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Abstract—Knowing the locations of tweets can benefit a wide
variety of applications such as venue recommendation, event de-
tection, and monitoring disaster outbreaks. However, the problem
of fine-grained tweet geolocation prediction is challenging since
tweets are short and therefore may not contain any geo-indicative
words or may contain ambiguous, noisy information. Existing
solutions either yield an unsatisfactory accuracy in practical
applications or make predictions that even experts struggle to
interpret, failing to engender sufficient trust and actionability for
real-world deployment. Our paper presents a tweet geolocation
prediction framework, EDGE (Entity-Diffusion Gaussian Ensem-
ble), which delivers predictions that are both accurate and highly
interpretable without requiring any additional contextual infor-
mation such as user profile and location history. In EDGE, we
cast the geolocation problem as a neutral network optimization
problem by learning probabilistic generative models. Compared
with existing works, EDGE has two distinctive features: (1) the
inference builds on mining the correlation between non geo-
indicative entities and geo-indicative entities by diffusing their
semantic embeddings over the constructed graph neural network
(Entity Diffusion) and (2) each prediction result is represented as
a Gaussian mixture instead of specific geographical coordinates
(Gaussian Ensemble). Extensive experiments using real-world
tweet datasets validate the superiority of EDGE over the state
of the art in terms of all distance-based and POI-based metrics.

Index Terms—Tweet Geolocation, Gaussian Mixture Model,
Graph Neural Network

I. INTRODUCTION

With the prevalence of smart devices and the worldwide
accessibility to the Internet, social media have become “the go-
to platform” of the World Wide Web. Twitter is one of the most
popular social media where people share their views, real-
time information and reactions to the days events. On average,
more than 100 million users post about 500 million tweets
per day [38]]. Knowing the locations of tweets can benefit a
wide variety of applications such as venue recommendation,
event detection and monitoring disaster outbreaks [18], [29],
[36], [40]. In particular, this kind of inference allows for more
robust spatio-temporal analysis for dynamic events on social
media. For example, the identification of the spreading pattern
of COVID-19 related tweets can provide a sense of how
COVID-19 is spreading geographically over time, which is
vital to developing effective strategies to contain the pandemic.
Unfortunately, in reality, only a small portion (1%-2%) of
tweets are posted with a precise location (GPS coordinates)
[34]. Therefore, there is a pressing need to determine locations
of those tweets which are not posted with precise locations.
However, existing solutions to tweet geolocation prediction
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[11], [41] either yield an unsatisfactory accuracy from a
practical perspective or make predictions that even experts
struggle to interpret, therefore failing to engender sufficient
trust and actionability for real-world deployment.

This paper presents a tweet geolocation prediction frame-
work, Entity-Diffusion Gaussian Ensemble (EDGE), that de-
livers predictions that are both accurate and highly in-
terpretable without requiring any additional contextual
information. EDGE consists of three seamlessly integrated
modules: (1) entity embedding extraction and diffusion, (2)
attention aggregation, and (3) mixture distribution learning.

Specifically, EDGE casts the geolocation problem as a
neutral network optimization problem by learning a Gaussian
mixture for each tweet. EDGE has two distinctive features: (1)
the inference builds upon mining the correlation between
non geo-indicative entities and geo-indicative entities by
diffusing their semantic embeddings over the constructed
graph neural network and (2) each prediction result is returned
as a Gaussian mixture rather than specific geographical
coordinates.

A Running Example. Figure [I|] compares the geographic
distributions of the tweets mentioning “quarantine” in two
separate time periods in New York during the COVID-19
pandemic. Specifically, Figure [T(a) plots the tweets posted
between March 12, 2020 and March 22, 2020 while Fig-
ure [T[b) depicts the tweets posted between March 22, 2020
and April 2, 2020. Note that the location distribution of those
tweets was predicted by our model. As shown in Figure [I] a
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(a) March 12, 2020 to
March 22, 2020

(b) March 22, 2020 to
April 02, 2020

Fig. 1: Geographical distributions of the tweets mentioning
quarantine collected in two separate durations in New York
during the COVID-19 pandemic, where the locations of the
non geo-tagged tweets were predicted by EDGE.
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Fig. 2: Geographical distribution of tweets in New York. The subfigure (a) shows the location distribution of tweets mentioning
Stadium, where the green triangle is MetLife Stadium, the blue polygon refers to Yankee Stadium, and the purple square
indicates CitiField. The subfigure (b) shows the geographical distribution of tweets mentioning American Airlines, where the
green triangle, the blue polygon, and the purple square represent John F. Kennedy International Airport, LaGuardia Airport,

and American Airlines Theatre, respectively.

quick spreading of the COVID-19 cases in New York can be
observed.

We summarize our contributions as follows:

o We present EDGE, a novel tweet geolocation prediction
framework that delivers predictions that are both accurate
and interpretable without requiring mentions of locations
in the text or any additional contextual information.

o We propose entity2vec to extract embedding for named
entities appearing in tweets instead of treating them as a
composition of independent words.

o We develop an entity diffusion mechanism to capture the
correlation between non geo-indicative entities and geo-
indicative entities by diffusing spatially distinctive infor-
mation over a graph convolutional network. This design
allows us to learn the spatially smoothed embedding for
each entity.

e« We design an attention mechanism to weight the im-
portance of the entities that co-occur in the same tweet
while extracting the spatially smoothed embedding for
each tweet. Parameters are learned to weigh among fine-
grained geo-indicative entities and coarse-grained geo-
indicative entities.

e We train EDGE in an end-to-end manner to maximize
the likelihood that geo-tagged tweets are located in their
associated locations. EDGE returns a Gaussian mixture
as the prediction result and is general enough to predict
the locations of tweets within a region of any size.

e We conduct extensive experiments using real-world
datasets to demonstrate the superiority of EDGE over the
state of the art in terms of all distance-based and POI-
based metrics.

