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Abstract—Given a data matrix D, a submatrix S of D is an
order-preserving submatrix (OPSM) if there is a permutation of
the columns of S, under which the entry values of each row in S
are strictly increasing. OPSM mining is widely used in real-life
applications such as identifying coexpressed genes, and finding
customers with similar preference. However, noise is ubiquitous
in real data matrices due to variable experimental conditions and
measurement errors, which makes conventional OPSM mining
algorithms inapplicable. No previous work has ever combated
uncertain value intervals using the possible world semantics.

We establish two different definitions of significant OPSMs
based on the possible world semantics: (1) expected support
based and (2) probabilistic frequentness based. An optimized
dynamic programming approach is proposed to compute the
probability that a row supports a particular column permutation,
and several effective pruning rules are introduced to efficiently
prune insignificant OPSMs. These techniques are integrated into
our two OPSM mining algorithms, based on prefix-projection and
Apriori respectively. Extensive experiments on real microarray
data demonstrate that the OPSMs found by our algorithms have
a much higher quality than those found by existing approaches.

I. INTRODUCTION

Order-preserving submatrix (OPSM) mining is an important
data mining problem which given a data matrix, discovers a
subset of attributes (columns) over which a subset of tuples
(rows) exhibit a similar pattern of rises and falls in the
tuples’ values. It is useful in many real applications such as
bioinformatics and customer segmentation.

For example, in bioinformatics, when analyzing gene ex-
pression data from microarray experiments, genes (rows) with
simultaneous rises and falls of mRINA expression levels across
different time points (columns) may share the same cell-cycle
related properties [17]; columns may also represent different
experimental conditions as in [7]. In this application, an OPSM
represents co-expressed patterns for large sets of genes, shared
by a population of patients in a particular stage of a disease,
or with the same drug treatment, etc. [3]. In fact, OPSM is
well-known as the first bi-clustering method to overcome the
drawback of clustering which cannot identify patterns that are
common to only a part of the expression data matrix [3].

In recommender systems, we are often presented with a
customer-product rating matrix where each row (resp. col-
umn) represents a customer (resp. a product), and an OPSM
represents a group of users with a similar product preference.
OPSM mining has also been successfully applied for analyzing
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Figure 1: Gene Expression Matrix without Noise

indoor location tracking data [7], where visitors wearing RFID
tags are tracked by RFID readers, and an OPSM represents a
group of visitors who likely share a common visiting subroute.
Formally, OPSM mining considers a data matrix D =
(G, T) with a set of rows (e.g., genes) G and a set of columns
(e.g., microarray tests) 7. Each entry D[g][¢] of the matrix is a
numerical value, e.g., the expression level of gene g € G under
test ¢ € T'. Consider the data matrix D shown in Figure 1. For
simplicity, let us denote D|g;][t;] by D;;; then for row g1, we
have D5 < D17 < D14 < D3, i.e., column value order is
ta < t1 < tgy < t3. Note that column value orders are also
shown in Figure 1. Given a column permutation ¢ < to < t3,
we can see from Figure 1 that rows go, g3 and g4 supports
this permutation while g; does not (since D15 < Dqy).
Formally, an OPSM of an n x m matrix D is a pair (G', P),
where G’ is a subset of G, and P = (¢;,,%i,,...,t;,) is a
permutation of a subset of 7', such that for any g, € G,
Dj;, < Dj;, <--- < Dj;,. Here, we say that g supports P,
and call P as the pattern of the OPSM. In Figure 1, (G', P)
is an OPSM for G’ = {g2, 93,94} and P = (t1 < t2 < t3).
We are interested in those OPSMs with long patterns
supported by sufficient rows, which exhibit statistical signifi-
cance rather than occurring by chance. Given a row threshold
Trow and a column threshold 7., an OPSM (G’, P) with
P = (t;, <ty <...<t;,) is significant if |G'| > 7,0, and
£ > 7.01. We call £ as the length of pattern P. In other words,
a significant OPSM has at least 7,.,,, rows and 7., columns.

OPSM Mining on Noisy Matrices. Real data are often noisy.
For example, in microarray tests, each value in the matrix
is a physical measurement that is subject to measurement
errors, variable experimental conditions, and instrumental lim-
itations [7]. Also, a customer usually rates a product using
discrete scores (e.g., 1-5 stars), and even if two products both
gain 4 stars, a customer may prefer one over another as each
score actually represents a range of scores (e.g., [3.5,4.5)).
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Figure 2: Matrix with Repeated Measurements
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Figure 3: Gene Expression Matrix with Intervals

Traditional OPSM mining algorithms are sensitive to such
noise. For example, in Figure 1, if the value of Ds; is slightly
increased from 65 to 69, then g3 will no longer support pattern
t; < to < t3. One method to combat noise is to sample
each entry multiple times, e.g., each microarray test can be
repeated to record multiple measurements. Figure 2 illustrates
a dataset with three repeated measurements (or replicates).

To handle such an expression data matrix, biologists usually
take the average expression levels as the values in the matrix,
to strike for higher data quality. OPSMRM [17] takes all the
replicates into account, and produced higher-quality OPSMs
than those mined from the averaged matrix. OPSMRM is
based on the possible world semantics, which assumes that
each matrix entry is a random variable taking the value of each
replicate with equal probability. For example, in the matrix D
shown in Figure 2, D1; is assumed to take value 49, 55 or
80 with 33.3% probability. The OPSM significance is defined
only based on “expected support” (see Section II).

However, the data model of OPSMRM is restrictive. For
Dy, in Figure 2, if test t; is conducted on gene g; to get
another measurement, the result is very likely to be a value
between 49 and 80 (e.g. 60), but not any of 49, 55 and 80.
To address this issue, [7] proposes the POPSM model which
converts the replicates for each entry in the matrix into an
interval, and produced higher-quality OPSMs than OPSMRM.
Figure 3 shows this interval-based data model for the data
matrix shown in Figure 2. The interval model is sometimes
even the only choice for representing data uncertainty, such
as in [7]’s RFID location tracking application where each row
g of a matrix represents a loop-free object trajectory, each
column ¢ represents an RFID reader (i,e,, a location), and each
entry D[g][t] records the time interval when g is detected by
reader t. There, location (or subroute) uncertainty is generated
when two readers detect the same object at the same time.

However, POPSM is not defined based on the possible world
semantics. Since possible world semantics is a robust probabil-
ity model that has been proven to be effective in handling data
uncertainty in various applications, this paper studies how to
mine OPSMs with the interval-based uncertain model based
on the well-established possible world semantics, which is
shown to generate higher-quality OPSMs than POPSM (c.f.

Section VI). Our contributions are summarized as follows:

o This is the first work that studies OPSM mining when
matrix entry is modeled with interval and pattern signif-
icance is evaluated based on possible world semantics.
This model is more robust than both OPSMRM and
POPSM, and is shown to generate higher-quality OPSMs.

e Under the possible world semantics, we study two dif-
ferent definitions of OPSM significance: (S1) expected
support and (S2) probabilistic frequentness. Note that
OPSMRM only considers “(S1)” while POPSM does not
even follow the possible world semantics.

o A basic operation in our mining problem is to compute
the probability that a row g supports a pattern P =
(t;, < ti, < ... < t;,), which is challenging since
intervals Dlg][t;] may overlap. We propose a dynamic
programming (DP) algorithm to efficiently compute this
probability. We further design a smart pay-as-you-go
method to reuse DP computation when growing patterns.

o Once the above probability is computed for all rows, we
then propose efficient algorithms to check the significance
of a pattern P under both “(S1)” and “(S2)”. A few
efficient pruning rules are checked to prune insignificant
pattern P before the more expensive significance check
for P. The algorithm for “(S2)” is non-trivial and an effi-
cient Fast Fourier Transform (FFT) algorithm is designed.

