
Mining Probabilistically Frequent Sequential Patterns in
Uncertain Databases

Zhou Zhao, Da Yan and Wilfred Ng
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Hong Kong

{zhaozhou,yanda,wilfred}@cse.ust.hk

ABSTRACT
Data uncertainty is inherent in many real-world applications such
as environmental surveillance and mobile tracking. As a result,
mining sequential patterns from inaccurate data, such as sensor
readings and GPS trajectories, is important for discovering hidden
knowledge in such applications. Previous work uses expected sup-
port as the measurement of pattern frequentness, which has inher-
ent weaknesses with respect to the underlying probability model,
and is therefore ineffective for mining high-quality sequential pat-
terns from uncertain sequence databases.

In this paper, we propose to measure pattern frequentness based
on the possible world semantics. We establish two uncertain se-
quence data models abstracted from many real-life applications in-
volving uncertain sequence data, and formulate the problem of min-
ing probabilistically frequent sequential patterns (or p-FSPs) from
data that conform to our models. Based on the prefix-projection
strategy of the famous PrefixSpan algorithm, we develop two new
algorithms, collectively called U-PrefixSpan, for p-FSP mining. U-
PrefixSpan effectively avoids the problem of “possible world ex-
plosion”, and when combined with our three pruning techniques
and one validating technique, achieves good performance. The ef-
ficiency and effectiveness of U-PrefixSpan are verified through ex-
tensive experiments on both real and synthetic datasets.

1. INTRODUCTION
The problem of mining frequent sequential patterns (FSPs) from

deterministic databases has attracted a lot of attention in the re-
search community [4, 5, 6, 7, 8] due to its wide spectrum of real
life applications. For example, in mobile tracking systems, FSPs
are useful in the classification or clustering of moving objects [2];
and in biological research, FSP mining can help discover correla-
tions among gene sequences [3].

Data uncertainty is inherent in many real-world applications such
as sensor data monitoring [11], RFID localization [10] and location-
based services [9], due to environmental factors, device limitations,
privacy issues, etc. As a result, uncertain data mining has attracted
a lot of attention in recent research. A comprehensive survey of the
techniques on uncertain data mining can be found in [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

��� ������	�
����
�	�� ����
������
�� ���

�
��� �

��
��� �
��
��� �
��

���
����

�
�
��	���
��
�
�

�� ��

��������
!��� ����
������
��� �
"���# ���$ � ���
�
���
��� �
"���# ���$ � ����
�
����
��% �
"���$ � ����
�
����

���
��������
!���
�&
	�

Figure 1: Sequence-Level Uncertain Data Model

To our knowledge, [1] is the only work that studies mining se-
quential patterns from uncertain data. However, this work adopts
expected support as the measurement of pattern frequentness, which
has some inherent weaknesses with respect to the fundamental prob-
ability model, and is therefore ineffective for mining high-quality
sequential patterns from uncertain sequence databases. We will il-
lustrate this point in our later examples.

In this paper, we propose to define pattern frequentness based on
the possible world semantics. We develop two uncertain sequence
data models (sequence-level and element-level models) abstracted
from many real-life applications involving uncertain sequence data,
based on which we define the problem of mining probabilistically
frequent sequential patterns (or p-FSPs). We now introduce our
data models through the following examples.

Consider a wireless sensor network (WSN) system, where each
sensor continuously collects readings about environmental condi-
tions, such as temperature and humidity, within its detection range.
In such a case, the readings of a sensor are inherently noisy, and
can be associated with a confidence value determined by, for ex-
ample, the stability of the sensor. Figure 1(a) shows a possible set
of readings from a WSN application that monitors temperature. Let
us assume that each sensor reports temperature ranges, (e.g. read-
ing A represents [5◦, 7◦) and reading B represents [7◦, 9◦)), and a
new reading is appended to the sequence of already reported read-
ings whenever the temperature range changes. We also assume that
each region is associated with a group of sensors. For example, s1

is the reading sequence detected by a sensor in one region within a
time period, and s21 and s22 are the reading sequences detected by
two sensors in another region within that time period.

In Figure 1(a), we assume that the reading sequences detected
by different sensors in a region are exclusive to each other, e.g.
the temperature sequence in the region represented by s2 has 90%
(or 5%) probability to be {A, B} (or {B, C}). The remaining 5%
probability is for the case when there is no new readings reported
in that region. Besides, the reading sequences from different re-
gions are assumed to be independent. We call such a data model
the sequence-level uncertain model. In the Trio [19] system, prob-
abilistic sequences such as s1 and s2 are also called x-tuples.

Figure 1(b) shows the set of possible worlds derived from the

��� ����
�������	 '��(����

�� ��)�* �
"��#
�����$#
 ��)�* �
"�+#
�����#
��#
�����$
�� ��)�* �
"��#
��$#
 ��)�* �
"��#
��$

�
�
��	���
��
�
�

�� ��
��������
!��� ����
������
��� �
"�# ��$ �� ������ �����
 �
 � �
���,-�
��� �
"�# ��$ �� ������ �����
 ��
 ��
�
������
��% �
"��# ��$ ���� �����
 ��
 ��
�
������
��, �
"��# ��$ ���� �����
 �
 ��
�
���,-�

���
��������
!���
�&
	�

Figure 2: Element-Level Uncertain Data Model

uncertain dataset of Figure 1(a). Since the occurrences of differ-
ent probabilistic sequences are mutually independent, the proba-
bility of a possible world pw can be computed as the product of
the occurrence probability of each sequence in pw. For example,
Pr(pw1) = Pr(s11) × Pr(s21) = 0.9 holds in Figure 1.

The existing approach to evaluating the frequentness of a sequen-
tial pattern α in an uncertain database is to compute its expected
support: for a sequence-level probabilistic sequence s, if we de-
note α � s to be the event that pattern α occurs in s, then the
expected support of α in database D is defined as expSup(α) =∑

s∈D Pr{α � s} according to the linearity of expectation.
Expected support is used by some existing studies to measure

the frequentness of patterns such as frequent itemsets [13, 16] and
frequent subsequences [1] on uncertain data. However, the notion
of expected support fails to reflect pattern frequentness in many
cases. To illustrate this weakness, we now consider pattern α =
AB in the dataset shown in Figure 1. The expected support of
pattern AB is Pr(s11) + Pr(s21) = 1.9, which is not considered
as frequent when the minimum support τsup = 2. Nevertheless,
pattern AB occurs twice in pw1, and once in both pw2 and pw3.
Thus, if we denote the support of AB in database D as sup(AB),
then Pr{sup(AB) ≥ τsup} = Pr(pw1) = 90% when τsup =
2. Therefore, in this example, using expected support leads to the
missing of the important sequential pattern AB.

While the sequence-level uncertain model is fundamental for a
lot of real-life applications, many applications follow a different
model. Consider an RFID location tracking system, where a set
of RF readers are deployed in an indoor environment, and a user
may be detected by several near-by readers simultaneously. In this
application, user locations are uncertain. This kind of uncertainty
is common in many related applications such as PEEX[20].

Consider the uncertain sequence database shown in Figure 2(a),
where sequences s1 and s2 record the tracking paths of two users,
respectively. Path s1 contains two uncertain location elements s1[1]
and s1[2]. The uncertain location s1[1] has 95% probability to be A
and 5% probability to be a misreading (i.e. does not occur), while
location s1[2] has 95% probability to be B and 5% probability to
be C. We call such a model the element-level uncertain model,
where each probabilistic sequence in the database is composed of a
sequence of uncertain elements that are mutually independent, and
each uncertain element is an x-tuple.

Figure 2(b) shows the possible world space of the dataset pre-
sented in Figure 2(a). We can easily compute the probabilities of
the possible worlds. For example, Pr(pw3) = Pr{s1[1] = A} ×
Pr{s1[2] = B} × Pr{s2[1] = A} × Pr{s2[2] = B} = 0.9025.

Note that the expected support of AB is expSup(AB) = Pr{s1

= AB} + Pr{s2 = AB} = 0.95 × 0.95 + 1 × 1 = 1.9025, and

thus AB is not considered as frequent when τsup = 2. However,
Pr{sup(AB) ≥ τsup} = Pr(pw3) = 90.25% when τsup = 2,
which is very likely to be frequent in the probabilistic sense.

From the above example, we can see that expected support fails
again to identify some probabilistically frequent patterns. In fact,
using expected support may also give rise to some probabilistically
infrequent patterns as the result, an example of which can be found
in [14]. Therefore, we propose to evaluate the frequentness of a
sequential pattern more adhering to the probability theory. This
gives rise to the idea of probabilistic frequentness, which is able to
capture the intricate relationship between uncertain sequences.