The rest of this paper is organized as follows. In Section[Il, we
give an overview of EDGE. In Section[ITI] we elaborate on our
model design. Section shows the comparative evaluation
with the state of the art and presents the parameter sensitivity
analysis. In Section|[V] we demonstrate two potential use cases.
Section [Vl reviews the related work and Section concludes
this paper.

II. OVERVIEW OF EDGE

In this section, we overview the design of our EDGE model
motivated from two challenges in location inference from a
tweet: (1) one challenge comes from the limited amount of
geo-indicative information that can be exploited from a short
tweet of up to 280 characters, and the free writing style on
twitter that does not work well with conventional NLP tools;
(2) another challenge is how to generate both accurate and
highly interpretable predictions. To address these challenges,
we obtain two important observations about the geolocation
characteristics of tweets, which motivate our EDGE architec-
ture design with three important modules.

A. Our Observations

Observation 1 (0O1): Tweets that share a specific entity
tend to cluster in groups geographically. This phenomenon
can be explained by the fact that an entity may refer to one
or a few geo-places. For example, Figure [J(a) depicts the
geolocation distribution of tweets mentioning Stadium in their
content in New York, where three clusters can be observed,
corresponding to the three stadiums in New York (MetLife
Stadium, Yankee Stadium, Citi Field). Given the tweet, “I love
my icy office!!!! I love sound checking in empty stadiums
before every game”, it is reasonable to infer that the location
of the tweet would be close to one of those three stadiums with
a relatively high probability. Note that the distance between
any two stadiums is non-negligible. Similarly, Figure [2|(b)
illustrates the three multi-modal geolocation distribution of
the tweets mentioning “American Airlines” in New York,
corresponding to the two airports in New York (John F.
Kennedy International Airport and LaGuardia Airport) and
American Airlines Theatre in Manhattan. In addition, streets in
different regions of a city may share the same name, e.g., Fifth
Avenue in Manhattan and Fifth Avenue in Park Slope, both
of which are shopping streets. Another example of different
places sharing the same entity name can be the restaurant
chains having multiple franchise locations.

Solution to OI: Predicting the location of a tweet as a
Gaussian mixture distribution. In EDGE, the geo-location of
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Fig. 3: Geo-indicative entities that co-appear with non geo-indicative entities can be leveraged to reinforce geolocation
prediction. Specifically, the location of the lower-left tweet is likely to be close to Presbyterian Hospital while the location of
the lower-right tweet is likely to be around Majestic Theatre and Broadway.

a tweet will be predicted as a Gaussian mixture where each
component is a bivariate normal distribution.

Observation 2 (02): Geo-indicative entities that co-occur
with non geo-indicative entities can be leveraged to reinforce
geolocation prediction. Due to the length limitation (280
characters) and the free writing style of tweets, the number
of geo-terms in a tweet tends to be limited. However, we
observe that there are bridges between geo-indicative entities
and non geo-indicative entities that can help geolocation
inference. For example, during the pandemic of COVID-19,
we have observed frequent co-occurrence of COVID-19 (a non
geo-indicative entity) with some geo-indicative entities (e.g.,
Presbyterian Hospital). Those geo-indicative entities that co-
appear with non geo-indicative entities can be leveraged to
reinforce geolocation prediction. As depicted in Figure [3{a),
for the tweet “This is for real... hospital this morning during
the #covidl9 pandemic”, since COVID-19 is frequently co-
mentioned with Presbyterian Hospital at that time in New
York, the tweet might be posted close to NY Presbyterian
Hospital with a relatively high probability. Figure [3[b) shows
another example. When predicting the location of the tweet,
“@PhantomOpera was a great way to end our NY trip ....”,
since @PhantomOpera was frequently mentioned along with
Majestic Theatre and Broadway at that time in New York,
the tweet might be posted close to Majestic Theatre and
Broadway. Actually, Majestic Theatre at Broadway in New
York is the most famous theater that stages “The Phantom of
the Opera.

Solution to O2: Bridging non geo-indicative entities with
geo-indicative entities by diffusing their embedding using
graph convolutions. In EDGE, each entity is first represented
as an embedding using the proposed Entity2vec technique in-
stead of being treated as a composition of independent words.
Next, to exploit the correlation between non geo-indicative
and geo-indicative words, we construct a co-occurrence based
entity graph and utilize graph-based convolution [14], [42] to

smooth the extracted embedding of each entity over its own
ego network.

B. EDGE Architecture

Figure [] shows the architecture of EDGE. EDGE consists of
three seamlessly integrated modules: (1) entity embedding ex-
traction and diffusion, (2) attention aggregation, and (3) mix-
ture distribution learning. EDGE casts the geolocation problem
as a neutral network optimization problem by learning a Gaus-
sian mixture for each tweet. Specifically, (1) we first extract
the embedding for each named entity by using the proposed
entity2vec technique, which is inspired by phrase2vector [21]).
Since an entity is not a direct composition of independent
words, our entity2vec learns embedding by treating each entity
as a whole and capturing syntactic and semantic relationships
between entities. Then we construct a co-occurrence based
entity graph and utilize Graph Convolutional Network (GCN)
to smooth the extracted embedding of each entity over its own
ego network. The goal of using graph convolution is to learn
the spatially smoothed embedding for each entity, so that the
embedding of a tweet without location in its text can also
carry geo-indicative information. (2) Next, in the attention
aggregation, the smoothed embeddings of entities are weighted
to create the spatially smoothed embedding for each tweet,
which is then fed into a fully-connected neural network to
generate the parameters of a Gaussian mixture distribution.
The attention aggregation module not only aggregates a set of
entity vectors (the number of entities in tweets varies) into
a tweet vector with fixed length but also differentiates the
importance of entities that appear in the same tweet in terms
of their capacities to infer locations. (3) Finally, a Gaussian
mixture module is introduced to address Observation 1. We
train EDGE in an end-to-end supervised manner to fit the
parameters of Gaussian mixtures to maximize the likelihood
that geo-tagged tweets are located in their associated locations.
Given a tweet, EDGE returns a Gaussian mixture distribution
as the geolocation prediction.
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Fig. 4: EDGE Framework. Each edge in the entity graph represents the co-occurrence of two named entities. Given a tweet
which contains three entities (Coronavirus, Brooklyn, and Fort Greene), EDGE first utilizes graph-based convolution to smooth
the extracted entity2vec embedding of each entity over its own ego network. Subsequently, the attention model weights the
importance of the embedding for each entity and extracts the embedding for that tweet. Afterwards, EDGE fits the parameters
of a Gaussian mixture to maximize the likelihood that the tweet is located in its associated location. Each set of (u, o, p )

represents a specific Gaussian distribution component.

