the shortest surface paths to the
nearest neighbors. An exact solution to the SKNN problem is pro-
posed in [1], where approximations of Voronoi cells are constructed
to prune unnecessary shortest surface path computation and to lo-
calize the shortest path computation. In this paper, we also make
use of these Voronoi Cell approximation structures for the same
purposes. Although the concept of Voronoi diagram is only related
to 1-NN, [1] claims that its approximation structures can be used
in an incremental manner to answer k-NN queries for arbitrary k.
Unfortunately, as we have discussed in Section 4, the correctness of
the algorithm relies on an unproved statement, which is, however,
flawed. [4] studies the problem of continuously monitoring the k
nearest neighbors of a fixed query point when the objects on the
surface are moving.

10. CONCLUSION

In this paper, we investigate how to process RNN queries on land
surfaces. Specifically, we study monochromatic SRNN queries and
bichromatic SRNN queries. Our SRNN algorithms are based on
several newly-discovered properties of the Voronoi cell approxi-
mation structures, and are able to localize the query evaluation by
accessing just a small fraction of the surface data near the query
point. The majority of the objects that cannot be the SRNNSs of the
query point are pruned by our cell properties. Furthermore, we pro-
pose a new online cell construction algorithm which is essential to
our MSRNN algorithm, and is efficient due to our smart approach
for computing network distances. Extensive experiments on large
real-world datasets demonstrate the efficiency of our algorithms.

11. ACKNOWLEDGEMENTS

This work is partially supported by RGC GRF under grant num-
ber HKUST 618509.

12. REFERENCES
[1] C. Shahabi, L.-A. Tang and S. Xing. “Indexing Land Surface
for Efficient kNN Query”. In VLDB, 2008.

[2] K. Deng, X. Zhou, H. T. Shen, K. Xu and X. Lin. “Surface
k-NN Query Processing”. In ICDE, 2006.

[3] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu and X. Lin. “A

Multi-Resolution Surface Distance Model for £-NN Query

Processing”. In VLDB Journal, 17(5):1101-1119, 2008.

S. Xing, C. Shahabi and B. Pan. “Continuous Monitoring of

Nearest Neighbors on Land Surface”. In VLDB, 2009.

[5] S. Xing and C. Shahabi. “Scalable Shortest Paths Browsing

on Land Surface”. In ACM GIS, 2010.

L. Liu and R. C.-W. Wong. “Finding Shortest Path on Land

Surface”. In ACM SIGMOD, 2010.

[7] J.S. B. Mitchell, D. M. Mount and C. H. Papadimitriou.
“The Discrete Geodesic Problem”. In SIAM J. Comput.,
16(4):647-668, 1987.

[8] J. Chen and Y. Han. “Shortest Paths on a Polyhedron”. In
SoCG, 1990.

[9] B. Kaneva and J. O’Rourke. “An Implementattion of Chen &
Han’s Shortest Paths Algorithm”. In CCCG, 2000.

[10] S.T. Leutenegger, J. M. Edgington and M. A. Lopez. “STR:
A Simple and Efficient Algorithm for R-tree Packing”. In
Technical Report, Institute for Computer Applications in
Science and Engineering, 1997.

[11] N. Roussopoulos, S. Kelly and F. Vincent. “Nearest
Neighbor Queries”. In SIGMOD, 1995.

[12] G.R. Hjaltason and H. Samet. “Distance Browsing in Spatial
Databases”. In ACM TODS, 24(2), June 1999, pp. 265-318.

[13] F. Korn and S. Muthukrishnan. “Influence Sets Based on
Reverse Nearest Neighbor Queries”. In SIGMOD, 2000.

[14] I. Stanoi, D. Agrawal and A. El Abbadi. “Reverse Nearest
Neighbor Queries for Dynamic Databases”. In ACM
SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, 2000.

[15] Y. Tao, D. Papadias and X. Lian. “Reverse kNN Search in
Arbitrary Dimensionality”. In VLDB, 2004.

[16] M. L. Yiu, D. Papadias, N. Mamoulis and Y. Tao. “Reverse
Nearest Neighbors in Large Graphs”. In TKDE, 2006.

[17] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang and X. Li.
“Continuous Reverse k Nearest Neighbors Queries in
Euclidean Space and in Spatial Networks”. In VLDB
Journal, 2011.

[18] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi.
“Discovery of Influence Sets in Frequently Updated
Databases”. In VLDB, 2001.

[19] T. Xia, D. Zhang, E. Kanoulas and Y. Du. “On Computing
Top-t Most Influential Spatial Sites”. In VLDB, 2005.

[20] W. Wu, F. Yang, C.-Y. Chan and K.-L. Tan. “Finch:
Evaluating Reverse k-Nearest-Neighbor Queries on Location
Data". In PVLDB, 2008.

[21] M. A. Cheema, X. Lin, W. Zhang and Y. Zhang. “Influence
Zone: Efficiently Processing Reverse k Nearest Neighbors
Queries". In ICDE, 2011.

[22] D. Taniarl, M. Safar, Q. T. Tran, W. Rahayu and J. H. Park.
“Spatial Network RNN Queries in GIS". The Computer
Journal, 2010.

[23] Y. Tao, D. Papadias and J. Sun. “The TPR*-Tree: An
Optimized Spatio-Temporal Access Method for Predictive
Queries”. In VLDB, 2003.

[24] M. D. Berg, O. Cheong, M. V. Kreveld and M. Overmars.
“Computational Geometry: Algorithms and Applications”.
Springer-Verlag New York Inc., 2008.

[25] http://data.geocomm. com

[4

—_

[6

—_

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