However, the problem of p-FSP mining is challenging since each
uncertain sequence database D corresponds to many possible de-
terministic database instances (or possible worlds), the number of
which is exponential to the number of uncertain sequences in D.

We propose two new algorithms, collectively called U-PrefixSpan,
to mine p-FSPs from uncertain data that conform to our two uncer-
tain data models. U-PrefixSpan adopts the prefix-projection recur-
sion framework of the PrefixSpan algorithm [4] in a new algorith-
mic setting, and effectively avoids the problem of “possible world
explosion”. Our contributions are summarized as follows:

• To our knowledge, this is the first work that attempts to solve
the problem of p-FSP mining from uncertain data, the tech-
niques of which are successfully applied in an RFID applica-
tion for trajectory pattern mining.

• We consider two general uncertain sequence data models that
are abstracted from many real-life applications involving un-
ceratin sequence data: the sequence-level uncertain model,
and the element-level uncertain model.

• Based on the prefix-projection method of PrefixSpan, we de-
sign two new U-PrefixSpan algorithms to mine p-FSPs from
uncertain data conforming to our models.

• Several pruning techniques are developed to further improve
the efficiency of U-PrefixSpan, which is verified by extensive
experiments.

The rest of the paper is organized as follows: Section 2 reviews
the related work and introduces the PrefixSpan algorithm. Then we
provide some preliminaries on mining p-FSPs in Section 3. The
U-PrefixSpan algorithm for the sequence-level model is presented
in Section 4, and the U-PrefixSpan algorithm for the element-level
model is described in Section 5. In Section 6, we verify the effi-
ciency and effectiveness of U-PrefixSpan through extensive experi-
ments on both real and synthetic datasets. Finally, we conclude our
paper in Section 7.

2. RELATED WORK

2.1 Traditional Sequential Pattern Mining
The problem of sequential pattern mining has been well studied

in the literature in the context of deterministic data, and many al-
gorithms have been proposed to solve this problem, including Pre-
fixSpan [4], SPADE [6], FreeSpan [7] and GSP [8].

PrefixSpan is demonstrated in [4] to be superior than the other
sequence mining algorithms such GSP and FreeSpan, due to its
prefix-projection technique. PrefixSpan has been used in a lot of
applications such as trajectory mining [2], and is also the foun-
dation of this work. We review the prefix-projection technique of
PrefixSpan next.

PrefixSpan. For ease of presentation, we denote αβ to be the
sequence resulted from concatenating sequence α with sequence β.

���
 ������	�

��
 ������

��
 �����

�%
 ����
�,
 ���� ���
	
��

�
�
	�

���
 ������	�

��
 ������

��
 ����

�%
 ����

��
���
 ������	�

��
 �����

��
 ���

�%

.�

���
 ������	�

��
 ����

��
 ��

�� ��

�	�
	
���

� �
	
����

Figure 3: Illustration of PrefixSpan

Also recall (from Section 1) that α � s corresponds to the event
that sequence α occurs as a subsequence of s. We now define some
concepts that are necessary for understanding PrefixSpan.

DEFINITION 1. Given a sequential pattern α and a sequence s,
the α-projected sequence s|α is defined to be the suffix γ of s such
that s = βγ with β being the minimal prefix of s satisfying α � s.

To highlight the fact that γ is a suffix, we write it as _γ. As an
illustration of Definition 1, when α = BC and s = ABCBC, we
have β = ABC and s|α = _γ = _BC.

DEFINITION 2. Given a sequential pattern α and a sequence
database D, the α-projected database D|α is defined to be the set
{s|α | s ∈ D ∧ α � s}.

Note that if α �� s, then the minimal prefix β of s satisfying
α � β does not exist, and therefore s is not considered in D|α.

Consider the sequence database D shown in Figure 3(a). The
projected databases D|A, D|AB and D|ABC are shown in Fig-
ure 3(b), (c) and (d), respectively.

PrefixSpan finds the frequent patterns (with support at least τsup)
by recursively checking the frequentness of patterns with growing
lengths. In each iteration, if the current pattern α is checked to be
frequent, it will recurse on all the possible patterns α′ constructed
by appending α with one more element. PrefixSpan checks whether
a pattern α is frequent using the projected database D|α, which can
be constructed from the projected database of the previous itera-
tion. Figure 3 presents one recursion path when τsup = 2, where,
for example, s1|ABC in D|ABC is obtained by removing the ele-
ment C (above the third arrow) from s1|AB in D|AB .

2.2 Pattern Mining on Uncertain Data
Frequent itemset mining and sequential pattern mining are two

of the most important pattern mining problems studied in the con-
text of uncertain data. For the problem of frequent itemset mining,
earlier work usually uses expected support to measure pattern fre-
quentness, such as [13, 16]. However, [14] and [15] find that the
use of expected support may render important patterns missing. As
a result, recent research focuses more on using probability mea-
surements, such as [15, 12].

As for the problem of sequential pattern mining on uncertain
data, [1] is the only existing work we are aware of. However, all
the models proposed by [1] are merely variations of the sequence-
level model in essence, and the work evaluates the frequentness of
a pattern based on its expected support. [18] studies the problem
of mining long sequential patterns in a noisy environment. How-
ever, their compatibility matrix model of uncertainty is very differ-
ent from, and not as general as, our uncertain sequence data models.
It is worth mentioning that models similar to our probabilistic se-
quence models have been used to model probabilistic set [21] and
probabilistic string [22] in researches on similarity join.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 1 2

P
ro

ba
bi

lit
y

Support Count

Figure 4: Probability Distribution of sup(AB)

3. PRELIMINARIES
Support as a random variable. While pattern support sup(α)

is just a count for deterministic databases, in the context of uncer-
tain databases sup(α) becomes a random variable. We clarify this
point next.

Given a sequence-level or an element-level uncertain sequence
database D, let us denote its possible world space as PW = {pw1,
pw2, . . . , pw|PW|}. We also denote supi(α) to be the support
of pattern α in possible world pwi ∈ PW . Since pwi is a de-
terministic database instance, supi(α) is just a count (equal to
|{s ∈ pwi|α � s}|). Note that each possible world pwi is also
associated with an occurrence probability Pr(pwi), and therefore,
given pattern α, each possible world pwi corresponds to a pair
(supi(α), P r(pwi)). In the example dataset of Figure 1, given pat-
tern AB, possible worlds pw1, pw2 and pw3 correspond to pairs
(2, 0, 9), (1, 0.05) and (1, 0.05), respectively. Therefore, we have

• Pr{sup(AB) = 2} = Pr(pw1) = 0.9;

• Pr{sup(AB) = 1} = Pr(pw2) + Pr(pw3) = 0.1;

• Pr{sup(AB) = 0} = 0.

Note that sup(AB) is random variable whose probability distri-
bution is given by Figure 4. Generally, for any pattern α, its sup-
port sup(α) can be represented by (1) a probability mass function
(pmf), denoted as fα(c) where c is a count, and (2) a cumulative
distribution function (cdf), denoted as Fα(c) =

∑c
i=0 fα(i). For

a database with n probabilistic sequences (i.e. |D| = n), sup(α)
can be at most n, and therefore the domain of c is {0, 1, . . . , n}.

Formally, fα(c) can be represented as the following formula:

fα(c) =
∑

pwi∈PW s.t. supi(α)=c

Pr(pwi)

Probabilistic frequentness. Now we are ready to introduce the
concept of probabilistic frequentness (or simply p-frequentness):

DEFINITION 3 (PROBABILISTIC FREQUENTNESS). Given a
probability threshold τprob and a support threshold τsup, pattern α
is probabilistically frequent (or p-frequent) iff

Pr{sup(α) ≥ τsup} ≥ τprob. (1)

The L.H.S. of Equation 1 can be represented as

Pr{sup(α) ≥ τsup} =

n∑
c=τsup

fα(c) = 1 − Fα(τsup − 1). (2)

Pruning infrequent patterns. Next, we present our three prun-
ing rules for pruning probabilistically infrequent patterns:

• (1) CntPrune. Let us define cnt(α) = |{s ∈ D |Pr{α �
s} > 0}|, then pattern α is not p-frequent if cnt(α) < τsup.

PROOF. When cnt(α) < τsup, Pr{sup(α) ≥ τsup} ≤
Pr{sup(α) > cnt(α)} = 0.

• (2) MarkovPrune. Pattern α is not p-frequent if expSup(α)
< τsup × τprob.

PROOF. According to Markov’s inequality, expSup(α) <
τsup×τprob implies Pr{sup(α) ≥ τsup} ≤ expSup(α)/τsup

< τprob.