III. METHODOLOGY
A. Entity Embedding Extraction and Diffusion

In this subsection, we first describe how EDGE extracts
entity embedding from tweets and then describe how the
correlation between named entities can be captured in EDGE
by diffusing the embedding via graph convolutions.

1) Entity Embedding Extraction: To generate the represen-
tation of a tweet, existing works use n-grams [7|], bag-of-
words [27]], or simply the number of words [3]], [[12]. In this
paper, we regard each tweet as a set of named entities [32].
A named entity is a real-world object, such as a location, an
organization, a product, etc., that can be mentioned with a
proper name. It can be abstract (e.g., COVID-19) or have phys-
ical existence (e.g., Times Square). We used Chunker Named
Entity Recognizelﬂ [28] to extract named entities and represent
each tweet as a set of named entities. For example, given the
second tweet as shown in Figure [3(a), after entity extraction, it
will be represented as a set of three named entities, COVID-19,
Presbyterian Hospital, and Columbia University.

TABLE I: Examples of named entities in tweets

# of Words
Tweets in the entity
Times Square is absolutely beautiful 2

Somebody on the George Washington Bridge 3
just stopped their car and jumped off the bridge

Dance Theatre of Harlem! Here we come! 4
Damn these streets are empty #pandemic #coronavirus | 1

Entity2vec. Notice that there can be multiple words in an
entity, as shown in Table m Moreover, entities with more than
one word may not be a direct composition of their components.
For example, Times Square is a landmark, and therefore
its embedding should not be the direct composition of the
embeddings of Times and Square while considering a named
entity as several independent words ignores the semantic
segment of the named entity. To handle named entities with

Thttp://github.com/aritter/twitter_nlp

more than one word, in entity2vec, we tokenize those named
entities by treating them as phrases and a wordZve(E] model
[21]] is then trained on the collected tweets to obtain the
semantic embedding of each entity.

2) Entity Embedding Diffusion: In order to bridge non geo-

indicative with geo-indicative entities, EDGE fuses their em-
beddings over a graph convolutional network, which generates
the spatially smoothed embedding for each named entity.
Entity Graph Construction. EDGE constructs an undirected
entity graph based on the number of co-occurrences of two
entities in tweets. Formally, in the entity graph G = (V, E),
each node corresponds to an entity and its attributes are the
semantic embedding learned using entity2vec. If two named
entities v; and v; appear in the same tweet, there will be an
edge e; ; between v; and v;. The weight e; ; is the number of
the co-occurrences of two referenced entities in the training
set.
Embedding Diffusion. The goal of embedding diffusion is
to learn the spatially smoothed embedding for each entity
which carries the spatially distinctive information by taking
advantage of the correlation (co-occurrences) between non
geo-indicative entities and geo-indicative entities. Recently,
graph convolutional networks have been widely used in var-
ious tasks such as node classification [10], link prediction
[19] , and graph classification [15]. One of the most dis-
tinctive features of graph convolutional networks is that they
can effectively learn node (edge) representations using both
network topology and node attributes, which differs from node
embedding methods such as node2vec [9] and DeepWalk [25]]
which only take into account network topology. EDGE uses
a graph convolutional network [14] to effectively learn the
smoothed embedding of each named entity by integrating
the semantic embeddings (features) of its neighbors. The
convolution parameters are learned automatically from the
training data.

Zhttps://radimrehurek.com/gensim/models/word2vec.html



Each graph convolution layer [14] in EDGE can be written
using Equation (T).

HE — o(D-3 AD- HOW©), 0
where A is the adjacency matrix of G and A = A + I is the
adjacency matrix with self-connections added, Disa diagonal
matrix with D;; = > Agj, WO is the weight matrix to
train for Layer £, o is an activation function and H® is the
state matrix where each row is the features of a named entity
at Layer £. In the initial state, H(©) is the input matrix X
where each row in X is the semantic embedding vector of a
named entity learned from our entity2vec model. We use ReLU
as the activation function for each graph convolutional layer.
By stacking n layers of graph convolutions, we can diffuse
the semantic embedding of each node over its n-hop ego-
net. In our current implementation of EDGE, we employed
a two-layer graph convolutional network. By learning on the
entity graph, the graph convolutional networks generate the
smoothed embedding for each named entity. Since in EDGE,
a tweet ¢ is represented by a subset of entities set V, the
embedding diffusion module converts each tweet to a set of
smoothed embeddings, with each embedding corresponding to
a named entity. Note that if a tweet mentioned a specific entity
more than one time, the entity will only be counted once in
the set. We use V(¢) to represent the set of smoothed em-
beddings for tweet ¢, which will be forwarded to the attention
aggregation module to produce an aggregated embedding for
each tweet.

With GCN, our model does not require a tweet to have a
location in its text for location inference. For example, the
tweet in Figure [3} “Tonight was fun! Thanks to everyone
at the wonderful @PhantomOpera and anyone who came
to watch” has no location mentioned in this tweet, but the
term ‘“PhantomOpera” co-occurs frequently with other geo-
indicative entities such as Majestic Theatre and “Broadway” in
our entity graph. By diffusing their embeddings on the graph,
the hidden states of PhantomOpera will carry information of
Majestic Theatre and Broadway, so the previous tweet will
be predicted to be close to Majestic Theatre with a high
probability.

