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Abstract—Lane recognition helps to guide vehicles and is
important in driving assistance and autonomous driving. While
deep learning techniques have advanced the accuracy of lane
recognition, they only aim to minimize the pixel-wise difference
between prediction and ground truth, which does not always
reflect the true quality of lane recognition. The predicted road
marking (white/yellow lines) pixels also do not directly reflect
the lane parameters which are essentially straight lines. In this
paper, a novel Hough transform based approach is proposed
to simultaneously extract lane parameters and give an intuitive
quality score on how the lane parameters match the ground
truth. This approach can be used with any pixel-wise lane
recognition algorithms.
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I. INTRODUCTION

Traffic lane recognition now plays an important role
in advanced driver-assistance systems (ADAS) which help
drivers in lane keeping or give lane departure warning alerts.
Lane parameters are also essential inputs to autonomous
driving, a technology being actively developed nowadays.

Following the success of deep learning (esp. convolutional
neural network or CNN in short) in achieving high accuracy
in image classification, a number of efforts have been made
to apply CNNs for semantic segmentation, which assigns a
class label to each pixel in an image [8], [9], [2], [12], [13],
[11], [10]. These models can be applied to camera-based
lane recognition, where each pixel is assigned to either of the
two classes: Lane or Background (hereafter, we simply use
“lane” to mean the road markings like the solid/broken
white/yellow lines that define lane boundaries, which are
the actual line targets to extract), and the performance is
evaluated as the pixel-wise difference between prediction
and ground truth.

However, pixel-wise segmentation cannot produce infor-
mation directly understandable by computers for decision
making, such as lane parameters like the position and
direction of a lane. We propose to use Hough transform [5]
to extract lane parameters in polar coordinates from the
prediction that output by a deep learning algorithm.

In addition, we notice that the pixel-wise difference be-
tween prediction output and ground truth may not always

reflect the accuracy of the extracted lane parameters. For
example, the predicted lane pixels may not match perfectly
with ground truth lane positions due to (1) noises in images
such as lanes occluded by vehicles or lanes not even painted
on the road surface, and due to (2) slight shift of human-
labeled lines from the actual lane positions, even though the
extracted line parameters are pretty accurate.

Existing deep learning models tend to overfit towards
noises in images and lane labels, since a pixel-wise loss
function is used to evaluate the validation error during
training, leading to superfluous iterations of gradient descent
being executed after good model parameters have been
reached. We thus propose a new Hough transform based
metric that directly compares the difference between the
parameters of the extracted lanes and those of the ground
truth. There are 2 challenges in the metric design:

• Both prediction output and ground truth are pixels
rather than lines. Our solution is to apply Hough trans-
form to both of them to extract their line parameters
for subsequent comparisons.

• Since an image may contain multiple lanes, the com-
parison should match each predicted lane with the
corresponding one in the ground truth, which essen-
tially is an instance segmentation problem. However,
popular instance segmentation methods such as region
proposals are preprocessing methods before inputting
into a CNN model, while our evaluator requires a
postprocessing approach for instance matching.

To tackle the second challenge, we propose to train
a lightweight k-nearest neighbor (k-NN) classifier on the
extracted lines from ground-truth annotation, which is used
to match each predicted line with a specific lane. To obtain
the lanes of the ground truth, we use k-means clustering to
group the extracted lines, which are then input to the k-NN
classifier for training where a special treatment is necessary
to account for the imbalance of lane classes (see Section IV).

The rest of this paper is organized as follows. Section II
reviews the related work on image segmentation with deep
learning. Section III reviews how we extract lines from
prediction output and ground truth. Section IV explains how



we group the extracted lines by lanes, and how we match
lane parameters from prediction output and ground truth to
evaluate lane recognition quality. Finally, Section V reports
our experimental results and Section VI concludes this paper.

II. RELATED WORK

Lane detection systems have been studied for over two
decades [7], but to reconcile a lane fitting model with
an input image, existing algorithms rely on hand-crafted
visual features [6]. Recent advancement in deep learning has
generated a number of CNN models for image segmentation
as pioneered by fully convolution network (FCN) [8], which
can be used for lane detection without using hand-crafted
visual features. FCN replaces FC layers at the end with
1 × 1 convolutional layers for dense prediction, which is
then upsampled by deconvolution to generate the segmen-
tation label map. However, since deep features lose spatial
location information, existing work on CNN-based semantic
segmentation focuses on techniques to remedy the loss.