• (3) ExpPrune. Let μ = expSup(α) and δ =
τsup−μ−1

μ
.

When δ > 0, pattern α is not p-frequent if

– δ ≥ 2e − 1, and 2−δμ < τprob, or

– 0 < δ < 2e − 1, and e−
δ2μ
4 < τprob.

PROOF. According to Chernoff Bound, we have

Pr{sup(α) > (1 + δ)μ} <

{
2−δμ, δ ≥ 2e − 1

e−
δ2μ
4 , 0 < δ < 2e − 1

,

and if we set δ =
τsup−μ−1

μ
, i.e. (1 + δ)μ = τsup − 1, we

have Pr{sup(α) > (1+δ)μ} = Pr{sup(α) ≥ τsup}.

CntPrune and ExpPrune are also used in [12] to prune infrequent
itemsets. Note that these pruning rules only require one pass of the
database to determine whether a pattern can be pruned.

Frequentness validating. If pattern α can not be pruned, we
have to check whether Equation (1) holds. According to Equa-
tion (2), this is equivalent to computing the pmf fα(c).

In fact, evaluating fα(c) on α-projected (uncertain) database
D|α is equivalent to evaluating fα(c) on the original database D,
since ∀s �∈ D|α, Pr{α � s} = 0. Therefore, we always compute
fα(c) on the smaller projected database D|α. We will discuss how
to perform sequence projection in our sequence-level (and element-
level) uncertain model in Section 4 (and Section 5).

We compute fα(c) on D|α by the divide-and-conquer strategy.
Given a set S of probabilistic sequences, we divide it into two par-
titions S1 and S2. Let us define fS

α (c) as the pmf of sup(α) on
sequence set S, then our ultimate goal is to compute f

D|α
α (c).

Now, let us consider how to obtain fS
α (c) from fS1

α (c) and fS2
α (c).

Let us denote supS(α) to be the support of α on uncertain sequence
set S. Note that supS(α) is a random variable, and supS1(α) and
supS2(α) are independent. Obviously, supS(α) = supS1(α) +
supS2(α), and fS

α (c) can be computed by the following formula:

fS
α (c) =

c∑
i=0

fS1
α (i) × fS2

α (c − i). (3)

Note that according to Equation (3), fS
α is the convolution of

fS1
α and fS2

α . Therefore, fS
α can be computed from fS1

α and fS2
α

in O(n log n) time using the Fast Fourier Transform (FFT) algo-
rithm [23], where n = |S|. When S is large, this approach is much
better than naïvely evaluating Equation (3) for all c, which takes
O(n2) time.

It is not always necessary to compute f
D|α
α (c) to the end, in

order to determine whether pattern α is p-frequent. In fact, we can
conclude that a pattern α is p-frequent on D|α, as long as α is
found to be p-frequent on a subset of D|α, which is formalized by
the following theorem.

THEOREM 1 (EARLY VALIDATING). Suppose that pattern α
is p-frequent on S′ ⊆ S, then α is also p-frequent on S.

PROOF. Suppose that probabilistic sequence set S is divided it
into two partitions S1 and S2. It is sufficient to prove that, when α
is p-frequent on S1, it is also p-frequent on S.

When α is p-frequent on S1, according to Equation (2), we have

1 − F S1
α (τsup − 1) = Pr{supS1(α) ≥ τsup} ≥ τprob. (4)

According to Equation (4), F S1
α (τsup − 1) ≤ 1 − τprob. If we

can prove F S
α (τsup − 1) ≤ F S1

α (τsup − 1), then we are done since
this implies F S

α (τsup − 1) ≤ F S1
α (τsup − 1) ≤ 1 − τprob, or

equivalently, Pr{supS(α) ≥ τsup} = 1−F S
α (τsup−1) ≥ τprob.

We now prove F S
α (τsup − 1) ≤ F S1

α (τsup − 1). Let us denote
τ ′

sup = τsup − 1. Then, we obtain

F S
α (τ ′

sup) =

τ ′
sup∑

i+j=0

fS1
α (i) × fS2

α (j)

=

τ ′
sup∑
i=0

τ ′
sup−i∑
j=0

fS1
α (i) × fS2

α (j)

=

τ ′
sup∑
i=0

fS1
α (i) ×

τ ′
sup−i∑
j=0

fS2
α (j)

=

τ ′
sup∑
i=0

fS1
α (i) × F S2

α (τ ′
sup − i)

≤
τ ′

sup∑
i=0

fS1
α (i) = F S1

α (τ ′
sup).

Algorithm 1 shows our divide-and-conquer algorithm (PMFCheck)
to determine the p-frequentness of pattern α on an uncertain se-
quence set S = {s1, s2, . . . , sn}. The input to PMFCheck is a
vector vecα where each element vecα[i] = Pr{α � si}. Note
that the terminology “vector” here actually refers to a set (of prob-
ability values) where element order is not important.

Since the order of sequences in S has no influence on the pmf
fS

α (c), and sequence si does not contribute to fS
α (c) if Pr{α �

si} = 0, we always exclude the elements with value 0 from vecα

before each invocation of PMFCheck.
PMFCheck partitions vecα into two halves: vec1

α (and vec2
α)

for the first (and the second) half S1 (and S2) of S (Line 4). If α
is found to be p-frequent on either half (Lines 6 and 9), PMFCheck
returns TRUE directly (which is propagated upwards through the
recursions in Lines 5 and 8). Otherwise, PMFCheck uses the pmfs
obtained from recursion on S1 and S2 (i.e.f1

α and f2
α), to com-

pute the pmf of pattern α on S in Line 11. After obtaining fα, we

���/����
�	�� �����
��� �
�����
��� � ����
��% � ��
��, � ��

��%
���
��,
���

�
� ��

��

���/����
�	�� �����
��� �
�����
��� � ���
��% � ��

��%
���
��,

���
��
�

��

���/����
�	�� �����
��� �
����
��� � ��
��% � �

��%
���
��,

�	� ��
��

��"� � ��$
�
��"�� � ��$
�
��%
0
���
0
��,
�
���

Figure 5: Sequence Projection in Sequence-Level Model

Algorithm 1 PMFCheck(vecα)
Input: probability vector: vecα

Output: mark of frequentness: tag; pmf: fα

1: if |vecα|=1 then
2: fα(0) ← 1 − vecα[1], fα(1) ← vecα[1]
3: return (1 − Fα(τsup) ≥ τprob, fα)
4: Partition vecα into vec1

α and vec2
α, where |vec1

α| = �n
2
� and

|vec2
α| =
n

2
�

5: (tag1, f1
α) ←PMFCheck(vec1

α)
6: if tag1 =TRUE then
7: return (TRUE, ∅)
8: (tag2, f2

α) ←PMFCheck(vec2
α)

9: if tag2 =TRUE then
10: return (TRUE, ∅)
11: fα ←convolution(f1

α, f2
α)

12: return (1 − Fα(τsup) ≥ τprob, fα)

can check whether α is p-frequent on S by Equations (1) and (2)
(Line 12).

The degenerated case of S = {s1} is handled in Lines 1–3,
where fα(0) = Pr{sup(α) = 0} = Pr{α �� s1} and fα(1) =
Pr(sup(α) = 1) = Pr(α � s1).

Complexity Analysis: Let us denote T (n) as the running time of
PMFCheck on input vecα with |vecα| = n, then the time costs
in Lines 5 and 8 are both T (n/2). Since Line 11 can be done in
O(n log n) time, we have T (n) = 2T (n/2) + O(n log n), which
yields T (n) = O(n log2 n).

Pattern anti-monotonicity. Finally, we present the pattern anti-
monotonicity property that allows us to use the PrefixSpan-style
pattern-growth method for mining p-FSPs:

PROPERTY 1 (PATTERN ANTI-MONOTONICITY). If a sequen-
tial pattern α is not p-frequent, then any pattern β satisfying α � β
is not p-frequent.

The proof follows from the fact that in any possible world pw
where β is frequent, α must also be frequent since for each se-
quence s ∈ pw, β � s implies α � s.

According to Property 1, we can stop growing a pattern α for
examination, once we find that α is probabilistically infrequent.

4. SEQUENCE-LEVEL U-PREFIXSPAN
In this section, we address the problem of p-FSP mining on

data that conform to the sequence-level uncertain model. We pro-
pose a pattern-growth algorithm, called SeqU-PrefixSpan, to tackle
this problem. Compared with PrefixSpan, the SeqU-PrefixSpan
algorithm needs to address the following issues arising from the
sequence-level uncertain model.

Sequence Projection. Given a sequence-level probabilistic se-
quence si and a pattern α, we now discuss how to obtain the α-
projected probabilistic sequence si|α.