« Using the above algorithms to check the significance of
each pattern P, two pattern-growth based OPSM min-
ing algorithms are proposed using different techniques,
(1) prefix-projection and (2) Apriori. Both algorithms
have pros and cons, but they both output higher-quality
OPSMs than existing approaches using comparable run-
ning time if not better, as verified in our experiments.

Paper Organization. Section II formally defines significant
OPSMs under our interval-based uncertain data model, using
expected support and probabilistic frequentness. Section III
presents our dynamic programming algorithm to compute row
supporting probability for a pattern P, and the pay-as-you-go
technique for computation reuse. Given the row supporting
probabilities for P, Section IV presents our algorithm for
evaluating significance of pattern P and rules for pruning
insignificant patterns. Then, Section V introduces our complete
mining algorithms that grow patterns and examines their
significance. Finally, Section VI empirically compares our
algorithms with existing algorithms, Section VII reviews the
related work, and Section VIII concludes the paper.

Due to the space limitation, we maintain an online ap-

pendix [1] to put proofs of theorems and additional experi-
mental results: http://www.cs.uab.edu/yanda/papers/opsm.pdf.

II. PROBLEM DEFINITION

We assume that different rows of a data matrix are inde-
pendent, and for each row, its different column entries are
independent; we shall justify these assumptions in Sections III
and IV. We mine significant OPSMs in two steps: (1) finding
the frequent patterns with length at least 7.,;, and (2) selecting
the rows that support each frequent pattern.



Above all, we need to first define pattern frequentness
under the interval-based uncertain model. Given a pattern
P = (t, <t, <...<t), for each matrix row g, let
us denote the probability that g supporting P by p,:

pg = Pr{row g supports pattern P}

We call p, the supporting probability hereafter, and we will
discuss the computation of p, in Section III. To decide whether
pattern P is frequent, we evaluate it using (i) the supporting
probabilities of all rows, and (ii) the row threshold 7,y .

We define pattern significance using “expected support” and
“probabilistic frequentness”, two well-established semantics
for defining pattern frequentness in mining uncertain data [14].
They both follow the possible world semantics.

Expected Support. Let us consider the expected number of
rows that support pattern P. For each row g, we define a
random variable X, as follows:

Y 1 if g supports P
971 0 otherwise

Obviously, X, follows the Bernoulli distribution and its expec-
tation £(X,) = py. The number of rows that support pattern
P is a random variable X = EQEG X, and we have

E(X) = E(Z Xg) = Z E(Xy) = Zpg

geG geG geq

Therefore, the expected support is simply the summation of
pg for all rows g € G, and pattern P is frequent if and only
if its expected support is not smaller than 7,.,,,.

Probabilistic Frequentness. “Expected support” does not
consider the distribution of X but merely its expectation. To be
more accurate, “probabilistic frequentness” (or p-frequentness)
considers the probability mass function (PMF) of X.

Given a matrix D with row set G = {g1,92,...,9n}. the
support of P is depicted by the PMF of X, denoted as fp(c)
where ¢ =0,1,---,n:

frp(c) = Pr{c rows in D support pattern P}

The PMF fp(c) can be computed using p, of all rows g € G
with the realistic assumption that rows are independent of each
other, and we shall present more details in Section IV.

Let us denote the cumulative distribution function (CDF) by
Fp(c) =Y;_, fp(i). Given a user-specified probability con-
fidence threshold 7,03, pattern P is probabilistically frequent
(or p-frequent) if and only if

PT{X 2 Trow} Z Tprob, (l)

where the L.H.S. can be represented as

PT{XZTrow}: Z fP(c)zl_FP(Trow_l) (2)

C=Trow
If we find that a pattern P is frequent, we only output P if
its length is at least 7.,;.

Row Selection. The second step of OPSM mining is to select
the rows that support each frequent pattern. Since the rows
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Figure 4: Preprocessing of Row ¢g; in Figure 3

are considered as independent to each other, row g is favored
over row ¢’ if supporting probability py > py.

There are several possible methods for selecting rows into
an OPSM: (a) selecting k rows whose supporting probability
are the highest, where & can be set as the expected support
> geG Pg» OF as the row threshold 7,,,, Or as any user-
specified value; (b) selecting all rows whose supporting prob-
ability is at least 7., where 7., is a user-specified “inclusion
threshold” (different from 7,5 in “p-frequentness”). Like [7],
we adopt the latter approach for row selection.

III. SUPPORTING PROBABILITY COMPUTATION

In this section, we introduce how we compute the probabil-
ity that a row g supports a pattern P, i.e., py(P). We abbreviate
it as p; when P is clear from the context.

We compute p,(P) by dynamic programming. For ease of
presentation, let us first assume that each element value in
a data matrix follows uniform distribution within an interval.
We will extend our dynamic programming method to handle
arbitrary value distribution at the end of this section.

A. Preprocessing

Before applying the dynamic programming algorithm, we
first need to preprocess each row g = {([{1,71],[l2,72],- -,
[0, Tm]) to obtain a set of subintervals demarcated by ¢;, r;
(i =1,...,m). These subintervals, denoted by I, ..., I, are
ordered in increasing order of value. Note that s < 2m. We
also denote the interval of I; as [¢(I;),r(I;)].

Figure 4 shows the subintervals obtained by preprocessing
row ¢; in the data matrix in Figure 3: I = [38,49], I, =
[49,50], Is = [49,79], I, = [79,80], Is = [80,81], Is =
[81,110] and I; = [110, 115).

Obviously, for each row g, given an interval element D[g][t]
and a subinterval I;, we must have: either (1) I; C [¢;, 7], or
(2) LN [, r) =0 or {£;} or {r:}. For example, in Figure 4,
Iy Cty, 1> C iy, [Nty = (), and LNty = 7"([2) =Vl = {50}

Since each D[g]|[t] is assumed to be uniform, we have:

Property 1. Let fi(x) be the PDF of Dlg|[t] on subinterval
I;, then we have

hiay={ 10

Therefore, we can obtain the constant probability density
of D[g][t] on any subinterval I; in O(1) time, by checking
whether I; C [l;,r]. Since fi(x) is constant on I;, we
abbreviate it as f; from now on. For example, in Figure 4,
consider g; and subinterval I5: f; = 1/31 since Iy C [49, 80],
while f4 = 0 except at the boundary 50 (which is immaterial

if I C [l 1],
otherwise.

3)



for continuous distribution). As we shall see next, Property 1 is
critical to the efficiency of computing supporting probability.

Assume data matrix D is n X m, preprocessing each row
into intervals Iy, ..., I requires sorting s < 2m values with
the cost of O(slog s) time. Overall, processing the n rows of
D takes O(nslogs) = O(nmlogm).

B. Dynamic Programming Formulation

Given a row g, a pattern P = (t;; < t;, <...<t;,), and
the subintervals Iy, Io, ..., I by preprocessing g, we compute
pg(P) using dynamic programming (DP) as follows. We abuse
the notation ¢; to mean the interval D]g|[t;] since g is given.