FCN uses a skip architecture that fuses upsampled maps
with output from shallower layers for further upsampling
to avoid rough segmentation output. DeconvNet [9] further
adds unpooling layers that remember the position of each
maximum activation value when doing max pooling, which
is used to place each activation back to its original pooled
location. DeconvNet also uses region proposals from Edge-
Box to help detect objects that are substantially larger or
smaller than the receptive field. Other similar convolutional
encoder-decoder architectures include SegNet [2] and U-
Net [12]. DeepLab [4] uses atrous convolution (aka. dilated
convolution) to enlarge the receptive field to incorporate
larger context, and adopts atrous spatial pyramid pooling
(ASPP) to account for different object scales. DeepLab also
postprocesses the segmentation output by a fully connected
conditional random field (CRF) to incorporate smoothness
constraints in order to improve object delineation. CRF-
RNN [13] avoids the need of postprocessing with CRF by
modeling each iteration of mean-field approximate inference
by common CNN operations, which are connected by an
RNN structure for end-to-end learning.

In the context of lane detection, however, the above
models may not be the best since a lane is a long object
that spans road surface which requires a large receptive
field to capture, and harsh conditions such as occlusion
and raining make the detection even more difficult. Global
convolutional network (GCN) [11] proposes to use large
kernels that are able to cover entire objects, but instead
of using an expensive dense k × k feature map, it uses a
combination of 1×k+k×1 and k×1+1×k convolutions
to reduce the number of model parameters, and also adds
a boundary refinement (BR) module modeled as a residual
structure to further refine the object boundaries. Spatial CNN
(SCNN) [10] aims to capture spatial relationships of pixels
across rows and columns of the same image by generalizing

Figure 1. Samples from the CULane Dataset

traditional deep layer-by-layer convolutions to slice-by-slice
convolutions within feature maps where messages are passed
as residuals, so that long continuous shaped structure or large
objects can be captured even with weak appearance clues,
such as lanes with occlusion and unpainted segments.

Our Hough transform based evaluator can work with any
deep learning model for semantic segmentation, though in
this work we use GCN as a backbone network.

III. LINE EXTRACTION BY HOUGH TRANSFORM

Recall that we want to extract a line for each lane in an
image in terms of line parameter using Hough transform, so
that the line can be used by subsequent decision making.

In a typical lane detection setting, video frames recorded
by vehicle-mounted cameras are labeled by human annota-
tors who can easily infer the lane positions and fill in the
occluded part from the context, i.e., the viewable part of a
lane. In this paper, we use the CULane [1] dataset which is
created for academic research regarding traffic lane detection
by the multimedia laboratory of the Chinese University of
Hong Kong. The dataset includes video frames recorded by
vehicles driven by different drivers in Beijing on different
days. It contains 133,235 image frames including 88,800 in
the training set, 9675 in the validation set, and 34,680 in the
test set. See Figure 1 for two sample frames.

By training a GCN model over CULane, we obtain a
segmentation model which takes an image and produces
a prediction map of the same size as the input image.
Each pixel xi in the prediction map is associated with a
value, i.e., the probability that xi is on a lane, which equals
Pr(Lane) = sigmoid(slane) where slane equals the lane-
score for that pixel output by GCN (with a binary cross
entropy loss).

Before extracting lines from the prediction map output by
GCN using Hough transform, we first convert the prediction
map into a binary image by thresholding: xi is considered
on a lane if Pr(Lane) ≥ 0.5; otherwise, xi is considered
as in the background.

The binary image is then input to Hough transform to
extract lines. Specifically, let (x, y) be a pixel on a lane as
shown in Figure 2, then we can show that the blue line (for
the lane) that passes through (x, y) can be represented as



Figure 2. A Line in Polar Coordinates (ρ, θ)

Figure 3. Line Detection by Hough Transform

ρ = x cos θ+y sin θ. Here, ρ is the distance from the origin
to the closest point on the line, and θ is the angle between
the x-axis and the line which connects with the origin and
the closest point on the line. Different values of the Polar
coordinates (ρ, θ) specify different lines that pass through
(x, y), i.e., the lines rotate with center (x, y). In the (ρ, θ)
system, these lines correspond to a sinusoid.

Now consider Figure 3 where four points on a lane are
plotted on the left; the plot on the right shows the line
functions that pass through these points (i.e., sinusoids), and
note that they intersect at a particular (ρ, θ) point which
represents the line of the lane that the four lane points are
on.

To detect the lanes in a binary image, we can plot
the sinusoid for each lane point in the (ρ, θ) coordinate
system, and find the intersection points. Here, we use the
“HoughLines” function of OpenCV which discretizes the
(ρ, θ) coordinate system into cells and counts how many
times each cell (ρ, θ) (which represents a line) is passed by a
sinusoid. A threshold τ is used to find only those cells with
counts at least τ , which correspond to the detected lines.
For our dataset, we find that “HoughLines” works well in
general when we use a discretization granularity of 1 pixel
for ρ and 1 degree for θ, and use τ = 50 to filter unlikely
cells.