Figure 5(a) shows a sequence-level probabilistic sequence si with
four sequence instances, and Figures 5(b) and (c) present the pro-
jected sequences si|A and si|AB , respectively. In general, si|α is
obtained by projecting each deterministic sequence instance sij of
sequence si (denoted sij ∈ si) to sij |α, excluding those instances
that cannot be projected (due to α �� sij), like si4 in Figure 5.

In order to achieve high space utility, we do not store sij |α as
a suffix sequence of sij . In fact, it is sufficient to represent sij |α
with (1) a pointer to sij and (2) the starting position of suffix sij |α
in sij . In our algorithm, each projected sequence instance sij |α
is represented as a pair <pos, sij>, where pos denotes the po-
sition before the starting position of suffix sij |α in sij . Besides,
each projected probabilistic sequence si|α is represented as a list
of pairs, where each pair correponds to an instance sij and has for-
mat (sij |α, P r(sij)). To illustrate our represention format, in Fig-
ure 5(c), we have si|AB = {(si1|AB , 0.3), (si2|AB , 0.2), (si3|AB ,
0.4)} where, for example, si1|AB =<2, si1>.

Conceptually, the α-projected database D|α is constructed by
projecting each probabilistic sequence si ∈ D into si|α.

Pattern Frequentness Checking. Recall that given a projected
database D|α, we check the p-frequentness of pattern α by (1) com-
puting vecα[i] = Pr{α � si} for each projected probabilistic se-
quence si|α ∈ D|α, and then (2) determining the result by invoking
PMFCheck(vecα) (Algorithm 1).

Thus, the key to pattern frequentness checking is the computa-
tion of Pr{α � si}. According to the law of total probability, we
can compute Pr{α � si} using the following formula:

Pr{α � si}
=

∑
sij∈si

Pr{α � sij | si occurs as sij} × Pr(sij)

=
∑

sij |α ∈ si|α
Pr(sij). (5)

In a nutshell, Pr{α � si} is equal to the sum of the occurrence
probabilities of all sequence instances whose α-projected instances
belong to si|α. For example, in Figure 5(c), Pr{AB � si} =
Pr(si1) + Pr(si2) + Pr(si3) = 0.9.

Candidate Elements for Pattern Growth. Given a p-FSP α,
we need to examine whether the patterns β grown from α are p-
frequent. Note that α � β. In fact, α is a prefix of β.

Recall that in PrefixSpan, in each recursion iteration, if the cur-
rent pattern α is frequent, we grow α by one element e to obtain
new patterns αe, and recurcively check the frequentness of αe. To
keep the number of new patterns small in each growth step, we
maintain an element table T |α that stores only those elements e
still having chance to make pattern αe p-frequent.

We present an important property for element tables:

Algorithm 2 Prune(T |α, D|αe)

Input: element table T |α, projected probabilistic database D|αe

Output: element table T |αe

1: T |αe ← ∅
2: for each element � ∈ T |α do
3: Check CntPrune with pattern � on D|αe

4: if � is not pruned then
5: Check MarkovPrune with pattern � on D|αe

6: if � is not pruned then
7: Check ExpPrune with pattern � on D|αe

8: if � is not pruned then
9: T |αe ← T |αe ∪ {�}

PROPERTY 2. For a pattern β grown from α, T |β ⊆ T |α.

PROOF. Let us denote β = αγ. For any element e �∈ T |α, αe
is not p-frequent, and since αe � αγe = βe, βe is not p-frequent
according to pattern anti-monotonicity, which implies that e �∈ T |β
either.

As a special case of Property 2, we have T |αe ⊆ T |α. Property 2
is important since it guarantees that an element pruned from T |α
does not need to be considered when later we check a pattern grown
from α.

We construct T |αe from T |α during pattern growth using Algo-
rithm 2, which is quite self-explanatory. Note that checking our
three pruning rules with element � on D|αe is equivalent to check-
ing them with pattern αe� on D, since for any probabilistic se-
quence si whose αe-projected sequence does not exist (in D|αe),
Pr{αe� � si} = 0.

SeqU-PrefixSpan Algorithm. We present our SeqU-PrefixSpan
algorithm in Algorithm 3. Given a sequence-level probabilistic
database D = {s1, . . . , sn}, we grow patterns starting from α =
∅. Recall our projected sequence/instance format, we have D|∅ =
{s1|∅, s2|∅, . . . , sn|∅}, where for each sequence si|∅, its instance
sij |∅ = <0, P r(sij)> (the “pos” field is the one before the first
position of sij , which is 0). Let us denote T0 to be the table of
all possible elements in D, then the mining algorithm begins by
invoking the following functions:

• T |∅ ←Prune(T0, D|∅);

• For each element e ∈ T |∅, call SeqU-PrefixSpan(e, D|∅, T |∅).

SeqU-PrefixSpan recursively performs pattern-growth from the
previous pattern α to the current β = αe, by appending an ele-
ment e ∈ T |α. In Lines 2–12, we construct the current projected
probabilistic database D|β using the previous projected probabilis-
tic database D|α. Specifically, for each projected probabilistic se-
quence si|α ∈ D|α, we compute Pr{β � si} as pr(si|αe) in
Lines 3–9, and if Pr{β � si} > 0, we add si|β (constructed from
si|α) into D|β and append this probability to vecβ (Lines 10–12),
which is used to determine whether β is p-frequent by invoking
PMFCheck(vecβ) in Line 13.

To compute Pr{β � si} using Equation (5), we first initialize
pr(si|αe) to 0 (Line 3), and whenever we find that sij ∈ si|αe

which is checked by examining whether e is in the suffix sij |α in
Line 6, we add Pr(sij) to pr(si|αe), and construct the new pro-
jected instance of sij , i.e. sij |β , for the new projected probabilistic
sequence si|β in Lines 8–9.

If β is found to be p-frequent (Lines 13 and 14), we first output β
in Line 15 and use Algorithm 2 to prune the candidate elements in

Algorithm 3 SeqU-PrefixSpan(αe, D|α, T |α)

Input: current pattern αe, projected probabilistic database D|α,
element table T |α

1: vecαe ← ∅
2: for each projected sequence si|α ∈ D|α do
3: pr(si|αe) ← 0
4: for each instance sij |α = <pos, Pr(sij)> ∈ si|α do
5: Find its corresponding sequence sij ∈ D
6: if e ∈ sij [pos + 1, . . . , len(sij)] then
7: pr(si|αe) ← pr(si|αe) + Pr(sij)
8: c′ ← minc≥pos+1{sij [c] = e}
9: Append (c′, pr(sij)) to si|αe

10: if pr(si|αe) > 0 then
11: Append si|αe to D|αe

12: Append pr(si|αe) to vecαe

13: (tag, fαe) ← PMFCheck(vecαe)
14: if tag =TRUE then
15: output αe
16: T |αe ←Prune(T |α, D|αe)
17: for each element � ∈ T |αe do
18: SeqU-PrefixSpan(αe�, D|αe, T |αe)
19: Free D|αe and T |αe from memory

the previous element table T |α, so as to obtain the current truncated
element table T |β . Then, we check the patterns grown from β by
running the recursion on D|β and T |β in Lines 17–18.

5. ELEMENT-LEVEL U-PREFIXSPAN
In this section, we present the ElemU-PrefixSpan algorithm that

mines p-FSPs from data of the element-level uncertain model. Com-
pared with SeqU-PrefixSpan discussed in the previous section, we
need to consider more issues arising from sequence projection.

Consider the element-level probabilistic sequence si shown in
Figure 6(a) that have four probabilistic elements. Figure 6(b) shows
the possible world space of si, where each possible world corre-
sponds to a sequence that si may occur to be.

An interesting observation is that the possible world space of
si is exactly the sequence-level representation of si. Therefore,
one naïve method to implement ElemU-PrefixSpan is to expand
each element-level probabilistic sequence in database D into its
sequence-level representation, and then solve the problem by SeqU-
PrefixSpan. However, this approach is intractable due to the follow-
ing fact:

“Each element-level probabilistic sequence of length � has many
sequence instances, the number of which is exponential to �.”

Instead of using the full-expansion approach mentioned above,
we adopt a more efficient approach that expands the probabilistic
sequence only when necessary. For example, when we consider
pattern BA on the probabilistic sequence si in Figure 6, the expan-
sions related to C are totally unnecessary, since whether C occurs
in si or not has no influence on Pr{BA � si}.

The differences between ElemU-PrefixSpan and SeqU-PrefixSpan
mainly lie in two aspects: (1) sequence projection from si to si|α,
and (2) the computation of Pr{α � si}. We discuss them next.