The DP algorithm first creates a 2D array A with £ rows and
s columns. The element A[j][k] denotes the probability of the
event t;, < ... <t; witht t;; located in the interval
consisting of the first k& subintervals, i.e., Ule I;. Note that
the value of A[/][s] is exactly py(P).

Our algorithm assumes that different column intervals of
a row are independent, which is natural since different mi-
croarray tests or RFID readers are usually independent. This
assumption is used in many places below, such as the proof
of Theorem 1, and the last term’s product in Eq (6).

TEEEEE)

Probability Evaluation on One Subinterval. Before de-
scribing the recursive formula for computing A[j][k], we
first explain how to compute the probability of the event
ti, < ti, < ... <, with t;,,...,t;, located in Ij,. We
denoted this probability by Py, (t;, < ... <t;,).

Theorem 1. Given an interval [(,7], let A = r — £ If we
have a set of random variables x1,xs,...,x,, where each
variable x; has constant probability density p; on [{,r], then

Pr{(z1,....zn € [,r]) AN (1 < 22 < ... < z,)} =
(H 1pz) : %1 .
Proof. See Appendix B [1]. O

Theorem 1 implies the following corollary for row g:

Corollary 1. Let us define A = r(Ii) — £(Ix), and let fi,
be the probability density of D[g|[t;] on subinterval I as

computed by Eq (3). Then,
J AJ
)= (Il )55 @
z=1 :

Evaluation of A[j][k]. Now, we are ready to present the
recursive formula for computing A[j][k]. Let us first consider
the base case when k£ = 1. In this case,

Af]

which can be computed using Eq (4).

When k > 1, the event “4;; < t;, < ... < t;; with
Liystins -y ti; € Ule I,” can be decomposed into the fol-
lowing disjoint events:

o 1y < ... < tij with tiyy--- ,ﬁij S Uf:_ll I;;

o 1 < ~<tij Withtil,...,tijEIk;

P[k (til <t <

= P]l (til <t <...< tij), (@)

o tiy < ... <t withty,... t;. e U L and t;, <
<ty withty .ty elk,wherezcan take values
1,2,...,k—1.

According to the above discussion, we obtain

Aljl[k] = HW—H+Jh@n<

ZA

In fact, if we define A[4][0] = O for any j, then we can
even compute A[4][1] using Eq (6).
Note that computing A[j][k] involves:
o The values A[l][k — 1],..., A[j][k — 1], which should
have already been computed;
o Computing Py, (t;, <...<t;)forz=1,...,7j.
According to Eq (4), computing Py, (t;, < ... < t; ;) takes

.<tij>+

P[k( P41 < ... <tij) (6)

O(j—z+1) time. Thus, computing A[j][k] takes >/ _, O(j —
z+1) = O(j?) time if we compute each Py, (t;, < ... <t;,)
individually.

We can actually compute A[j][k] in O(j) time as follows.
From Eq (4), we can derive the following recursive formula

for computing Py, (t;, < ... <ty):
P]k( <. < tij)
i, if z=j
= ff . )]
jﬁ PIk(Zz+1<"'<ti‘7) 1fZ<j

Therefore, if we compute Py, (¢;, < ...
j down to 1, then each Py, (t;, < ...
from Pr, (tierl <<, ) using Eq (7) in O(1) time. Thus,
computing A[j][k] takes 7_10(1) =0(j) time.

Accordingly, computing p,(P) requires computing all ele-
ments in the ¢ X s array A, which takes ZJ > 00) =
O(£2s) = O(£*m) time (recall that s < 2m). We can further
optimize the computation: if we find f;, = 0 when evaluating
Pr,(ti, < ... < t;;), then we can terminate early since
according to Eq (4), P, (t;, <...<t;;) =0 forany 2’ < z.

< t;;) with z from
< t;;) can be computed

C. Pay-as-you-go Approach

From now on, let us call the array for dynamic programming
as DP-array. We mine patterns by pattern-growth, i.e., pattern
tiy, <...<ty <t,, ischecked after pattern t;, < ... <t;,.

We now consider how to reuse the DP-array for ¢;, < ... <
t;; to compute the DP-array for ¢;, < ... <t;, <t;,.

In the base case, the pattern is a singleton ¢;. Assume
that the interval of D[g]|[t;] is [¢;, r;], then there is only one
subinterval Iy = [¢;,7;] and the DP-array is a 1 x 1 array with
AL = Prr (1) = 1.

We now consider how to incrementally compute the DP-
array of a pattern grown by one more interval. Referring to
the data matrix in Figure 3 again, and let us focus on the
computation of pg, (t3 < t4 < t1).

Figure 5 illustrates the evaluation process, where the array
on the left is the DP-array for pattern ¢3 < ¢4 which is already
computed, and the array on the right is the DP-array for pattern

ts < t4 < tp that is to be computed. The split points of
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Figure 5: Pay-as-you-go DP-Array Evaluation

subintervals are also marked above the DP-arrays. Note that
Aljl[k] = Pri{(t:;, < ... <ti;) A (tiy,...,ti; <r(Ix))}. For
example, the value of cell F in the left array is the probability
of the event t3 < t4 with t3,%4 < 110. Obviously, the value of
cell E in the right array is exactly the same. In fact, we can
copy the values of cells A-F" in the left array directly into the
corresponding cells in the right array.

On the other hand, for pattern t3 < ¢4 < 1, the introduction
of ¢; with interval [49,80] adds two more split points. For
example, Iy = [79,110] of the left array is now split into
two subintervals for the right array: I3 = [79,80] and I, =
[80,110]. However, the value of cell 4 (the probability of the
event t3 < t4 with t3,t4 < 80), for example, is not computed
in the left array, and therefore it has to be computed using
Eq (6). In fact, the values of cells 1-9 have to be computed
over the right array using Eq (6).

The complete algorithm is exactly like DP but those
already-computed entries in the DP-array are directly copied
without recomputation. Algorithm details can be found in
Appendix A [1].

We now analyze the cost of this incremental computation
of pg(t;, <...<t;;). Since at most two new split points /;,
and 7;; are introduced when a pattern is grown with Lijs for
each of the first (j — 1) rows in the DP-array, there are at most
2 elements to compute using dynamic programming. Together
with the new j-th row, there are totally 2(j — 1) + (s — 1) =
O(j) elements (note that the number of split points s < 2j)
to compute using dynamic programming, which takes O(j?)
time. The remaining (j — 1) - s elements are copied from the
old DP-array, which takes O(j - s) time. Therefore, the total
time complexity is O(j2), quadratic to the pattern length j.

For a pattern P of length /¢, time complexity of computing
py(P) is reduced from O(¢*m) in Section III-B to O(¢?) here.

D. Extension to Arbitrary Distributions

We have been assuming that each matrix entry conforms
to a uniform distribution defined over its interval, which is
proper when there are only several replicates. When there
are sufficient number of replicates, we can infer the un-
derlying distribution (e.g., Gaussian distribution) and learn
the parameters from the replicates. Then, we can discretize
the distribution using an equi-depth histogram. Note that
our dynamic programming framework is still applicable here,
though each entry now may introduce more than 2 split points.

IV. PATTERN SIGNIFICANCE CHECKING

In Section III, we have already described how to compute
the supporting probability of row g for pattern P (i.e., py(P)).

This section explains how to evaluate the frequentness of a
pattern P given the supporting probabilities all rows.