Now that we extracted lines that are likely to be on lanes
in the form of a set {(ρ1, θ1), (ρ2, θ2), . . .}, we need to
group them by different lanes and to extract the line of
each lane from its group. As we shall see in Section IV,
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Figure 4. Line Extraction by Hough Transform

we perform this grouping using k-means clustering over
{(ρ1, θ1), (ρ2, θ2), . . .}, which works well since points of
different lanes are properly separated. Since k-means (as
well as the k-NN lane classification to be introduced in
Section IV) works well when the data scale is normalized,
we conduct min-max scaling of ρ and θ over every set
{(ρ1, θ1), (ρ2, θ2), . . .} output by “HoughLines”. Our em-
pirical study shows that the min-max scaling is important
for the effectiveness of our approach.

Recall from Figure 1 (the two images at the bottom)
that the ground truth annotations are already binary images.
Therefore, unlike the GCN prediction map that requires
binarization, we can apply “HoughLines” to directly extract
lines {(ρ′1, θ′1), (ρ′2, θ′2), . . .} from a ground-truth annotation.
As we shall see in Section IV, for each image, we extract
lines from both the ground truth and the GCN prediction
output, and then compares the two line sets to evaluate the
lane recognition quality. As a nutshell, Figure 4 summarizes
the operations described in this section.

IV. LANE EXTRACTION AND MATCHING

Recall from Figure 4 that we have extracted lines from the
lane points of both the segmentation output and the ground-
truth annotation. The next step is to (1) group the lines
by lanes and extract a unique line from each group, and
to (2) compare the lane-lines extracted from the prediction
with those from the ground-truth annotation to evaluate the
accuracy of lane recognition.

Since lines belonging to different lanes are usually well
separated, it suffices to simply run the k-means algorithm on
the normalized line parameters {(ρ1, θ1), (ρ2, θ2), . . .}. We
then take the mean or median (ρ, θ) of each group as the



line for the corresponding lane. One issue is how to obtain
the lane number k which is the clustering input:
• If we are evaluating the quality of the extracted lanes,

e.g., during validation, we have access to the ground-
truth annotation which has the number of lanes.

• If we are using our lane extraction approach during
actual driving, then k can be obtained from GPS devices
and online map services (e.g., Google Maps) which
map our location to a road segment whose metadata
usually contains the lane number. If such a data source
is not available, we can use the popular elbow method
to choose k which usually works well as the lane-lines
are well separated.

One observation we obtain is that the binarized image
of the GCN prediction map can sometimes be noisy due
to lanes occluded by vehicles, lanes not painted on the
road surface, and harsh weather conditions. In fact, in a
lot of images, the lane positions are kind of “inferred” by
GCN according to cars in nearby lanes thanks to the large
kernel size of GCN. As a result, we recommend to use the
median (ρ, θ) of each group from k-means clustering as
the corresponding lane-line to minimize the impact of noisy
lines. By taking the median, our Hough transform based line
extraction approach has a denoising effect to obtain more
robust lane-lines.

In contrast, if we are doing validation with ground-truth
annotation at hand, we can obtain the lane-lines directly from
the ground-truth annotation image that has minimal noise,
in which case the mean (ρ, θ) of each group from k-means
clustering serves the purpose well. Using these lane-lines
as templates, we can then group the lines extracted from
the GCN prediction map, e.g., by assigning each line to the
group whose lane-line is the closest. This allows us to match
the groups from the prediction with those from the ground
truth according to their corresponding lanes for subsequent
quality evaluation.

Instead of directly finding the closest lane-line obtained
from ground truth, we match each line extracted from
prediction to its specific lane by using a more robust k-
NN lane classifier trained over the line groups returned by
k-means over the lines extracted from the ground truth. In
other words, we consider all lines extracted from the ground-
truth rather than the group means (which are summary of
those lines).

Figure 5 summarizes this process for each image in our
validation set, where we can see that the extracted lines from
ground truth are assigned group numbers using k-means
clustering, which are then used to train a k-NN classifier. In
contrast, the extracted lines from GCN output are directly
input to the k-NN classifier to get their group numbers
assigned. Note that the two line sets are matched with the
same list of group numbers (i.e., class IDs) as given by
k-means clustering over the lines from ground truth, and
therefore groups are properly aligned by lanes for subsequent
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Figure 5. The Workflow of Our Evaluator

quality evaluation. Finally, we get the lane-lines for either
line-set by computing the mean or median line parameters of
each group (there are 4 lanes in Figure 5), and then compute
the mean square error (MSE) of the two lane parameter
vectors, which reflects how the lane-lines derived from GCN
output are different from those extracted from ground truth.
This error is our evaluator of how far the detected lanes
are different from the ground truth, which we call the
HTB (Hough transform based) error.