B. Attention Aggregation

EDGE employs an attention mechanism to aggregate entity
embeddings to produce the embedding for each tweet by
differentiating the importance of named entities that appear in
the same tweet in terms of their capacities to identify locations.
For each entity in the tweet, we learn a weight to indicate the
importance to geolocation inference. Let hy be kth vector in
Vi, where V; contains embeddings of all entities in a tweet.
Each hy is fed to a fully connected layer with bias, as shown
in Equation (2) where Q") represents the weights and b(") is
the bias. The output of this fully connected layer is a score sy,
which represents the importance (weight) of the corresponding
entity (kth named entity). Then we use a softmax function to
normalize those weights, as shown in Equation (3).

sp = ReLU(QW - hy + b(V)) )

exp(si)
K

>, exp(sk)

k=1

K =1Vl 3)

WE =

To aggregate all entity embeddings in V' (¢), EDGE employs
a scaled dot-product attention method [3]], as shown in Equa-

tion (4).
K
zZ = Z Wi - hk
k=1

Here the output vector is the aggregation of the entity
embeddings and attention scores. For example, given a tweet
mentioning two entities, “Times Square” and “New Year’s
Eve”, such attention mechanism allows us to focus more on
“Times Square” than on “New Year’s Eve” since “Times
Square” is a geo-indicative entity while “New Year’s Eve” is a
non geo-indicative entity. Notice that this design also allows us
to pay more attention to the fine-grained geo-indicative entities
than the coarse-grained geo-indicative entities. For example,
“William Street” is a fine-grained geo-indicative entity while
“Brooklyn” is a coarse-grained geo-indicative entity.

4)

C. Mixture Distribution Learning

Unlike existing works, the goal of EDGE is to learn a Gaus-
sian mixture as the geolocation prediction result given a tweet,
i.e., the location where the tweet is posted will be predicted
as a mixture of bivariate Gaussian distributions. Suppose the
number of Gaussian distributions to be learned for each tweet
is M. As shown in Equation @ each bivariate Gaussian
component can be represented as N'(l|p,,,> ", ), where p,,
is the center (mean) of mth distribution, represented by
latitude and longitude, and Zm is the covariance matrix. The
correlation parameter p,, in the covariance matrix measures
the correlation between latitude and longitude. In addition
to the mean and the covariance matrix for each distribution
component, we also learn the weight of each distribution
component, which indicates the cumulative probability of each
distribution. For a specific location [, its probability density
function can be defined as Equation (6)), where 7,,, represents
the weight of mth Gaussian component. The weights here are
used to differentiate the importance of Gaussian distribution

components. (/ffm,l)
”m =
Hm,2 g (5)
_ Om,1 PmOm,10m,2
Em o (Pmam,lam,z afnﬂ )
M
pdf (1) = 3 TN (Ut 3,0) (©)
m=1

To obtain those aforementioned parameters for M distri-
butions, we forward the output of the attention aggregation
module z to a fully connected layer as shown in Equation
where the weight Q(®) and the bias b(®) are learnable
parameters.

6=0Q?.z4+b® (7)

Here the output vector 8 can be partitioned into four groups
serving as the parameters of the Gaussian mixture:
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Since there exists a valid range for each distribution pa-
rameter, we enforce these restrictions by converting the above
parameters using specific functions. Specifically, since a stan-
dard deviation can not be negative, we convert all the standard

deviations o using the softplus activation function as follows:
Om.n = Softplus(omn)
=In(l+exp(omn)), m € [1,M],n € {1,2}

Also, the valid range of the correlation parameter is [—1, 1],
and thus the softsign activation function is used to convert p.

(10)

Pm = softsign(pm)
Pm
=——me|[l,M
T fp ™ 10 M)
Since the sum of the weights of all Gaussian components
for a specific tweet should be 1, we normalize the weights 7
using the softmax activation function.

exp(mpm)
— T e [1,M]

> exp(mm)

m=1

To summarize, the parameters to be learned in EDGE
include the weight matrix W in each graph convolutional
layer and the connection weights and biases in the fully
connected layers, as described in Equation (Z) and Equa-
tion (7). We train EDGE in an end-to-end manner to maximize
the likelihood that geo-tagged tweets are located in their
associated locations. We define the loss function as follows:

M
loss = —Zln(z TN (Ut s Do)

teT m=1
where I, is the ground truth location of tweet ¢, T' is a mini-

Y

(12)

Tim =

(13)

M
batch of tweets in the training set, and > 7N (1|, > ,,)

m=1
is the probability density of l;. EDGE fits the parameters of
Gaussian mixtures to the tweets in the training set, where each
training batch is a random subset of tweets.

IV. PERFORMANCE VALIDATION
In this section, we empirically show the superiority of
EDGE over the state of the art. We begin with the details
of the dataset creation, the methods for comparison, and the
performance metrics.

A. Dataset Creation

We collected three datasets composed of geo-tagged tweets
in the New York Metropolitan Area and the Los Angeles
Metropolitan Area, crawled using the Twitter AP]ﬂ The
first dataset, redNYMA, consists of 367,259 tweets in the
New York Metropolitan Area posted between 08/01/2014 and

3http://docs.tweepy.org/en/v3.5.0/api.html

12/01/2014. The second dataset, LAMA, consists of 17,025
tweets in the Los Angeles Metropolitan Area posted between
03/12/2020 and 04/02/2020. In the third dataset, COVID-
19, we focus on those tweets containing any word in the
following set: {“coronavirus”, “COVID”, “pandemic”, “quar-
antine”, “wuhan”, “masks”, “vaccine”, “stayhome”, “toilet
paper”, “social distance” } posted between 03/12/2020 and
04/02/2020 in New York. For each dataset, we selected the first
75% of tweets in the timeline (i.e., those tweets that appear
earlier) for training and the remaining for test.