As discussed in Section II, it is straightforward to check
whether a pattern P is frequent in terms of expected support:
we just check whether > py(P) > Tror Which takes O(n)
time. Therefore, this section focuses on explaining how we
determine whether a pattern P is probabilistically frequent.

We assume that different rows (e.g., genes, cus-
tomers/visitors) in the data matrix are independent of each
other. This is a reasonable assumption similar to tuple inde-
pendence in uncertain databases and data point independence
in machine learning, and simplifies probability computations.

A. Pattern Support PMF Computation

We define the support of a pattern P in data matrix D =
(G, T) as the number of rows in G that supports P. Since each
row g supports P only with probability p,(P), the support of
P is a random variable, denoted as X.

We now consider how to compute the PMF of X, using the
supporting probabilities p,(P) of all rows g € G.

Naive Method. Let f;(c) be the PMF of the support of P
in matrix D; which consists of the first 7 rows in D, where
¢ =0,1,---,i (fi(c) = 0 for other values of ¢). Then, we
have the following recursive formula:

fi+1(c):pgi+1 'fi(c_1)+(1_pgi+1)'fi(c)' ®)

This is because P’s support in D, is ¢, iff (1) P’s support in

D; is (¢c—1) and g;11 supports P, or (2) P’s support in D; is

c and g; 1 does not support P. Note that Eq (8) holds only for

c=1,...,1, and the products of probabilities are due to row

independence (the same for later equations and thus omitted).
When ¢ = 0 we have

fH—l(O) = (1 7pgi+1) . fl(o)a (9)

since the support of P in D, is 0, if and only if the support
of P in D; is 0 and g;4; does not support P.
When ¢ =7+ 1 we have

fiJrl(i + 1) = Pgit1 - fl(l)v (10)

since the support of P in D;yq is (i + 1), if and only if the
support of P in D; is ¢ and g;4; supports P.
Furthermore, we have the base case

fo(0) =1, (an

since there is no row in Dy and the support of P must be 0.
For a data matrix D with n rows, the PMF of X, denoted
by fp(c), is equal to f,(c) (¢ = 0,---,n) since D = D,.
To compute the PMF fp(c), we start with fo(c), and recur-
sively compute f;11(c) from f;(c) until f,(c) is computed.
According to Equations (8), (9) and (10), it takes O(4) time
to compute f; and thus O(n?) time to compute fp(c).
Divide-and-Conquer Algorithm. The naive method takes

time quadratic to the number of rows, which does not scale
well. We now describe another algorithm for computing the



support PMF fp(c), which achieves better time complexity by
the divide-and-conquer strategy.

Given a set S of rows, let us define f(c) as the PMF of
the support of P in row set S, then our ultimate goal is to
compute f(c). To compute f(c), we first divide the rows
in S into two sets S7 and So of equal size. Let us denote |S]
by n, then S contains the first | 7| rows, and S5 contains the
remaining [ 5] rows.

Assume that f1(c) and f°2(c) are already computed, then
f%(c) can be obtained by the following formula:

FS(e) =D (i) x fH2(c— ), (12)
i=0

since the event that “the support of P in S is ¢’ can be

decomposed into the disjoint events “the support of P in S;

is 4, and the support of P in Sy is (¢ —4)” fori =0,---,c.

Note that [S| = n, while |S1| = [5] and [S2| = [§].
In Eq (12), we define f5'(c) = 0 for ¢ > [%], and define
[52(c) =0 for ¢ > [2].

According to Eq (12), f° is the convolution of £ and
f52. Therefore, f° can be computed from £ and f52 in
O(nlogn) time using Fast Fourier Transform (FFT) [5].

Our divide-and-conquer algorithm for computing f° is
described as follows: S is first divided into two row sets Sp
and S, of equal size; then, PMFs f5' and f°2 are computed
by recursion; finally, f° is computed as the convolution of f°
and f°2 using FFT. Since each recursion step takes O(nlogn)
time (due to FFT), the overall time complexity of computing
fP(c) is O(nlog®n).

The base case for recursion is when S = {g}, in which case
we directly return f° where f%(0) = 1—p, and f%(1) = p,.
In reality, we find that recursion down to |S| = 1 does not
provide the best performance. The most efficient configuration
is to stop recursion when |S| < 500, and compute f* directly
using the naive method. We adopted this implementation.

B. Early Frequentness Validation

In the previous subsection, we described how to compute
the PMF of the support of pattern P in data matrix D. Once
the PMF is computed, we can decide whether pattern P is
p-frequent using Equations (1) and (2) in Section II.

However, this two-step approach is time-consuming since
it requires to compute the whole PMF vector fp(c), ¢ =
0,---,n. In fact, in order to determine whether pattern P is
frequent, it is not always necessary to compute fp to the end.
The theorem below states that pattern P is frequent in D,
as long as it is found to be frequent in a subset of D. As a
result, in our divide-and-conquer algorithm, in each recursion
step (that computes f°) we will check the frequentness of P
over S using Equations (1) and (2), and if it is found to be
frequent, we terminate the frequentness checking immediately
and conclude that P is frequent.

Theorem 2. Suppose that pattern P is p-frequent in S’ C S,
then P is also p-frequent in S.

Proof. See Appendix C [1]. [

C. Pattern Pruning

The frequentness checking operations described above is
still very expensive (i.e., O(n log? n) time). We now present
three pruning rules for pruning infrequent patterns. These rules
can be checked efficiently in O(n) time, and if any rule
determines that a pattern P is infrequent, we do not need
to do the expensive frequentness checking for P.

(1) Count-Prune. Let cnt(P) = |{g € G |py(P) > 0}
pattern P is not p-frequent if cnt(P) < Trow-

, then

(2) Markov-Prune. Pattern P is not p-frequent if
deGpg(P) = E(X) < Trow X Tprob-

(3) Exponential-Prune. Let 1 = F(X) and § = T”’”TW
When § > 0, pattern P is not p-frequent if

(1) § >2e—1, and 279+ < Tprobs OF

(2)0<6<2—1,and e~ T < Tprop.
The proofs for these rules can be found in Appendix D [1].

V. MINING ALGORITHMS
In this section, we first propose a method for filtering out the
rows g such that pg(P) = 0. Then, we describe our two OPSM
mining algorithms that integrate the techniques we presented.

A. Row Filtering

Consider the matrix in Figure 3, it is obvious that go can
never support pattern t3 < t4, i.e., pg,(t3 < t4) = 0. We
now describe how to determine whether p,(P) = 0 efficiently
without actually evaluating the supporting probability.

Given a pattern P = (t;, <t;, <...<t;,), we define its
valid interval as the interval [(p,rp] such that py(P) > 0 if
and only if ¢;, € [{p,rp]. We now consider how to compute
the valid interval of a pattern P.

In the base case when P = t,,, its valid interval is exactly
the interval D[g|[t;,] = [liy, 74,

For pattern P = (t;, < ... <t;,) (j > 1), we compute its
valid interval using that of pattern P’ = (t;, < ... <t;_,).
Since row g supports P’ if and only if ¢;,_, € [{p/,rp/], rOW
g would support P if and only if 3t;, , € [{p,,7ps] such
that ¢;,_, < t;,, or equivalently, t;, € [max{(;,,(p/}, ;] =
[lp,7p] (Where [¢; ,r;;] is the interval Dlg][t; ]). Note that
lp,rp] = 0 if £p > rp, and in this case py(P) = 0 and g
can be filtered.