Sequence Projection. Given an element-level probabilistic se-
quence si and a pattern α, we now discuss how to obtain the pro-
jected probabilistic sequence si|α.

DEFINITION 4. Event epos(si, α) = {α � si[1, . . . , pos] ∧
α �� si[1, . . . , pos − 1]}.

����
�������	 '��(����
��)�* � "��#
��-�#
��#
��%�$
��)�* �
"��#
����#
��#
��1�$
��)%* �
"��#
��,�#
��#
��2�$
��),* �
"��#
����#
��#
����$

�
�
��

���/����
�	� ����� ���/����
�	� ����� ���/����
�	� ����� ���/����
�	� �����
������ �
�
����
������ �
�
����
��%��� �
�
����
��,��� �
�
����

�����2
�����,
����1,
���-�2

������ �
�
����
��2��� �
�
����
��-��� �
�
����
��1��� �
�
����

�����,
�����2
���%%2
��%��,

������ �
�
����
������� �
�
����
������� �
�
����
������� �
�
����

�����,
�����2
����%2
���%�,

���%��� �
�
����
���,��� �
�
����
������� �
�
����
���2��� �
�
����

�����2
���12,
����,,
�����2

���
��������
����
�	�
�&
	�
�3
��

��
�
��� ���4���� '5���
�
����
� .��)�*��)%*��),* � ��%
�
��%
� .��)%*��),* � ��
����%� ����
���,
, . � ��
����%� ��
������ ����
����2

�	�
���4�	����

��
�
��� ���4���� '5���
�
����
� .��)�*��)�*��)%*��),* �

��

��

��� ���4���� '5���
�
����
% .��),* ��% ��2
�
���1

��� ���4���� '5���
�
����
, . ��% ��
����2� ����
����1

��
��� ���4���� '5���
�
����
% .��),* ���, ��2
�
���1,

��� ���4���� '5���
�
����
, . ���, ��
����2� ����
�����,

���6��

��

��
��
��� ���4���� '5���
�
����
% .��),* ���1
0
���1,
�
���2,
, . ����1
0
�����,
�
����1,

Figure 6: Illustration of ElemU-PrefixSpan

In Definition 4, si[1, . . . , pos] is the minimal prefix of si that
contains pattern α. Event epos(si, α) can be recursively constructed
in the following manner:

(1) Base Case. When pattern α = ∅, we have Pr(e0(si, α)) =
1 and Pr(epos(si, α)) = 0 for any pos > 0. This is because α �
∅, or equivalently, the minimal prefix si[1, . . . , pos] in Definition 4
should be ∅, which implies pos = |si[1, . . . , pos]| = |∅| = 0.

(2) Recursive Rule. When β = αe,

epos(si, β) =
⋃

k<pos

{ ek(si, α) ∧ si[pos] = e

∧ si[j] �= e, ∀k < j < pos }. (6)

This is because si[1, . . . , pos] is the minimal prefix containing β =
αe, iff (1) si[1, . . . , k] is the minimal prefix containing α for some
k < pos, (2) si[pos] = e, and (3) si[j] �= e for all positions j
between k and pos.

The events ek(si, α) on the R.H.S. of Equation (6) with differ-
ent k are disjoint to each other due to the minimality requirement
of Definition 4. Note that the events in the UNION operator of
Equation (6) are subsets of the events ek(si, α) (due to the AND
operator), and thus they are also disjoint.

As a result, we can use the principle of additivity to compute
Pr(epos(si, X)) according to Equation (6):

Pr(epos(si, αe))

=
∑

k<pos

[Pr(ek(si, α)) × Pr{si[pos] = e}

×
∏

k<j<pos

(1 − Pr{si[j] = e})]. (7)

Equation (7) is a recursive formula where the computation of
Pr(epos(si, αe)) requires the values of Pr(ek(si, α)) for all k <
pos.

Recall that in the prefix-projection method of PrefixSpan, the
projected sequence s|α of a deterministic sequence s is obtained

by removing from s its minimal prefix containing α. Therefore, the
projected sequence si|α of an element-level probabilistic sequence
si can be represented by a set of disjoint events ek(si, α), 0 < k ≤
len(si), where len(si) is the number of probabilistic elements in
si. The first (top) table in Figure 6(c) gives the event representation
of si|∅ for the probabilistic sequence si shown in Figure 6(a).

Next, let us consider the case when α grows from ∅ to B. For
ease of presentation, we use si|epos(si,α) to denote the suffix of si

given event epos(si, α). Since si|e0(si,∅) = si[1]si[2]si[3]si[4],
and B can occur in any of si[1], si[2] and si[4], we can derive
from e0(si, ∅) altogether three disjoint events that correspond to B
occurring in si|e0(si,∅) , as shown in the second (middle) table in
Figure 6(c):

• e1(si, B) = {si[1] = B}. In this case, Pr(e1(si, B)) =
Pr(e0(si, ∅)) × Pr{si[1] = B} = 0.3.

• e2(si, B) = {si[1] �= B ∧ si[2] = B}. In this case,
Pr(e2(si, B)) = Pr(e0(si, ∅)) × (1 − Pr{si[1] = B}) ×
Pr{si[2] = B} = 0.14.

• e4(si, B) = {si[1] �= B ∧ si[2] �= B ∧ si[4] = B}. In this
case, Pr(e4(si, B)) = Pr(e0(si, ∅)) × (1 − Pr{si[1] =
B}) × (1 − Pr{si[2] = B}) × Pr{si[4] = B} = 0.0056.

For the case when α grows from B to BA, let us focus on the
event e2(si, B) of si|B . Since si|e2(si,B) = si[3]si[4], and A can
occur in any of si[3] and si[4], we can derive two sub-events from
e2(si, B) as shown in Figure 6(c). For example, the probability of
the sub-event in the bottom on the right of Figure 6(c) is computed
as Pr(e2(si, B)) × (1 − Pr{si[3] = A}) × Pr{si[4] = A} =
0.0504.

Note that we cannot obtain any sequence containing pattern BA
from e4(si, B). After all the sub-events are obtained, we merge
those with the same pos value into epos(si, BA), where Pr(epos(si,
BA)) is computed as the summation of the probabilities of the sub-

Algorithm 4 Project(D|α, e)

Input: projected probabilistic database D|α, element e
Output: D|αe

1: for each projected sequence s|α ∈ D|α do
2: Find its corresponding sequence s ∈ D
3: for each event r = (posr, prr) ∈ s|α do
4: pivotr ← posr + 1
5: accumr ← 1
6: s|αe ← ∅
7: while ∃r, pivotr < len(s) do
8: r′ ← arg minr pivotr

9: if Pr{s[pivotr′] = e} > 0 then
10: {∃ probabilistic element (e, pe) ∈ s[pivotr′]}
11: Δ ← prr′ × accumr′ × pe

12: accumr′ ← accumr′ × (1 − pe)
13: (poslast, prlast) ←the last element in s|αe

14: if poslast = pivotr′ then
15: prlast ← prlast + Δ
16: else
17: Append (pivotr′ , Δ) to s|αe

18: pivotr′ ← pivotr′ + 1
19: Append s|αe to D|αe

20: return D|αe

events (see the third/bottom table in Figure 6(c)), which is based on
Equation (7).

Algorithm 4 shows our algorithm that constructs D|β (β = αe)
from the old projected database D|α. For each projected proba-
bilistic sequence s|α, we project it into a new projected sequence
s|β ∈ D|β in Lines 2–19. In our algorithm, each projected proba-
bilistic sequence is represented as a set of events (recall Figure 6(c)),
and each event r = epos(si, α) is represented as a pair <posr, P r(r)>,
where posr = pos and Pr(r) = Pr(epos(si, α)).

To obtain β = αe, we need to find element e from the suffix of s
starting from posr + 1 (Line 4), i.e. s|r . We also attach a variable
accumr with each event r, which is used to record the value of the
product term on the R.H.S. of Equation (7) and is initialized to 1.

To construct s|β from s|α, we check all the events r =<posr, P r(r)>
of s|α, and in each iteration, we pick the event with minimum posi-
tion value pivotr to be scanned next (Line 8), denoted as r′. If the
probabilistic element in the current position pivotr′ can take value
e (Line 9) (with probability pe), then we can compute the prob-
ability of the sub-event derived from r′ as Δ using Equation (7)
(Line 11), and update the product value accumr in Line 12 to re-
flect the event that {s[pivotr′] �= e} (since pos > pivotr′ for later
sub-events).

Since we choose the event with minimum position value in each
iteration, the sub-events are constructed with non-decreasing val-
ues of pos. According to Equation (7), we know that we can sum
up the probabilities of the sub-events with the same new value of
pos. Therefore, if the newly constructed sub-event has the same
value of pos with that of the last sub-event already constructed, we
simply add its probability Δ to that of the last sub-event (Lines 14–
15). Otherwise, we create a new event for s|αe with the new value
of pos, and the probability is initialized to Δ (Lines 16–17).