Table ] shows the timeline and the entity distributions of the
three datasets. We follow the experiment setting in [[23]] and [/7|]
to choose the spatial granularity and data collection methods.
We remark that although our current datasets of tweets are
crawled from regions of limited size (i.e., metropolitan areas),
our model is general and works for data of any specified region
size (e.g., state or country). Note that the output of our model
is a mixture distribution of location, so it is applicable to
datasets for areas of any size. Neither the parameters of our
model nor its output is dependent on a concrete region size.

TABLE II: Overview of dataset

A Entity distribution
Dataset Timeline Training 3 Test Intersect
NYMA 08/01/2014-12/01/2014 | 19,950 9,628 | 9,516
LAMA 03/12/2020-04/02/2020 | 2,614 1,223 | 1,192
COVID-19 | 03/12/2020-04/02/2020 | 1,969 883 853

Recall from Section [[IlI-AT] that our entity2vec module uses
Chunker Named Entity Recognizer [28] to extract named
entities in tweets. This recognizer is designed for tweets and
thus avoids the performance degradation of using traditional
NLP tools on the corpus of tweets. The recognizer is reported
to have an accuracy of 0.88 on tweets in [28]], and to verify
the tool’s high accuracy on our datasets, we further manually
labeled the entities in 100 tweets randomly sampled from our
datasets, and this process is repeated 3 times to combat ran-
domness. The recognizer recognized 86.99%, 92.78%, 94.47%
entities (note that a tweet may have multiple entities) in the 3
randomly sampled 100-tweet sets, respectively. Note that we
have excluded tweets that include no entity in our experiments,
which is necessary and reasonable. We remark that only a
small percentage of tweets (5.54%) include no entity, and there
is truly no meaningful information for geolocation inference
in the vast majority of these tweets. An example of such a
tweet is This is amazing! which could occur anywhere. In real
applications, these tweets are useless for analysis. We have
randomly sampled 100 tweets from those without any entity
in our datasets, and manually identified the tweets that are
irrelevant to geolocation inference. This process is repeated 3
times to combat randomness, and 97%, 99%, 99% tweets in
the 3 randomly sampled 100-tweet sets have no information
related to geolocation inference, respectively. Since our entity
graph is constructed based on the training set, our model
only considers those entities that appear in our training set.
Therefore, a small percentage of tweets (2.76%) in the test set
that include no entities in our entity graph are also excluded.



To verify the observations described in Section we
also conducted experiments to examine (i) the percentage of
tweets mentioning at least one location and (ii) the percentage
of tweets mentioning at least both one location and one non-
location entity in all our three datasets. The entity recognizer
of [28] used by our entity2vec module also classifies entities
into 10 categories one of which is geolocation. Since the recog-
nizer is reported to have a high classification accuracy [28]] and
it is infeasible to label all entities in our datasets manually, we
directly use the recognizer to estimate the percentage of tweets
mentioning locations. The tool reports the percentage of tweets
mentioning a location entity to be 30.61%, 45.23%, 43.48% in
our three datasets, respectively, while the percentage of tweets
mentioning both a location entity and a non-location entity is
reported as 29.86%, 33.25%, 39.68%, respectively.

We also crosscheck the results by randomly sampling 100
tweets from each dataset and manually labeling their location
entities. On each dataset, this process is repeated 3 times and
the average percentage over the 3 runs is reported to com-
bat randomness. The averaged percentage of sampled tweets
mentioning a location entity is 47.33%, 43.33%, 57.67% in
our three datasets, respectively, and the averaged percentage
of tweets mentioning both a location entity and a non-location
entity is 45.67%, 37%, 53.33% in three datasets, respectively.

Note that locations are merely a subset of geo-indicative
entities. For example, American Airlines is not a location, but
it is geo-indicative as has been illustrated in Figure 2[b).

B. Methods for Comparison

We implemented the following state-of-the-art methods for
comparison purposes using PyTorch 0.4.0 and ran experiments
on a machine with a 2.20 GHz processor and 26 GB RAM,
and 16GB Tesla P100 GPU. Each set of experiments in this
section was repeated 3 times and all reported results were
averaged over 3 runs.

e LocKDE [23]: This method predicts tweet locations
based on the geographical probability distribution of
their terms over a region. Specifically, the probabilities
are estimated using kernel density estimation (KDE),
where the bandwidth of the kernel function for each
term is determined separately according to the location
indicativeness of the term. We divided each region into
100x 100 grid cells uniformly in our experiments.

o NAIVEBAYES [12]: This method treats the geolocation
as a classification problem and uses a Naive Bayes
classifier to assign a document to a geographical grid
cell by counting the number of words from each cell.

o« KULLBACK-LEIBLER [12]: instead of counting the
number of words from each geographical grid cell, this
method assigns a document to a cell by calculating
Kullback-Leibler (KL) divergence: it finds the cell whose
word distribution best matches the word distribution
of the document, i.e., the cell with the minimum KL-
divergence.

o NAIVEBAYES, .24 [12]: This method replaces count-
based estimates in NAIVEBAYES with the respective

kernel density estimation. Specifically, a two-dimensional
spherical (isotropic) Gaussian kernel is adopted to assign
mass to each cell.

o KULLBACK-LEIBLER} .24 [12]]: This method re-
places count-based estimates in KULLBACK-LEIBLER
with the respective kernel density estimation. As with
NAIVEBAYES; 4c24, @ two-dimensional spherical Gaus-
sian kernel is adopted.

o Hyper-local [7]: This method first identifies the geo-
specific n-grams by modeling the location distributions
of n-grams. The discovered n-grams are then used for
geotagging tweets according to the centers of the Gaus-
sian models of the n-grams they contain.

e UnicodeCNN [13]: This method uses a Unicode Con-
volutional Neural Network (UnicodeCNN) for tweet ge-
olocation. First, the model generates features directly
from the Unicode characters in the input text. Then a
character-level convolutional neural network is designed
to predict the coordinates of tweets using a mixture of von
Mises-Fisher (MvMF) distribution. In our experiment, we
used 100 mixture components, where the components are
uniformly distributed in each region. We also tested the
other numbers of components but the performance is not
better.

o EDGE: This is our proposed model. The default length
of the embedding for each named entity is 400. The
number of graph convolutional layers is 2. The number
of Gaussian components is set as 4 by default. The model
was trained using an Adam optimizer with a learning rate
of 0.01 and a weight decay of 0.01.