In our mining algorithm when checking pattern P’, for
each row g, we maintain the following information: (1) its
valid interval [£p/,rp:], (2) the ordered list of split points,
and (3) the DP-array. Since our mining algorithm checks
patterns by pattern-growth, P will be checked after P’. To
process g for pattern P, we will first compute [{p,7p| =
[max{/;,,p:},ri;]. If £p > rp, we drop g from further
consideration since it does not contribute to the support of
P. Otherwise, we will compute the DP-array with that of g
for P’, using the algorithm of Section III-C, to obtain p4(P).

B. Algorithms

Pattern Anti-monotonicity. Suppose pattern P’ is a sub-
pattern of pattern P, then we have the following conclusions.



Algorithm 1 Expected-Support-Based Frequentness Checking

1: Filter the rows in G p/ with their valid intervals, to obtain
G p along with the updated valid intervals.
If |Gp| < Trow, mark P as infrequent and return.
sum 0, sumo < > e, Pg(P)
for each g € Gp do
Compute the DP-array to obtain p,(P)
sum < sum + pgy(P), sumg < sumg — pgy(P’)
If sum + sumg < Trow, mark P as infrequent and
return.
if sum > 7,4, then
: Mark P as frequent and return.
10: else
11:  Mark P as infrequent and return.

NN h RN
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Algorithm 2 Probabilistic Frequentness Checking

1: Filter the rows in GGp/ with their valid intervals, to obtain
G p along with the updated valid intervals.
If |Gp| < Trow, mark P as infrequent and return.
sum <= 0, sumo <= > e, Pg(P')
for each g € Gp do
Compute the DP-array to obtain p,(P)
sum <— sum + py(P), sumg < sumqg — pg(P’)
if sum + sumg < Trow X Tprop then
Mark P as infrequent and return.
Apply Exponential-Prune and return when P is pruned.
if P is validated as frequent by divide-and-conquer then
Mark P as frequent and return.
else
Mark P as infrequent and return.

R A A S o
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(1) For any row g, g,(P) < gp(P’). This is because in
any possible world instantiation of g, P’ must be supported
if P is supported. (2) When pattern frequentness is defined
using expected support, if P’ is infrequent, then P must be
infrequent. This is because > o gp(P) < > cq 9p(P).
(3) If P’ is probabilistically infrequent, then P must be
probabilistically infrequent. This is because in any possible
world of D, the support of P’ is at least the support of P.

Frequentness Checking. Since our mining algorithms
check patterns by pattern-growth, when checking pattern P =
(ti, <...<t;,), we make use of the information of the rows
for computation when checking P’ = (t;, < ... <t;,_,).

Given a pattern P, let Gp be the set of rows ge G
with pg(P) > 0, where each row is associated with its valid
interval, split point list and DP-array.

The expected-support-based frequentness checking of pat-
tern P is described by Algorithm 1. In Line 2, we prune P
using the fact that p,(P) < 1 and thus 3 . pe(P) <
|Gp|. Furthermore, we maintain two variables sum and
sumyg. Let C' be the set of rows already processed, then
sum = 3 copg(P) and sumg 2 ge(Gpc)Pg(P).
Line 7 prunes P using the fact that 3 o pg(P) = sum +
de(prc) Py (P) < sum + sumy.

Algorithm 2 checks the p-frequentness of pattern P, where
the pruning rules described in Section IV-C is used: Line 2
applies Count-Prune, Lines 7-8 applies Markov-Prune, and
Line 9 applies Exponential-Prune.

Mining by Prefix-Projection. Our first mining algorithm
is based on the idea of prefix-projection used by sequential
pattern mining [19], where the current pattern P = (¢;, <
... < t;;) is processed using the projected row set G'p: of
P =(t;y <...<ti_,).

The recursive algérithm, denoted as DFS(P,Gp/)", finds
all the frequent patterns with prefix P from G p-. Specifically,
DFS(P,Gp:) first checks whether P is frequent using Gp-
(Algorithm 1 or 2). If so, it recursively calls DFS(t;, <
.. <ty <t,Gp)forallt € T —{t;,...,t;}. The mining
algorithm starts by calling DFS(0, G).

For each recursion that processes P, G'p is maintained so
that the subsequent recursions for ¢;, < ... <{t; <1 may use
it. The maintenance of G p incurs a space cost of O(n - j2)
since a DP-array of size j x s = O(j?) is maintained for
each row in Gp, and the space can only be released after its
corresponding recursion is done.

Since our algorithm works in a depth-first manner, at most
m projected row sets are maintained at any time, with the total
space cost 31", O(n - j%) = O(n - m?).

For a pattern P of length ¢, computing p,(P) for all
rows ¢ using the pay-as-you-go algorithm of Section III-C
takes O(n/?) time; then frequency checking takes O(n) (resp.
O(nlog2 n)) for expected support (resp. p-frequentness with
FFT computation). If C patterns are checked, then the time
cost is bounded by C - O(nf? + n) = O(Cnm?) (resp.
C - O(nf? + nlog?n) = O(Cn(m? + log® n)). Additionally,
row preprocessing of Section III-A takes O(nmlogm) time.

We remark that the above analysis is very loose, and m can
be replaced by 4,4, the length of the longest pattern checked.

The benefit of this algorithm is that, for any pattern P
checked, its DP-arrays (of the rows in Gp) is computed
exactly once; however, it can be expensive when the column
set T' is large, since the recursions have to be called for all
t € T—{t;,,...,t;; } and column candidate pruning is lacking.

Mining by Apriori. The Apriori algorithm works as fol-
lows: starting with the set of all length-1 patterns, we construct
length-j frequent patterns from the set of all length-(j — 1)
frequent patterns, until there is no frequent pattern left.

We organize the set of length-j frequent patterns using
a prefix-tree Tj, like the FP-tree proposed in [8]. When
computing length-j frequent patterns P = (t;, < ... <t;,),
we need Gp/ for P' = (t;, < ... <t;_,).

However, the space cost is prohibitive if we maintain
Gp: for each frequent length-(j — 1) pattern P’ due to the
breadth-first search order. Therefore, we choose to recompute
Gp: over the prefix-tree T;_; in a depth-first manner (like
the prefix-projection method without pattern pruning), and
when recursing to the last tree-node ti;_,, we check whether
P=(t, <...<t; , <t;,)is frequent for all possible

'We name the algorithm as DFS is due to its depth-first recursion nature.



column candidates t;; € C' (we will discuss how to compute
the candidate set C' later), and if P is checked to be frequent,
it is inserted to the new prefix-tree 7).

Unlike the prefix-projection method, we need to recompute
Gp when checking all prefix-trees 7., (z > j). However, the
computation in the same tree is still shared. For example,
G, <t, 1s used for computing both G¢, <1, <¢3 and Gy, <1, <¢, -

We now consider how to determine ¢;,’s candidate set C.

Theorem 3. For any column t that is not a child of tree-
node t;,_, in Tj_y, pattern P = (t;; < ... <t;_, <t)is
infrequent.

Proof. See Appendix E [1]. O

Thus, we choose C' to include all child nodes of node Z;,_,
in T;_;. Compared with the prefix-projection method, C is
much smaller than (T'—{t;,,...,t;,_, }) and thus the recursion
has a much smaller fan-out. '

The pattern anti-monotonicity also allows for the following
pattern pruning:

Theorem 4. For any length-j pattern P, if not all of the
length-(j — 1) sub-pattern of P exist in T;_y, then P is
infrequent.