When s|α has k events, and each event ei has suffix of length �i,
then it takes O(k × ∑

i �i) time to construct s|β from s|α. This
is because, in each iteration of the while loop, Line 8 takes O(k)
time, and there are O(

∑
i �i) iterations (see Lines 7 and 18).

Recall that each element-level projected sequence is represented

Algorithm 5 ElemProb(s, pos, e)
Input: probabilistic sequence s, position pos, element e
Output: Pr{ e ∈ s[pos + 1, len(s)] }

1: accum ← 1
2: for each k ∈ [pos + 1, len(s)] do
3: if (e, Pr{s[k] = e}) ∈ s[k] then
4: accum ← accum · (1 − Pr{s[k] = e})
5: Pr{ e ∈ s[pos + 1, len(s)] } ← 1 − accum
6: return Pr{ e ∈ s[pos + 1, len(s)] }

by a set of events, and each value of pos corresponds to one event.
Thus, we have the following interesting observation:

“Each element-level projected probabilistic sequence s|α of length
� can have no more than � events.”

The correctness of this statement is established by the fact that
there are at most � values for pos. This result is much better than
the full-expansion approach mentioned in the beginning of this sec-
tion, where each s|α is expanded to many sequence instances, the
number of which is exponential to �.

Computation of Pr{α � si}. Consider pattern β = αe.
Suppose that the projected probabilistic sequence si|α has k events
epos(si, α), pos = i1, i2, . . . , ik. Then, for each event epos(si, α)
which implies α � si, it follows that β �� si if and only if
e does not occur in any of the elements in the suffix si[pos +
1, . . . , len(si)] (i.e. si|epos(si,α)). Therefore, we have

Pr{β �� si}
=

∑
pos

Pr{β �� si|epos(si, α)} × Pr(epos(si, α))

=
∑
pos

Pr{si[j] �= e, ∀j > pos} × Pr(epos(si, α))

=
∑
pos

(
Pr(epos(si, α)) ×

∏
i>pos

(1 − Pr{si[pos] = e})
)

,(8)

and thus

Pr{β � si} = 1 − Pr{β �� si}

=

(∑
pos

Pr(epos(si, α))

)
− Pr{β �� si}

=
∑
pos

[
Pr(epos(si, α)) ×

(
1 −

∏
i>pos

(1 − Pr{si[pos] = e})
)]

. (9)

Algorithm 5 shows how we compute the factor in the last line
of Equation (9). Algorithm 6 shows our ElemU-PrefixSpan algo-
rithm, where Line 6 computes Equation (9) as accum by using
Algorithm 5. After obtaining Pr{β � si} for all si|β ∈ D|β , we
can check the p-frequentness of β and prune the element table in a
similar manner as in Algorithm 3.

6. EXPERIMENTS
In this section, we evaluate the performance of our two U-PrefixSpan

algorithms using both real and synthetic datasets. Specifically, we
test the scalability of SeqU-PrefixSpan and ElemU-PrefixSpan on
large synthetic datasets in Sections 6.1 and 6.2, respectively. In

 0
 5000

 10000
 15000
 20000
 25000
 30000

 10 15 20 25 30 35 40 45 50

E
xe

c
Ti

m
e

(s
ec

)

n (x 10k)

BL
SeqU’
SeqU

(a) Effect of n

 0

 5000

 10000

 15000

 20000

 25000

 5 10 15 20 25

E
xe

c
Ti

m
e

(s
ec

)

m

BL
SeqU’
SeqU

(b) Effect of m

 5000

 10000

 15000

 20000

 25000

 30000

 22 23 24 25 26 27 28 29 30

E
xe

c
Ti

m
e

(s
ec

)

l

BL
SeqU’
SeqU

(c) Effect of �

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 10 15 20 25 30 35 40 45 50

E
xe

c
Ti

m
e

(s
ec

)

d

SeqU’
SeqU

(d) Effect of d

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

 70 80 90 100 110 120

E
xe

c
Ti

m
e

(s
ec

)

τsup

SeqU’
SeqU

(e) Effect of τsup on Time

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000

 70 80 90 100 110 120
N

um
be

r o
f P

at
te

rn
s

τsup

SeqU

(f) Effect of τsup on Result #

 2400
 2600
 2800
 3000
 3200
 3400
 3600
 3800
 4000

 0.2 0.25 0.3 0.35 0.4

E
xe

c
Ti

m
e

(s
ec

)

τprob

SeqU’
SeqU

(g) Effect of τprob on Time

 30000

 32000

 34000

 36000

 38000

 40000

 0.2 0.25 0.3 0.35 0.4

N
um

be
r o

f P
at

te
rn

s

τprob

SeqU

(h) Effect of τprob on Result #

Figure 7: Scalability Results on Sequence-Level Uncertain Model

Algorithm 6 ElemU-PrefixSpan(αe, D|α, T |α)
Input: pattern αe, projected probabilistic database D|α, element
table T |α

1: vecα ← ∅
2: for each projected sequence s|α ∈ D|α do
3: Find its corresponding sequence s ∈ D
4: accum ← 0
5: for each (pos, pr) ∈ s|α do
6: accum ← accum + pr×ElemProb(s, pos, e)
7: Append accum to vecαe

8: (tag, fαe) ←PMFCheck(vecαe)
9: if tag =TRUE then

10: output αe
11: D|αe ← Project(D|α, e)
12: T |αe ←Prune(T |α, D|αe)
13: for each element � ∈ T |αe do
14: ElemU-PrefixSpan(αe�, D|αe, T |αe)
15: Free D|αe and T |αe from memory

Section 6.3, we compare ElemU-PrefixSpan with the naïve full ex-
pansion approach for mining data that conform to the element-level
uncertain model, where the results show that ElemU-PrefixSpan ef-
fectively avoids the problem of “possible world explosion”. Fi-
nally, we successfully apply ElemU-PrefixSpan in an RFID appli-
cation for trajectory pattern mining, and the results confirm that
probabilistic frequentness is more accurate than expected support
for evaluating pattern frequentness on uncertain data.

All the experiments were run on a computer with Intel(R) Core(TM)
i5 CPU and 4GB memory. The algorithms were implemented in
C++, and run in Eclipse on Windows 7 Enterprise.

6.1 SeqU-PrefixSpan Scalability Results
Synthetic Data Generation. To test the scalability of SeqU-

PrefixSpan, we implemented a data generator to generate datasets
that conform to the sequence-level uncertain model. Given the
configuration parameter set (n, m, �, d), our generator generates n
probabilistic sequences. For each probabilistic sequence, the num-

ber of sequence instances is randomly chosen from range [1, m],
and therefore the expected number of sequence instances for each
sequence is m/2. The length of a sequence instance is randomly
chosen from range [1, �], and each element in the sequence instance
is randomly picked from an element table with d elements.

For a probabilistic sequence si = {si1, si2, . . . , simi}, we gen-
erate the probabilities Pr(sij) as follows: we first add a new dummy
instance si0 to si (si0 corresponds to case where si does not occur),
and then for each sequence instance sij (j = 0, 1, . . . , mi), we
generate a value wij following uniform distribution in range (0, 1).
Finally, we normalize the probability values to be Pr(sij) = wij/∑mi

j=0 wij (j = 1, 2, . . . , mi). Note that
∑mi

j=1 Pr(sij) never ex-
ceeds 1 due to the introduction of the dummy instance si0.

Experimental Setting. In addition to the four dataset config-
uration parameters n, m, � and d, we have two threshold parame-
ters: the support threshold τsup and the probability threshold τprob.
Therefore, we have six parameters in total. We generate five datasets
for each dataset configuration (n, m, �, d), and the reported results
are averaged on the corresponding five runs.

To study the effectiveness of our three pruning rules (CntPrune,
MarkovPrune and ExpPrune) and early validating method (Theo-
rem 1), we also carry out experiments on algorithm versions with-
out them, which serve as the baseline. From now on, we abbrevi-
ate our SeqU-PrefixSpan algorithm as SeqU, our ElemU-PrefixSpan
algorithm as ElemU, and the baseline algorithm versions without
pruning and validating methods as BL. We also name the algorithm
versions that use only the pruning methods by appending an apos-
trophe to the original algorithm names, e.g. SeqU becomes SeqU’.

Effect of n, m, � and d on Execution Time. The experimental
results are summarized as follows:

• Figure 7(a) shows the execution time of SeqU-PrefixSpan
variations when n varies from 100,000 to 500,000, where
we fix m = 5, � = 20, d = 30, τsup = 12 and τprob = 0.4.