C. Metrics for Comparison

For comparison with existing approaches, although EDGE
returns a mixture distribution as the prediction result instead
of a single location estimate, we derive the estimated location
[ from each returned mixture distribution using Equation .

M

l=arg max Z TN (U s 220,

(14)

m=1

As represented in Equation (14), the location with the maxi-
mum sum of the densities for all M distribution components
will be returned as the estimated location. Based on such single
location conversion, we employed the following metrics [12],
[23]] for comparison with the state of the art.

e Mean: The mean of the distance (in km) between the true
location and the estimated location for all tweets in the
test set.

e Median: The median of the distance (in km) between the
true location and the estimated location for all tweets in
the test set.

e @3km: The fraction of tweets whose true locations fall
within 3km from the predicted location.

e @5km: The fraction of tweets whose true locations fall
within Skm from the predicted location.



TABLE III: Performance comparison

Data set Algorithm Mean(km) Median(km) @3km @5km
LocKDE 8.49 5.38 0.3740 0.4824
UnicodeCNN 11.71 11.57 0.0120 0.0577
NAIVEBAYES 8.76 7.60 0.0072 0.0856
. KULLBACK-LEIBLER 8.84 7.62 0.0062 0.0782
New York Metropolitan Area (2014) | -RATVEBAYES 4.0q 807 6.78 0.0249 0.1644
KULLBACK-LEIBLER 4004 | 8.04 6.74 0.0262 0.1633
Hyper-local 7.90(84%) 4.73(84%) 0.3664(84%) 0.5149(84%)
EDGE 6.21% 2.92% 0.5219% 0.6619*
LocKDE 16.08 9.52 0.3840 0.4209
UnicodeCNN 29.38 24.29 0.0012 0.0091
NAIVEBAYES 16.34 7.22 0.1127 0.2232
. KULLBACK-LEIBLER 15.97 6.91 0.1185 0.2483
Los Angeles Metropolitan Area (2020) NAIVEBAYES 4024 1935 702 01211 07433
KULLBACK-LEIBLER 404 | 20.89 7.57 0.1133 0.2360
Hyper-local 14.12(81.31%) | 7.01(81.31%) | 0.2689(81.31%) | 0.3840(81.31%)
EDGE 13.27* 6.20* 0.3894* 0.4606*
LocKDE 8.38 4.23 0.4440 0.5270
UnicodeCNN 15.56 17.10 0.0072 0.0144
NAIVEBAYES 8.41 4.03 0.4404 0.5559
KULLBACK-LEIBLER 7.68 3.75 0.4513 0.5776
COVID-19 (New York, 2020) NAIVEBAYES 004 778 362 04585 0.5021
KULLBACK-LEIBLER o204 | 8.51 374 0.4476 0.5921
Hyper-local 6.30 3.73 0.4259 0.6281
EDGE 5.38* 2.74% 0.5296* 0.6444*
* represents the best result
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Fig. 5: The impact of r on the EDGE performance in terms of RDP (M = 4)

D. Result and Analysis

Table[[TT| compares the performance of EDGE and that of the
baseline methods. As depicted in Table [[IIl EDGE consistently
outperformed the baselines in terms of all the metrics in
all three datasets. Specifically, compared with the baselines,
EDGE successfully yielded lower mean and median errors
and also provided higher scores for @3km and @5km. The
superiority of EDGE over the state of the art can be explained
by the following:

o All the baseline methods return a single location esti-
mate for geolocation prediction. However, in EDGE, the
posting location of a tweet is predicted and returned as a
trained Gaussian mixture model, where each distribution
is a 2-dimensional multivariate distribution. By doing
that, the ambiguous information (uncertainty) can be
taken advantage of effectively.

o All the baseline methods focus only on the information
in the current tweet itself and fail to take into account
the information that is not mentioned in the current tweet
but implicitly correlated in other tweets. However, EDGE
fuses the named entities that appear together frequently
in all the tweets and performs joint inference based on

the diffused embedding using graph convolutions.

In LocKDE, NAIVEBAYES, KULLBACK-LEIBLER,
NAIVEBAYES4e24, KULLBACK-LEIBLER 424 and
Hyper-local, only geo-indicative terms actually contribute
to predictions, although the non geo-indicative terms are
also considered. On the contrary, EDGE performs joint
inference based on the diffused embedding of non geo-
indicative and geo-indicative entities.

Hyper-local requires a tweet to have at least one geospe-
cific term to make predictions. Therefore, this method
does not work for all the tweets. In Table besides
the metric scores, we also show the portion of the tweets
that can be predicted using Hyper-local when reporting
the corresponding results for Hyper-local.

UnicodeCNN does not support the fine-grained geolo-
cation prediction. UnicodeCNN represents a tweet at
the character level using Unicode and makes predictions
based on the languages used. Although UnicodeCNN may
be effective for the country-level prediction, it does not
perform well for the fine-grained geolocation tasks. In
each of our datasets, all the tweets were written using
the same language (English) and posted in the same city.
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E. Impact on Radial Density Precision

Note that unlike existing works, EDGE returns a mixture
distribution as the prediction result instead of using a single
location estimate. Here we first define a new metric, the radial
density precision, which, given a set of tweets, measures
how close the predicted mixture distributions are to their
corresponding true locations. The performance of EDGE is
then investigated in terms of this new metric.

Definition 1: The radial density precision, RDP@(p, 1),
is the fraction of the tweets where given a tweet t and its
predicted mixture distribution, the radial density integration
for a circular region centered at the true location of t with
the radius r is at least p.