Theorem 4 is efficient to check, and is thus examined before
the more expensive frequentness checking of Algorithm 1 or 2
which requires computing the DP-array for all rows in Gp.

In the Apriori algorithm, computing py(P) of patterns
of length ¢ requires re-computing the DP-array for frequent
patterns of length < ¢; this brings an additional factor of £,
to our prefix-projection algorithm’s time complexity since each
P is re-processed for at most ¢,,,, times. In return, the
algorithm enjoys a small recursion fan-out, which however
is not reflected in time complexity analysis.

VI. EXPERIMENTS

This section evaluates the performance of our proposed
algorithms on real datasets, and compares it with existing ap-
proaches POPSM (using uniform distribution) and OPSMRM.

We denote our prefix-projection (resp. Aprioi) based mining
algorithm by “DFS” (resp. “Apri”), and for pattern frequent-
ness, we denote expected support (resp. p-frequentness) by
“ES” (resp. “PF”). Thus, we have four algorithm variants:
DFS-ES, Apri-ES, DFS-PF and Apri-PF. In addition, since
the FFT algorithm for checking p-frequentness of a pattern is
expensive, we apply the approximation technique introduced in
Section 6 of [20] to check the p-frequentness, which improves
the cost from O(n log® n) to O(n); we denote algorithms using
this approximation technique by DFS-PFA and Apri-PFA.

Since whether the mining algorithm is “DFS” or “Apri” does
not impact the output, when we evaluate result quality, we use
ES for both DPS-ES and Apri-ES, use PF for both DPS-PF
and Apri-PF, and use PFA for both DPS-PFA and Apri-PFA.
All experiments were conducted on a PC with Intel 17-6700K
quad core CPU at 4GHz, 16GB DDR4 memory and 120GB
SSD. All our codes are released at the following GitHub link:
https://github.com/Robin]JCheng/OPSM.

A. Experimental Setup

Datasets: Two real public microarray gene expression datasets
are used in our experiments: (1) the GAL dataset?> about
yeast galactose utilization [16] which is also used by [7]; and
(2) the GDS2003 dataset® used by [17], which is a microarray
dataset of the baker’s yeast Saccharomyces cerevisiae from
the Gene Expression Omnibus (GEO) database [2]. The GAL
dataset contains 205 gene probes (rows) and 20 experimental
conditions (columns) with 4 replicates for each entry in the
matrix, while GDS2003 contains 5617 gene probes (rows) and
10 samples (columns) with 3 replicates for each entry.

Besides the gene expression datasets, we also use a bench-
mark movie rating dataset* with 100,000 ratings from 943
users on 1682 movies [9] to evaluate the algorithms.

Preprocessing: For GAL and GDS2003, we set the lower and
upper bounds of every matrix entry’s interval as [min, max],
where min (resp. max) is the minimum (resp. maximum)
replicated value of the entry from repeated experiments.

The movie rating dataset is an incomplete matrix, and we
use TensorFlow to conduct factorization based matrix comple-
tion which provides a complete 943 x 1682 user rating matrix
M, where M;; estimates User 4¢’s rating towards Movie j.
To consider only the popular movies, we select the top-100
movies that get the most user ratings, which generates a
943 x 100 submatrix M, of M. Since each new rating r is
now a low-rank approximation, we introduce uncertainty to
each rating r. A rating in the original data take its value from
{1,2,3,4,5}; after matrix completion, a rating is a real value
like » = 3.4, in which case we assign an interval [3,4] to the
matrix entry, and for OPSMRM, we assign replicates {3,4}.

Evaluation Metrics: The following metrics are studied:

1) Result Quality: for GAL and GDS2003, we use biological
significance of the mined OPSMs to demonstrate the result
quality of our proposed method. We adopt a widely used
metric, p-value [11], [7], [17], which measures the associa-
tion between OPSMs mined and the known gene functional
categories. Specifically, a smaller p-value indicates a stronger
association between an OPSM and gene categories, i.e., bi-
ologically more significant. Following [7], we also consider
four p-value ranges, [0,1074%), [10740,10730), [1073°,1072)
and [10720, 00), as significance levels. We compared the result
quality of our algorithms with the existing algorithms in terms
of the number of OPSMs mined at each significance level.

For the movie rating dataset, we define a Kendall tau score
(KTS) motivated by the concept of Kendall tau distance: for
a mined OPSM with movie order t; < ty < ... < t3, we
compute a KTS for each user g; in the OPSM, which equals
the fraction of all possible C7 movie pairs (¢;,¢;) where the
rating order is consistent with that in our 943 x 100 submatrix
My; the KTS of the OPSM is then computed as the average
KTS over all its users.

Zhttp:/genomebiology.com/content/supplementary/gb-2003-4-5-r34-s8.txt
3https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2003
“https://grouplens.org/datasets/movielens/100k/
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Figure 6: OPSM Result Distribution w.r.t. Size Thresholds

2) Time Efficiency: we evaluate the time efficiency of the
algorithms by considering the following two metrics:

e TR-Time: total running time for mining the OPSMs;

e SP-Time: the average time for mining a single OPSM.
Here, SP-Time equals TR-Time divided by the number of
patterns mined.

3) Space Efficiency: we report the peak memory consump-
tion of each program run in our experiments.

All experiments were repeated for 10 times and the reported
metrics are averaged over the 10 runs (although results ob-
served from different runs are actually quite stable/similar).

B. Experiments on GAL Dataset

Effect of Size Thresholds 7., and 7.,. We follow [7]’s
parameter settings of 7,.,, and 7., for evaluating of GAL,
by fixing 7¢u; = 0.5, Tprop = 0.95. This is because with
Tprob = 0.95 the number of OPSMs mined by different
algorithms are similar to each other, which makes it fair to
compare the percentage of patterns in each significance level.
Also, since the results are similar for various 7.,; values, we
only show results when 7.,; = 0.5 to save space.

Result Quality. We vary 7., among {40, 50,60} and vary
Teoi @among {4,5}. Figure 6 presents the fraction of mined
OPSMs that fall in each significance level. For example,
the first bar “(40, 4), DFS-ES/Apri-ES” represents the dis-
tribution of the patterns mined by DFS-ES or Apri-ES with
Trow = 40,701 = 4. We see that our algorithms find larger
fractions of high-quality OPSMs, as they have much taller
white bars (representing highest significance level with pvalue
€ [0,107%9)) than POPSM and OPSMRM. For example,
when 7,0, = 60,7, = 4, our proposed ES and PF has
51.4% and 61.7% of patterns falls into the highest significance
level, while POPSM and OPSMRM has only 36.9% and
39.7%, respectively. Among our algorithms, PF performs the
best, followed by PFA and then by ES, which verifies that
considering PMF gives more better results than considering
only expectation, even with approximation adopted.

Table I presents the number of OPSMs mined. If we
consider the fraction of OPSMs mined that fall into the highest

Table I: Number of OPSMs w.r.t. Size Thresholds

(40, 4) | (40,5) | (50, 4) | (50, 3) | (60, 4) | (60, 5)
DFS/Apri-ES | 6296 3246 2537 834 1033 144
DFS/Apri-PE | 4867 2253 1967 562 804 94
DFS/Apri-PFA | 4179 1842 1751 452 658 50
POPSM 5687 3177 3003 1290 1475 355
OPSMRM 2989 337 1141 169 406 10
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Figure 7: Total Runtime w.r.t. Size Thresholds (70w, Tcot)
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significance level, [0,1071%), on average (across the different
groups of parameters tested) PF has 30% more OPSMs than
ES, 84% more OPSMs than POPSM, and 112% more OPSMs
than OPSMRM. Both of our proposed methods can discover
more patterns than OPSMRM, though in some cases, POPSM
discovers slightly more patterns.