• Figure 7(b) shows the execution time of SeqU-PrefixSpan
variations when m varies from 5 to 25, where we fix n =
100k, � = 20, d = 30, τsup = 12 and τprob = 0.4.

• Figure 7(c) shows the execution time of SeqU-PrefixSpan
variations when � from 22 to 30, where we fix n = 100k,

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000

 10 15 20 25 30 35 40 45 50

E
xe

c
Ti

m
e

(s
ec

)

n (x 10k)

BL
ElemU’
ElemU

(a) Effect of n

 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000

 6 7 8 9 10

E
xe

c
Ti

m
e

(s
ec

)

m

BL
ElemU’
ElemU

(b) Effect of m

 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

 22 23 24 25 26 27 28 29 30

E
xe

c
Ti

m
e

(s
ec

)

l

BL
ElemU’
ElemU

(c) Effect of �

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 10 15 20 25 30 35 40 45 50

E
xe

c
Ti

m
e

(s
ec

)

d

ElemU’
ElemU

(d) Effect of d

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 12 14 16 18 20 22 24 26 28

E
xe

c
Ti

m
e

(s
ec

)

τsup

ElemU’
ElemU

(e) Effect of τsup on Time

 25000
 30000
 35000
 40000
 45000
 50000
 55000

 12 14 16 18 20 22 24 26 28
N

um
be

r o
f P

at
te

rn
s

τsup

ElemU

(f) Effect of τsup on Result #

 3900
 4000
 4100
 4200
 4300
 4400
 4500
 4600

 0.2 0.25 0.3 0.35 0.4

E
xe

c
Ti

m
e

(s
ec

)

τprob

ElemU’
ElemU

(g) Effect of τprob on Time

 50000
 100000
 150000
 200000
 250000
 300000
 350000

 0.2 0.25 0.3 0.35 0.4

N
um

be
r o

f P
at

te
rn

s

τprob

ElemU

(h) Effect of τprob on Result #

Figure 8: Scalability Results on Element-Level Uncertain Model

m = 5, d = 30, τsup = 12 and τprob = 0.4.

• Figure 7(d) shows the execution time of SeqU and SeqU’
when d varies from 10 to 50, where we fix n = 100k, m = 5,
� = 20, τsup = 12 and τprob = 0.4.

From these results, we observe the following trends:

• In all the experiments, BL is around 2–3 times slower than
SeqU’, which verifies the effectiveness of the pruning meth-
ods. SeqU’ is around 10%–20% slower than SeqU, which
verifies the effectiveness of the validating method.

• The running time of all the algorithms increase with the in-
crement of parameters n, m and �. This trend is intuitive
since larger n, m and � implies larger data size. In partic-
ular, the running time of all the algorithms increases almost
linearly with the increment of n.

• The running time of SeqU and SeqU’ decreases with the in-
crement of d. This is mainly because, when the data size
is fixed, a larger pool of elements implies that the length of
the patterns found by SeqU-PrefixSpan tends to be smaller,
which further means that SeqU-PrefixSpan does not have to
recurse to deep levels.

Effect of τsup and τprob on Execution Time and Number of
Results. The experimental results are summarized as follows:

• Figures 7(e) and 7(f) show the running time and result size
of SeqU and SeqU’ when the support threshold τsup varies
from 70 to 120, where we fix n = 100k, m = 5, � = 20,
d = 30 and τprob = 0.4.

• Figures 7(g) and 7(h) show the running time and result size of
SeqU and SeqU’ when the probability threshold τprob varies
from 0.2 to 0.4, where we fix n = 100k, m = 5, � = 20,
d = 30 and τsup = 12.

From these results, we observe the following trend: both the run-
ning time and result number SeqU and SeqU’ decrease with the in-
crement of parameters τsup and τprob. This trend is intuitive since
larger τsup and τprob implies higher requirement on pattern fre-
quentness, which further implies less valid patterns.

6.2 ElemU-PrefixSpan Scalability Results
Synthetic Data Generation. Similarly to the study of SeqU-

PrefixSpan, to test the scalability of ElemU-PrefixSpan, we gen-
erate datasets that conform to the element-level uncertain model.
Given the configuration parameter set (n, m, �, d), our generator
generates n probabilistic sequences. For each probabilistic sequence,
its length is randomly chosen from range [1, �], and therefore the
expected number of probabilistic elements for each sequence is
�/2. In each probabilistic sequence, 20% of the elements are sam-
pled to be uncertain. The number of element instances of a prob-
abilistic element is randomly chosen from range [1, m], and there-
fore, each probabilistic element has m/2 element instances on av-
erage. Each element instance is randomly picked from an element
table with d elements.

For each probabilistic element ei = {ei1, ei2, . . . , eimi}, we
generate the probabilities Pr(eij) as follows: we first add a new
dummy element ei0 to ei (ei0 corresponds to case where ei does not
occur), and then for each element instance eij (j = 0, 1, · · · , mi),
we generate a value wij following uniform distribution in range
(0, 1). Finally, we normalize the probability values to be Pr(eij) =
wij/

∑mi
j=0 wij (j = 1, 2, · · · , mi). Note that

∑mi
j=1 Pr(eij)

never exceeds 1 due to the introduction of the dummy element ei0.
Similar to the sequence-level case, we have altogether six param-

eters, and for each dataset configuration, we generate five datasets
and the reported results are averaged on the five runs. We detail the
experimental results as follows:

• Figure 8(a) shows the running time of ElemU-PrefixSpan
variations when n varies from 100,000 to 500,000, where we
fix m = 5, � = 20, d = 30, τsup = 110 and τprob = 0.5.

• Figure 8(b) shows the running time of ElemU-PrefixSpan
variations when m varies from 6 to 10, where we fix n =
100k, � = 20, d = 30, τsup = 110 and τprob = 0.5.

• Figure 8(c) shows the running time of ElemU-PrefixSpan
variations when � varies from 22 to 30, where we fix n =
100k, m = 5, d = 30, τsup = 110 and τprob = 0.5.

• Figure 8(d) shows the running time of ElemU and ElemU’
when d varies from 10 to 50, where we fix n = 100k, m = 5,
� = 20, τsup = 110 and τprob = 0.5.

 10

 100

 1000

 10000

 100000

 10 15 20 25 30

E
xe

c
Ti

m
e

(s
ec

)

n(x 1k)

ElemU
SeqU

(a) Effect of n

 10

 100

 1000

 10000

 2 3 4 5 6

E
xe

c
Ti

m
e

(s
ec

)

m

ElemU
SeqU

(b) Effect of m

 10

 100

 1000

 10000

 18 19 20 21 22

E
xe

c
Ti

m
e

(s
ec

)

l

ElemU
SeqU

(c) Effect of �

 10

 100

 1000

 10000

 25 30 35 40 45

E
xe

c
Ti

m
e

(s
ec

)

d

ElemU
SeqU

(d) Effect of d

Figure 9: ElemU-PrefixSpan v.s. Full Expansion on Element-Level Uncertain Model

(a) Building Structure on the 6th Floor

47.653 47.6531 47.6532 47.6533 47.6534 47.6535
−122.3064

−122.3062

−122.306

−122.3058

−122.3056

−122.3054

 1
 2

 3
 4

 5

 ,6
 7

 1
 2

 3
 4

 5

 ,6
 7

 1
 2

 3
 4

 5

 ,6
 7

(b) Sample Result Trajectory Pattern on the 3th Floor

Figure 10: Results on Real RFID Datasets

• Figures 8(e) and 8(f) show the running time and result size of
ElemU and ElemU’ when the support threshold τsup varies
from 12 to 28, where we fix n = 100k, m = 5, � = 20,
d = 30 and τprob = 0.5.

• Figures 8(g) and 8(h) show the running time and result size
of ElemU and ElemU’ when the probability threshold τprob

varies from 0.2 to 0.4, where we fix n = 100k, m = 5,
� = 20, d = 30 and τsup = 110.

The trends observed from these results are similar to those ob-
served from the scalability test of SeqU-PrefixSpan in Section 6.1,
and so is the corresponding analysis.

6.3 ElemU-PrefixSpan v.s. Full Expansion
Recall from Section 5 that a naïve method to mine p-FSPs from

data that conform to the element-level uncertain model, is to first
expand each element-level probabilistic sequence into all its possi-
ble sequence instances, and then mine p-FSPs from the expanded
sequences using SeqU-PrefixSpan.