Given p and r, a higher RDP score indicates a more accurate
estimate of the locations for a set of tweets in terms of
probabilistic distribution. Figure [5] shows the impact of 7 on
the performance of EDGE in terms of RDP under different
p values by varying r from 2 km to 4 km with an interval
0.5 km. Specifically, as shown in Figure [5(a), for New York
(2014), EDGE returned a Gaussian mixture where the radial
density integration from the true location within 3km is at least
2e-3 for more than 80% of the tweets in the test set. Figure [6]
depicts the impact of the number of distribution components,
M on the EDGE performance in terms of RDP by varying
M from 1 to 5. For New York (2014) and the COVID-19
dataset, the optimal value of M is 4 while for Los Angeles
(2020), the optimal value of M is 5. This result also confirms
our motivating observation that learning multiple distributions
will be more effective than learning only one distribution for
tweet geolocation prediction.

F. Ablation Study

To verify the contribution of each component in our model,

we have included more baselines:

« BOW: To verify the effectiveness of using entity2vec
and GCN+Attention model, we consider a baseline that
represents a tweet as bag-of-words (BOW), i.e., a vector
of word frequencies, which is directly input to a dense
layer that connects to our Gaussian mixture component.

e NoGCN: To verify the effectiveness of our GCN-based
entity-diffusion component, this baseline removes GCN
and directly feeds entity vectors into our Attention model.

o SUM: To verify the effectiveness of our Attention model,
this baseline instead directly sums the entity embeddings
from our GCN model to compute a tweet embedding. We
choose SUM because the number of entities in different
tweets can be different, so we need a way to convert them
into a tweet representation of fixed length.

o NoMixture: To verify the effectiveness of learning a
Gaussian mixture with multiple components, this baseline
learns only one Gaussian distribution.

TABLE IV: Ablation study result on three data sets

Data set Method Mean | Median @3km @5km
BOW 821 | 489 02249 | 03569
NoGCN [ 747 | 4.15 03011 | 05597
NYMA SUM 651 [ 414 [ 03780 [ 05754
NoMixture [ 9.03 | 6.78 0.1816 | 03605
EDGE 621 292 [ 05219 | 0.6619
BOW 1861 | 1453 | 0.0806 | 0.1644
NoGCN [ 1833 | 901 03574 | 0.3881
LAMA SUM 15.60 | 8.96 03214 | 0.3988
NoMixture | 1673 | 13.18 | 0.0282 | 0.0555
EDGE 1327 [ 620 | 0.3894 | 0.4606
BOW 967 | 729 0.1480 | 03068
NoGCN | 6.04 | 3.95 04444 | 0.5481
COVID-19 —gpyp 610 1 3.66 04777 1 05925
NoMixture | 1085 | 8.6 0.1263 | 0.2057
EDGE 538 [ 274 [ 05296 | 0.6444

As shown in Table replacing any of the components
in our model will degrade the performance. Specifically,
(1) BOW represents a tweet as separate words, but an entity
may include multiple words; in contrast, our entity2vec module
captures such entity phrases and the entity embeddings reflect
the semantic relationships between entities. Thus, EDGE out-
performs BOW by a large margin. (2) EDGE also outperforms
NoGCN by a large margin, which demonstrates the effective-
ness of entity diffusion based on GCN. (3) Compared with
sum aggregation, our attention module is able to assign more
weights to fine-grained geo-indicative entities than coarse-
grained geo-indicative entities, and thus EDGE consistently
beats SUM. (4) EDGE also beats NoMixture by a large margin
in all metrics, since NoMixture ignores Observation 2 which
is captured by our Gaussian mixture component. Overall, this
study justifies the purpose of each component in our model.

V. DEMONSTRATION OF USE CASES

In this section, we demonstrate two potential use cases of
EDGE: (1) predicting the mixture distribution of a single tweet
and (2) predicting the most likely locations for a set of related
tweets for event dynamics analysis.



Fig. 7: The mixture distribution returned by EDGE as the pre-
diction result for a given tweet. : “I think the girls are staging a
protest. Theyre done with this self-quarantine business., posted
on March 22, 2020 in New York.

A. Predicting the Mixture Distribution for a Single Tweet

In this subsection, we use EDGE to predict the location for
a specific tweet in terms of probabilistic mixture distribution.
Given a non geo-tagged tweet, “I think the girls are staging a
protest. Theyre done with this self-quarantine business., EDGE
predicted a mixture distribution consisting of five multivariate
distributions, as shown in Figure
Result interpretation. As illustrated in Figure|7] each learned
distribution is represented by three confidence ellipses, where
the three confidence values are 75%, 80%, and 85%, respec-
tively. The weight of each distribution 7 indicates the impor-
tance of the specific distribution. Notice that the sum of the
weights of all distributions equals to 1. As shown in Figure [/}
the red distribution (centered at East Williamsburg/Brooklyn)
and the green distribution (centered at Lower Manhattan) hold
a much higher weight than other distribution. As a result,
we can infer with high confidence that the possible posting
location should be either in East Williamsburg/Brooklyn or
Lower Manhattan since the other three distributions have very
small weights (0.0024, 0.0021, 0.0018).