Time Efficiency. Figures 7 and 8 show the total running
time TR-Time and average single-pattern running time SP-
Time of our proposed methods and the existing algorithms
OPSMRM and POPSM for different (7;ou, Teor). From Fig-
ure 7 we can see that our fast Apriori based mining algorithms
Apri-ES and Apri-PF have a shorter total running time com-
pared with POPSM, except when (7,0, = 40, 7oy = 4) Where
Apri-ES is 0.3 second slower than POPSM (but discovers 611
more OPSMs). OPSMRM has the shortest running time among
all the methods, but it discovers the fewest number of OPSMs.
In fact, according to Figure 8, OPSMRM has the worst SP-
Time. Apri-ES and Apri-PF perform better than POPSM in
terms of SP-Time, as they discovered more OPSMs. PFA
algorithms are always faster than PF, and while Apri-PFA is
faster than Apri-ES, DFS-PFA is slightly slower than DFS-ES.

Memory Efficiency. Figure 9 shows the peak memory
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Table II: Number of OPSMs w.r.t. Inclusion Thresholds 7.,

0.2 0.3 0.4 0.5 0.6
DFS/Apri-ES 2537 2537 2531 | 2402 | 1531
DFS/Apri-PF 1967 1967 1965 | 1930 | 1521
DES/Apri-PFA | 1751 1751 1696 | 1613 | 1183
POPSM 24953 | 10990 | 5731 | 3002 | 1516
OPSMRM 1141 1141 1138 | 751 496

usage of various algorithms. We can see that Apri-ES, DFS-ES
and Apri-FPA have a much lower memory consumption com-
pared with the other algorithms. For example, when 7.5, = 40
and 7., = 4, ES consumes 11.9 times less memory than
OPSMRM, and 15.9 times less memory than POPSM. The
less memory usage by ES does not compromise the number
of mined OPSMs: as Table I shows, ES discovers 2.1 times
more OPSMs than OPSMRM and 1.1 times more OPSMs than
POPSM. Our PF algorithms use more memory than ES due
to the need of processing PMF vectors (c.f. Section IV-B), but
they generate higher-quality OPSMs (in terms of p-value) than
ES (c.f. Figure 6). Compared with OPSMRM and POPSM,
PF algorithms have a much lower memory consumption than
OPSMRM and POPSM especially when (7,.ou, Teor) = (40,4)
and (40,5) where the number of OPSMs mined are large. In
fact, as Figure 9 shows, POPSM consistently uses the most
memory under different parameter settings.

Effect of Inclusion Threshold 7.,;. We fix 7., = 50, Teor =
4 since the above experiments show that various methods
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Figure 11: OPSM Result Distribution w.r.t. 7prp

Table III: Number of OPSMs w.r.t. Confidence Threshold 7,4

0.2 0.3 0.4 0.5 0.6 0.7 0.8
3621 | 3212 | 2910 | 2664 | 2422 | 2209 | 1967

DFES/Apri-PF

generate comparable number of OPSMs with these parameters.
We also fix 7.0, = 0.8 for DFS-PF and Apri-PF, but vary 7.,
among {0.2,0.3,0.4,0.5,0.6}. Figure 10 shows the fraction
of OPSMs in each significance level for every algorithm with
different inclusion threshold 7.,;. Table II presents the number
of OPSMs mined with different inclusion threshold 7.,:. We
can see that our algorithms consistently outperform POPSM
and OPSMRM at various values of 7., (c.f. the white bars).

Our algorithms have both a higher OPSM quality and a
larger number of OPSMs found compared with OPSMRM.
POPSM sometimes finds more OPSMs but our algorithms
have a better OPSM quality. For example, when 7., = 0.4,
46% and 58% of the OPSMs found by our ES and PF algo-
rithms fall into the highest significance level, while POPSM
and OPSMRM have only 33% and 32%, respectively.
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Figure 12: Total Running Time w.r.t 7,
Table IV: Total Running Time w.r.t. Size Thresholds

(200, 4) | (200, 5) | (300, 4) | (300, 5) | (400, 4) | (400, 5)

Apri-ES 1604 1286 262 225 61 59
Apri-PF 2871 2261 473 440 123 125
Apri-PFA | 1420 1138 221 189 52 50
DFS-ES 2358 1938 412 370 100 96
DFS-PF 6345 5640 1155 1104 300 297
DFS-PFA | 4998 4107 937 841 252 241
POPSM OOM OOM 14643 14209 5133 5200
OPSMRM | 235 235 216 216 197 197




Effect of Probability Threshold 7,,.,,. We study the effect
of Tprop used in PF, by fixing (70w = 50, 7o = 4) (which
has the largest fraction of OPSMs fall in the top-2 levels in
Figure 6), and 7.,; = 0.5; and varying 7,,.,;, from 0.2 to 0.95
with a step length of 0.05. Figure 11 and Table III shows that
our model is very robust, not sensitive to parameter 7., and
has consistent performance in terms of result quality.

Figure 12 shows the TR-Time of PF and PFA algorithms
w.r.t. diffierent 7,,.,,. We can see that our Apriori-based mining
algorithm Apri-PF(A) has shorter running time than the naive
depth-first-based method DFS-PF(A), especially when 7., is
small (and hence more OPSMs are found). Apri-PF(A) also
has a stable running time with different 7,,.,;. Figure 12 also
shows that the approximation algorithms PFA gain an obvious
speedup compared with PF algorithms.

Wrapup. To summarize, this set of experiments show that
our ES and PF models are robust and output higher-quality
OPSMs than OPSMRM and POPSM, and consistently find
more OPSMs than OPSMRM. Our Apriori-based algorithms
also consistently outperform POPSM in terms of SP-Time. ES
consumes the least amount of memory, and PF consumes more
memory than ES but less memory than OPSMRM and POPSM.

C. Experiments on the GDS Dataset

The results on the GDS dataset is similar to those on the
GAL dataset described above, and due to the space limitation,
we put them in Appendix F [1].

D. Experiments on the Movie Rating Dataset

Time Efficiency. Table IV shows the TR-Time of various algo-
rithms with different (7,00, Teot) (W.l0.g., we fix 7oyt = 0.3,
Tprob = 0.6), where OOM means out of memory. Note that
when T,,, = 200, POPSM always runs out of memory after
10 hours. OPSMRM has the shortest TR-Time but it failed to
produce any OPSMs that satisfy the 7., threshold. We see
that our methods are tens of times faster than POPSM, and
ES methods are faster than PF as they do not process PMF
vectors. Apriori-based algorithms are also faster than their
DFS-based counterparts due to effectiveness pattern pruning.
Finally, approximation algorithms PFA provides reasonable
speedup to PF.

Effectiveness. Without loss of generality, we consider 7., =
0.3, Tprob = 0.6, Trow = 300 and vary 7., = 5, and visualize
the top-10 OPSMs mined by DFS/Apri-ES, DFS/Apri-PF and
POPSM with the highest KTS. We remark that here our DF'S-
ES consumes 2582x less memory than POPSM and 3294 x
less memory than OPSMRM.