We omitted one small step for addressing the class imbal-
ance problem in Figure 5 for simplicity, which is, however,
important in making our approach work in practice. Let us
assume that there are 4 lanes in an image. Since human
annotations are of a good quality, points on a lane might
hit on exactly the same cell in the (ρ, θ) coordinate system,
leading to only one line detected by Hough transform. If
we directly input the line set to a k-NN classifier, lines of
this lane will be misclassified as the penalty in the training
set is small. Figure 6 illustrates such a scenario where the
red line-group from the ground truth only contains one line
(Figure 6(a)), and using a k-NN classifier trained over such
data, when classifying the lines extracted from GCN output,
the lines of that lane are misclassified into the orange group
(Figure 6(b)). Note that there are many lines of the red group
extracted from GCN output, since the image data is noisy
with, e.g., lane occlusions.

To address this problem, we adopt random over-sampling
which randomly samples with replacement the current avail-
able lines in each under-represented group. We tried more
advanced methods to over-sample minority classes such as
SMOTE [3] but the performance is not better since our
minority lane group often has only one line, and SMOTE
generates synthetic lines by mixing the line with a nearby
line which is often from another lane.



(a) k-means output (on ground truth)
(b) k-NN prediction (on GCN output) 

without over sampling

Figure 6. Misclassification of Minority Class

V. EXPERIMENTS

We tested our approach on the CULane dataset [1] with
GCN [11] as the backbone network for semantic segmenta-
tion. CULane contains 88,800 images for training, 9675 im-
ages for validation, and 34,680 images for test. With careful
model selection, we find that setting the hyperparameter k
of k-NN lane classifier as 3 gives the best performance and
is robust. Our code is open-sourced at https://github.com/
Xingyao-Wang/HT-Based-Evaluation-Metric.

We trained GCN over CULane while observing both our
HTB error and the regular cross-entropy loss for pixel-
wise segmentation, and saved the model parameters for
subsequent experiments when the HTB error drops to a
stable level. In fact, we find that if we run for more epochs,
HTB error begins to increase slowly (indicating that the
model begins to overfit) even though the regular cross-
entropy loss is stable and keeps decreasing slowly.

A lot of pixel-wise evaluators have been used in the
literature of semantic segmentation, such as mean square
error (MSE), mean IoU (intersection over union), and F
measure. We compared them with our HTB error and found
that HTB error best reflects the quality of lane extraction. In
the sequel, we report a comparison of HTB error with MSE
(directly on pixels) as the representative pixel-wise evaluator.

Figure 7 shows a comparison between HTB error and
direct MSE over our images in the validation set. The
horizontal axis and vertical axis corresponds to HTB error
and direct MSE, respectively, and the red line is where HTB
error = direct MSE. We can see that most points are above
the red line, which indicates that these images have a higher
direct MSE than their HTB error. In other words, when the
HTB error approaches zero which indicates a high accuracy
in lane detection, direct MSE still has a high variance spread
along the vertical axis. This is made clearer by Figure 8.

Also, in Figure 7, given the same direct MSE, say 0.1,
HTB error can have a big variance which means that the lane
parameter prediction accuracy can be either high or low on
the same direct MSE level, meaning that pixel-wise MSE is
not an accurate quality evaluator.

Finally, let us visualize the effectiveness of our Hough
transform based (HTB) lane extraction. Figure 9 shows a
three-lane scenario: the first image is the input image, and
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Figure 8. Error Distributions on Validation Set

white lines in the remaining 3 images are ground-truth lane
pixels. In the second (resp. third) image, the red pixels
reflect Pr(Lane) output by GCN (resp. the lane pixels after
binarization), where we can see that the white and red pixels
are not perfectly overlapped. In fact, some detected lane
pixels at the lower-right corner are noisy. The red lines in the
fourth image are those output by our HTB extractor, which
are very close to the white lines that are ground truth.

Figure 10 shows a two-lane scenario, where we can see
similar observations: our HTB extractor effectively denoises
the GCN output.

VI. CONCLUSIONS

This work proposed a novel Hough transform based lane
extractor and the corresponding evaluator called HTB error
which more accurately reflects the lane detection quality.
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Figure 9. A Three-Lane Scenario
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