Result verification. By examining the tweets posted during
the same time duration, we successfully located a protest in the
two identified areas (East Williamsburg/Brooklyn and Lower
Manhattan). The exact location of the protest is highlighted
using the red marker in Figure

B. Predicting the Most Likely Locations for a Set of Tweets

Event dynamics analysis is one of the potential applications
that can benefit from EDGE. Observing the locations of tweets
related to a specific keyword or hashtag enables us to analyze
the dynamics of events in a real-time fashion. Here we use
EDGE to predict the most likely locations for a set of non
geo-tagged tweets, based on which the dynamics of a specific
event can be analyzed. We focus on the two specific events
happening in Los Angeles and New York.

o The death of Nipsey Hussle. This event is the one-year
anniversary of the death of the rapper and activist Nipsey
Hussle, who was assassinated on March 31, 2019, outside
his store The Marathon Clothing in South Central Los

Angeles. We first filtered out all the tweets mentioning
Nipsey Hussle posted from March 12, 2020 to April 2,
2020 in Los Angeles and then used EDGE to predict
the locations of the non geo-tagged tweets. Figure [§]
shows the heat maps of the tweets mentioning Nipsey
Hussle from March 12, 2020 to March 30, 2020 and from
March 31, 2020 to April 2, 2020, respectively. A burst of
tweets can be observed in Figure[8]in several geographical
regions close to the place where he was shot.

o The new colossus festival. This event is a lower east
side music festival scheduled from March 11, 2002 to
March 15, 2020 in New York, with 120 bands from
around the world playing multiple showcases at seven
different venues (ARLENE’S GROCERY, BERLIN, BOW-
ERY ELECTRIC, LOLA, THE DELANCEY, MOSCOT,
PIANOS). Figure P(a) depicts the predicted locations
of the tweets mentioning new colossus festival between
March 12, 2020 and March 15, 2020 (during the event)
while Figure [O(b) visualizes the predicted locations of the
tweets mentioning new colossus festival between March
16, 2020 and April 2, 2020 (after the event).

VI. RELATED WORKS
A. Inference of Tweet Locations

Machine learning techniques have been widely used to infer
the locations of tweets [20], [41] . Hulden et al. [|12] discretize
a geographic area into square cells uniformly and design four
models to predict the most probable grid cell for a tweet.
First, a classifier-based Naive Bayes is used to estimate the
probability of each cell by observing the number of each
word in the tweets from a cell. Then Kullback-Leibler (KL)
divergence is introduced to find a cell whose word distribution
most matches the distribution of the tweet. At last, the count-
based estimates are replaced by the kernel density estimation.
Ozdikis et al. [23] calculate the probabilities of cells by using
kernel density estimation. They determine the bandwidth of
the kernel function for each word according to the location
indicativeness. Ajao et al. [1] propose a non-uniform grid-
based approach using Quadtree spatial partitions. Instead of
using individual words, Flatow et al. [7] propose to use n-
grams, where the location of a tweet is assigned according
to the locations of the provided geo-specific n-grams. Miura
et al. [22]] develop a simple neural network-based model for
geolocation prediction where words are fed into the model
by averaging their word embeddings. Thomas et al. [33] use
pooling of word embeddings to represent a tweet, which is
then forwarded to an LSTM model. In Izbicki’s work [13]], a
convolutional neural network is designed to analyze the text at
the character level (Unicode), where a Mixture of von Mises-
Fisher (MvMF) distribution is utilized to exploit the Earths
spherical geometry. EDGE differs from all the aforementioned
works in the following aspects: (1) the inference builds upon
mining the correlation between non geo-indicative entities
and geo-indicative entities using graph convolution, and (2)
each prediction result is represented as a Gaussian mixture
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instead of specific geographical coordinates, while the most
likely location can be also derived from the returned Gaussian
mixture distribution. Besides the fine-grained tweet location
prediction, there are also studies on tweet location prediction
at the country-level [43]] and at the city-level [11]], [17], which
are beyond the scope of this paper.

B. Graph Neural Networks

Graph Neural Networks (GNNs) were first studied in [8]] and
extended in [30] as a form of the Recurrent Neural Networks
(RNN). GNNs take graph structure as input and are able to
propagate neighbor information over the underlying graph in
an iterative manner for effective node and edge embedding
learning. Inspired by the success of the Convolutional Neural
Networks (CNNs) in computer vision applications, which
extracts higher-level features from images using a sequence
of interleaving convolution layers and pooling layers, Graph
Convolutional Networks (GCN) become a major focuses of the
recent research efforts. Bruna et al. [4] introduce the spectral
graph convolutions. In a follow-up work, Defferrard et al. [6]]
define the ChebyNet which builds on graph convolutions using
Chebyshev polynomials to remove the expensive Laplacian
eigendecomposition. Kipf et al. [[14]] further simplify the graph
convolution by using the localized first-order approximation.

C. Event Detection and Event Localization
Estimating the exact locations of tweets enables the robust
spatio-temporal analysis for a wide variety of track-and-trace

applications, such as global event detection [2], [[16] and local
event detection [[39]]. Watanabe et al. [|37]] propose an automatic
geotagging method to identify a group of tweets on the same
theme. Zhang et al. [40] monitor the continuous tweet streams
for real-time event detection by identifying pivots in a query
window. TrioVecEvent [39] is a two-step detection scheme
where the tweets in a query window are divided into coherent
geo-topic clusters, which are considered as candidate events.
Event localization [24] focuses on delineating the location
of an event. Finding the center and the trajectory of the
event location, such as earthquake localization [[29]] and crime
detection [[18]], can mitigate the damage caused by the event.
Allan et al. [2] designed a system to track dynamic events
by applying adaptive information filters. Zahra et al. [31]
presented a study to localize traffic accidents using Twitter.
Different from all the aforementioned works which focus on
event detection and event localization, EDGE delivers location
predictions that are both accurate and highly interpretable for
tweets even without explicit geo-information, which is the key
to boosting the effectiveness and efficiency of various down-
stream event detection and event localization applications.

VII. CONCLUSION

Our paper presents EDGE, a novel tweet geolocation predic-
tion framework which delivers predictions that are both accu-
rate and highly interpretable without requiring any additional
contextual information. Compared with existing works, EDGE
has two distinctive features: (1) the inference builds on mining



the correlation between non geo-indicative entities and geo-
indicative entities by diffusing their semantic embeddings over
the constructed graph neural network and (2) each prediction
result is represented as a Gaussian mixture instead of specific
geographical coordinates. Extensive experiments using real
world tweet datasets validate the superiority of EDGE over the
state of the art in terms of all distance-based and POI-based
metrics.
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