Table V(a) lists the top-10 OPSM patterns with the highest
KTS produced by ES, Table V(b) by PF, Table V(c) by PFA,
and Table V(d) by POPSM. To be space efficient, we use
abbreviations for movie names, and their meanings are listed
in Table VI. We can see that the OPSMs mined by our methods
generally have a higher KTS.

E. Scalability Experiments
To examine how well our algorithms scale to the number of
rows and columns of a data matrix D, we duplicate the rows
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and columns of our 943 x 100 movie rating submatrix M to
generate larger datasets for running scalability experiments.

To test row scalability, we duplicate the rows of M for 100,
200, 300, 400 and 500 times, and run the various algorithms on
them. Without loss of generality, we set 7., = 0.6xn (Where
n is the row number) and fix 7.,; = 5 and 7, = 0.6. Unfor-
tunately, OPSMRM runs out of memory even on the smallest
data with M,’s rows duplicated for 100 times, and thus we
cannot report its result. The results for the other algorithms are
shown in Figure 13, where we observe that POPSM is much
slower than our algorithms, and that Apri-ES and Apri-PFA
are much faster than the other algorithms. Overall, the time
of all algorithms scale linearly with row number n, which
matches our derived time complexity O(Cn(m? 4 log®n)) in
Section V-B (i.e., linear to n and quadratic to m).

To test column scalability, we duplicate the columns of M
for 2, 4, 8 and 16 times, and run the various algorithms on
them. Here, we set 7,4y = 700,7co; = 5 and 7,05 = 0.6.
The results are shown in Figure 14, where we observe that
the running time of various algorithms increase quickly with
column number m, which aligns with our analysis. Although
OPSMRM has a similar running time to our algorithms,
the memory consumption rockets up with more columns.
Also, OPSM-RM runs out of memory when the columns are
duplicated for 4 times and thus we only plot 2 points for it
in Figure 14. Finally, POPSM is not only slower than all our
algorithms, its increase rate is also sharper.

VII. RELATED WORK
Many problems have been studied in the context of data
uncertainty, such as top-k queries [12], [10], [15], frequent
itemset mining [13], [14], frequent sequence mining [19], [21],



Table V: Movie Pattern Visualization

(a) Top-10 OPSMs by DFS/Apri-ES (b) Top-10 OPSMs by DFS/Apri-PF (c) Top-10 OPSMs by DFS/Apri-PFA

(d) Top-10 OPSMs by POPSM

[ 2 [ 13 i, is KTS 0 [tz | t3 i is KTS [ 12 | t3 P KTS |2 [ 13 i, | ts KTS
TI 1D AFO | 10 MPHG | 99.52% TI | ID AFO | IO MPHG | 99.52% TI | ID | AFO | IO MPHG | 99.52% TI 1D AFO | 10 MPHG | 99.32%
TI 1D MB 10 MPHG | 99.41% TI | ID MB 10 MPHG | 99.41% TI | ID | MB 10 MPHG | 99.41% TI RK | AN CA | MPHG | 99.24%
T | ID | SL 10 | MPHG | 99.39% TI | ID | SL 10 | MPHG | 99.39% Tl | ID | SL 10 | MPHG | 99.39% R | RK | AN | PB | MPHG | 99.19%
TI RK | AN DW | MPHG | 99.37% TI | RK | AN DW | MPHG | 99.37% TI | ID | M 10 MPHG | 99.35% R RK | AN 10 MPHG | 99.19%
TI 1D M 10 MPHG | 99.35% TI | ID M 10 MPHG | 99.35% TI | ID | SL CA | MPHG | 99.35% TI RK | MB 10 MPHG | 99.19%
T | ID | SL CA | MPHG | 99.35% TI | ID | SL CA | MPHG | 99.35% TI | ID | Jaws | CA | MPHG | 99.26% ET [ RK | AN | S MPHG | 99.19%
ET | TK | AN TT MPHG | 99.27% TI | MI AFO | 10 MPHG | 99.24% TI | R RK AN | MPHG | 99.24% TI 1D SL 10 MPHG | 99.19%
TI MI | AFO | IO MPHG | 99.26% TI | ID Us 10 MPHG | 99.24% TI | R RK AN | PB 99.18% TI 1D MB 10 MPHG | 99.19%
T | ID | US | 10 | MPHG | 99.24% TI | ID | SS 10 | MPHG | 99.19% TI | R | Jaws | CA | MPHG | 99.17% TI | RK | AN | PB | MPHG | 99.16%
T | ID | SS 10 | MPHG | 99.20% TI|ID | G 10 | MPHG | 99.18% TI | ET | SL CA | MPHG | 99.17% T | D | SL CA | MPHG | 99.15%

Table VI: Movie Names and Their Abbreviations

Titanic (1997) TI Ransom (1996) R
Independence Day (1996) |ID Rock, The (1996) RK
Air Force One (1997) AFO | Apocalypse Now (1979) AN
In & Out (1997) 10 Chasing Amy (1997) CA
Princess Bride, The (1987) |PB | Schindier’s List (1993) SL
Sting, The (1987) S Men in Black (1997) MB
Dances with Wolves (1990) | DW | Terminator, The (1984) TT
Mission: Impossible (1996) | MI | Jerry Maguire (1996) M
Usual Suspects, The (1995) | US | Sense and Sensibility (1995) SS
Game, The (1997) G E.T. the Extra-Terrestrial (1982) | ET
Monty Python and the Holy Grail (1974) MPHG

and recently, OPSM mining [17], [7]. Most of these works
adopt the possible world semantics to address the respective
problems and demonstrated their effectiveness.

The existing works that are closely related to ours are [3],
[17] and [7]. The OPSM mining problem is first introduced
in [3] to analyze gene expression data. Later, [4] develops
a more efficient mining algorithm based on a new data
structure, the head-tail trees. However, these works cannot
cope with noisy gene expression data that are common. OP-
clustering [11] generalizes the OPSM model by grouping
attributes into equivalent classes. Other models relax the order
requirement instead, such as AOPC [18] and ROPSM [6].

OPSMRM [17] combats noise in microarray analysis by
letting each test be repeated to obtain several measurements,
forming possible worlds with discrete probability distribution.
Only expected support is used to evaluate pattern significance,
and for each significant pattern, all rows whose supporting
probability is at least the inclusion threshold 7., are selected
to compose a submatrix. However, as Section VI shows, PF
generates higher-quality OPSMs than ES due to considering
the whole PMF, and interval model delivers better results.

POPSM [7] attempts to model the underlying distributions
that generate the observed measurements, and thus, the value
in each matrix entry is given by an interval with its asso-
ciated continuous probability distribution. However, instead
of defining pattern frequentness according to possible world
semantics, POPSM adopts a simple requirement that every
row in an output OPSM has its supporting probability no less
than a user-defined threshold 7,;, which is unclear how to set
properly due to the lack of semantics from probability theory.
Section VI verifies that our use of possible world semantics
allows the generation of higher-quality OPSMs than POPSM.

VIII. CONCLUSION

This work studied probabilistically-frequent OPSM mining
over matrix with continuous value uncertainty, following the
well-established possible world semantics. To our knowledge,

this is the first OPSM mining work that combines both possible
world semantics and interval-based data model. We proposed
many techniques to efficiently determine pattern significance
and to prune unpromising patterns. Experiments show that our
algorithms find OPSMs with much higher quality than existing
approaches, and the time cost is also competitive.
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