In this subsection, we empirically compare this naïve method
with our ElemU-PrefixSpan algorithm. We use the same data gen-
erator as the one described in Section 6.2 to generate experimental
data, with the default setting (n, m, �, d) = (10k, 5, 20, 30). Fig-
ures 9(a)–(d) shows the running time of both algorithms with min-
ing parameters τsup = 16 and τprob = 0.7, where one data param-
eter is varied and the other three are fixed as the default ones. Note
that for the naïve method, we do not include the time for sequence
expansion (i.e. we only count the mining time of SeqU-PrefixSpan).

In Figures 9(a), (c) and (d), ElemU-PrefixSpan is around 20–50
times faster than the naïve method, and this performance ratio is rel-
atively insensitive to parameters n, � and d. On the other hand, as
shown in Figure 9(b), the performance ratio increases sharply with
the increment of parameter m: 2.6 times when m = 2, 22 times
when m = 5 and 119 times when m = 6. This trend is intuitive
since m controls the number of element instances in a probabilis-
tic element, which has a big influence on the number of expanded
sequence instances. All results show that ElemU-PrefixSpan effec-
tively avoids the problem of “possible world explosion” faced by
the naïve method.

6.4 Effectiveness in RFID Trajectory Mining
In this subsection, we evaluate the effectiveness of ElemU-Prefix-

Span by applying it on the real RFID datasets obtained from the La-
har project [24]. The data were collected in an RFID deployment
with nearly 150 RFID antennae spread throughout the hallways of
all six floors of a building. These antennae detect RFID tags that
pass near them, and log the sightings along with their timestamp in
a database.

Figure 10(a) shows the structure of the 6th floor of the build-
ing, where the light blue vertices and edges define connectivity
graph of the building, with the vertices being the discrete loca-
tions and the edges indicating the location connectivity. We use
the Markovian stream data which were inferred from the raw read-
ings. In each time step, each data item is in the form (location,
probability). For example, the locations marked by blue circles in
Figure 10(a) are those with probability smaller than 5%, while the
locations marked by yellow or red circles are those with probability

at least 5%. Therefore, the location of a tracking tag in a time step
can be regarded as a probabilistic element, and the whole trajectory
of the tracking tag can be regarded as an element-level probabilistic
sequence.

In the first set of experiments, we use 6 trace sequences on the
3rd floor for trajectory pattern mining. These sequence data are
relatively clean in terms of the room that the tracking tag is in at
any given time. The average number of possible locations in a time
step is m = 10 and the average length of the traces is � = 690. It
takes 9276.81 seconds for ElemU-PrefixSpan to run on the 6 traces
with τsup = 6 and τprob = 90%. Note that the long running time is
mainly due to the large length of the traces. For each result trajec-
tory pattern, if an element occurs in several consecutive positions
in the pattern, we replace the subsequence with just one occurrence
of the element.

Figure 10(b) shows a sample result trajectory pattern with 7 el-
ements, whose probability of being frequent is 90.67%. In Fig-
ure 10(b), the blue lines correspond to the connectivity graph, the
red rectangles correspond to the RFID antennae, and the green
points correspond to the locations in the trajectory pattern, the or-
ders of which are marked by numbers near them. After checking
the ground-truth location labels of all the 6 traces, we find that all
the traces contain this pattern without Location 3, which is a room
entrance/exit event.

In the second set of experiments, we use 6 trace sequences on
the 6th floor. These traces contain relatively more noise and each
also contains at least one fundamentally ambiguous situation. The
average number of possible locations in a time step is m = 16
and the average length of the traces is � = 630. It takes 444,582
seconds for ElemU-PrefixSpan to run on the 6 traces with τsup = 6
and τprob = 90%. Note that ElemU-PrefixSpan takes much more
time on noisy data than on data that are relatively clean.

From the above two sets of experiments, we find that the patterns
found by ElemU-PrefixSpan is accurate in terms of locations on the
hallways, although they may not be accurate enough for detecting
local events such as entering/exiting a room. These experiments
verify that the patterns found by ElemU-PrefixSpan is useful for
trajectory mining tasks in RFID applications.

We expect that our U-PrefixSpan algorithms would also be use-
ful for frequent sequential pattern mining in many other real world
applications involving uncertain data.

7. CONCLUSION
In this paper, we formulate and study the problem of mining

probabilistically frequent sequential patterns (or p-FSPs) in uncer-
tain databases. Our study is founded on two uncertain sequence
data models that are fundamental for many real-life applications in-
volving uncertain sequence data. We propose two new U-PrefixSpan
algorithms to mine p-FSPs from data that conform to our sequence-
level and element-level uncertain sequence models. We also design
three pruning rules and one early validating method to speed up
pattern frequentness checking, which further improve the mining
efficiency. Experiments show that our algorithms effectively avoid
the problem of “possible world explosion”, and the trajectory pat-
terns found by ElemU-PrefixSpan in an RFID tracking application
are shown to be accurate and useful.

Acknowledgements. This work is partially supported by RGC
GRF under grant number HKUST 617610.

8. REFERENCES
[1] M. Muzammal and R. Raman. “Mining Sequential Patterns

from Probabilistic Databases”. In PAKDD, 2011.

[2] F. Giannotti, M. Nanni, F. Pinelli and D. Pedreschi.
“Trajectory Pattern Mining”. In SIGKDD, 2007.

[3] D. Tanasa, J. A. López and B. Trousse. “Extracting
Sequential Patterns for Gene Regulatory Expressions
Profiles”. In Knowledge Exploration in Life Science
Informatics, 2004.

[4] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal
and M. C. Hsu. “PrefixSpan: Mining Sequential Patterns
Efficiently by Prefix-Projected Pattern Growth”. In ICDE,
2001.

[5] R. Agrawal and R. Srikant. “Mining Sequential Patterns”. In
ICDE, 1995.

[6] M. J. Zaki. “SPADE: An Efficient Algorithm for Mining
Frequent Sequences”. In Machine Learning, 2001.

[7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal and M.
C. Hsu. “FreeSpan: Frequent Pattern-Projected Sequential
Pattern Mining”. In SIGKDD, 2000.

[8] R. Srikant and R. Agrawal. “Mining Sequential Patterns:
Generalizations and Performance Improvements”. In EDBT,
1996.

[9] N. Pelekis, I. Kopanakis, E. E. Kotsifakos, E. Frentzos and Y.
Theodoridis. “Clustering Uncertain Trajectories”. In
Knowledge and Information Systems, 2010.

[10] H. Chen, W. S. Ku, H. Wang and M. T. Sun. “Leveraging
Spatio-Temporal Redundancy for RFID Data Cleansing”. In
SIGMOD, 2010.

[11] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein
and W. Hong. “Model-Driven Data Acquisition in Sensor
Networks”. In VLDB, 2004.

[12] L. Sun, R. Cheng, D. W. Cheung and J. Cheng. “Mining
Uncertain Data with Probabilistic Guarantees”. In SIGKDD,
2010.

[13] C. C. Aggarwal, Y. Li, J. Wang and J. Wang. “Frequent
Pattern Mining with Uncertain Data”. In SIGKDD, 2009.

[14] Q. Zhang, F. Li and K. Yi “Finding Frequent Items in
Probabilistic Data”. In SIGMOD, 2008.

[15] T. Bernecker, H. P. Kriegel, M. Renz, F. Verhein and A.
Zuefle. “Probabilistic Frequent Itemset Mining in Uncertain
Databases”. In SIGKDD, 2009.

[16] C. K. Chui, B. Kao and E. Hung “Mining Frequent Itemsets
from Uncertain Data”. In PAKDD, 2007.

[17] C. C. Aggarwal and P. S. Yu. “A Survey of Uncertain Data
Algorithms and Applications”. In TKDE, 2008.

[18] J. Yang, W. Wang, P. S. Yu, and J. Han. “Mining Long
Sequential Patterns in a Noisy Environment”. In SIGMOD,
2002.

[19] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S.
Nabar, T. Sugihara and J. Widom. “Trio: A System for Data,
Uncertainty, and Lineage”. In VLDB, 2006.

[20] N. Khoussainova, M. Balazinska and D. Suciu. “PEEX:
Extracting Probabilistic Events from RFID Data”. In ICDE,
2008.

[21] X. Lian and L. Chen. “Set Similarity Join on Probabilistic
Data”. In VLDB, 2010.

[22] J. Jestes, F. Li, Z. Yan and K. Yi. “Probabilistic String
Similarity Joins”. In SIGMOD, 2010.

[23] T. H. Cormen, C. E. Leiseron, R. L. Rivest and C. Stein.
“Introduction to Algorithms, 2nd Edition”. The MIT Press.

[24] The Lahar Project: http://lahar.cs.washington.
edu/displayPage.php?path=./content/
Download/RFIDData/rfidData.html

