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Abstract. Cliques and clique-like subgraphs (e.g., quasi-cliques) are im-
portant dense structures whose counting or listing are essential in appli-
cations like complex network analysis and community detection. These
problems are usually solved by divide and conquer, where a task over a
big graph can be recursively divided into subtasks over smaller subgraph-
s whose search spaces are disjoint. This divisible algorithmic paradigm
brings enormous potential for parallelism, since different subtasks can
run concurrently to drastically reduce the overall running time.
In this paper, we explore this potential by proposing a unified framework
for counting and listing clique-like subgraphs. We study how to divide
and distribute the counting and listing tasks, and meanwhile, to balance
the assigned workloads of each thread dynamically. Four applications
are studied under our parallel framework, i.e., triangle counting, clique
counting, maximal clique listing and quasi-clique listing. Extensive ex-
periments are conducted which demonstrate that our solution achieves
an ideal speedup on various real graph datasets.

Keywords: Dense Subgraph Mining · Parallel Computation · Unified
Framework.

1 Introduction

Dense subgraphs of a network often contain important information about the
communities or modules in the network, and as a result, counting and listing
dense subgraphs has received a lot of interest from the research community in
the last decade [8, 9, 11, 13, 22, 25]. One example of a dense subgraph is a clique,
where every pair of vertices are connected by an edge.

However, these problems have a high computational complexity [17], often
NP-hard due to the reduction to the maximum clique problem [18]. Recent
studies focus on speeding up the computation by parallel computing [10, 12, 23,
26]. Since the original problem has an exponential computational complexity,
after dividing it into multiple subproblems, either the number of subproblems
or the time cost of an individual subproblem must be exponential. Accordingly,
existing works can be categorized into two aspects.
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1. Polynomial Number of Subproblems. This kind of work often uses sim-
ple task prepartitioning (e.g., on top of MapReduce [10, 23, 24] or Pregel-like
systems [15, 27]). Since the time cost of individual subproblems are exponential,
they often suffer from imbalanced workload distribution (e.g., the last-reducer
problem) [21] especially on power-law graphs with a heavily skewed degree dis-
tribution. However, since the number of subproblems is polynomial, it is not time
costly to rearrange the subproblems in order (e.g., vertex ordering schemes are
applied [11, 25, 26]). After rearrangements, the time costly subproblems will be
handled in parallel firstly, and the less costly subproblems will be handled in par-
allel lastly. As a result, the workloads are almost balanced, with the differences
between the running time of the last few subproblems.

2. Exponential Number of Subproblems. This kind of work often uses dy-
namic task partitioning [19] and dynamic load balancing [7, 20], or they will
suffer from exponential memory consumption storing the fully partitioned sub-
problems [8]. The dynamics is usually ensured by recursive partitioning, i.e. a
subproblem can be further divided into smaller subproblems. Since the number
of final subproblems is exponential, the granularity of the partitioning should be
carefully chosen (e.g. coarse-grained partitioning leads more load differences and
fine-grained partitioning leads more communication cost). The optimal solution
usually lays out between extremes, which requires a proper cost model for both
communication and computation, and requires an optimization method to find
out the optimal solution of the cost model [8].

Contributions. In this paper, we present a unified framework for counting and
listing clique-like subgraph in parallel, which takes both of the advantages of
the previous two aspects. More specifically, on one hand, we propose a new task
partitioning method called pivot path partitioning, which gradually partition the
original task into a polynomial number of subtasks, then three vertex ordering
schemes are compared. On the other hand, the pivot path partitioning method
automatically partitions the original task into a proper granularity, without deal-
ing with a cost model and its optimization. More over, the pivot path partitioning
method enables general clique counting, which is little explored previously. We
focus on the setting of multi-threaded computation within a single machine (i.e.,
a shared-memory environment). Our contribution can be summarized as follows.

– A unified parallel framework is proposed.

– The pivot path partitioning method is developed.

– First attempt on general clique counting.

2 Preliminaries

This section first defines our graph notations and terminology, and then intro-
duces the clique-like problems that we solve on top of our parallel framework.
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2.1 Notations and Terminology

Graphs. Let G = (V,E) be a simple undirected graph with a vertex set V and
an edge set E, and let n = |V | and m = |E| be the number of vertices and edges
in G, respectively. We use N(v) to denote the set of the neighbors of vertex v,
i.e. the set of vertices each of which has an edge connecting to v. We also use
d(v) = |N(v)| to denote the degree of vertex v.

Vertex Ordering. We define a total ordering o over the vertices, where o(v)
denotes the rank of vertex v, i.e., 1 plus the number of vertices that are before v
in the ordering. Obviously, 1 ≤ o(v) ≤ n. Given an integer i, we use vi to denote
the vertex with rank i, i.e., o(vi) = i. Given a vertex v, we use N−(v) = {u | u ∈
N(v), o(u) < o(v)} to denote the set of neighbor vertices of v which are ranked
before v.

Subgraphs. Given a subset V ′ ⊆ V of vertices, we define G(V ′) as the subgraph
of G induced by vertex set V ′, i.e., the edge set of G(V ′) equals E′ = {(u, v) |
u ∈ V ′, v ∈ V ′, (u, v) ∈ E}. We use G(v) (resp. G−(v)) to denote the subgraph
of G induced by vertex set N(v) (resp. N−(v)), i.e., G(v) = G(N(v)) (resp.
G−(v) = G(N−(v))).

Cliques. If G(V ′) is a complete graph where every pair of vertices are connected
(i.e. |E′| = |V ′| · (|V ′| − 1)/2), we call G(V ′) a clique in G, and call |V ′| the size
of the clique. In particular, if |V ′| = 3, then we call G(V ′) a triangle. We use
c(G) to denote the size of the largest clique in G.

Maximal Cliques. Let C be a clique in G, and we also abuse the notation C
to denote the vertex set of this clique. If there does not exist another clique C ′

in G, such that C ′ ⊃ C, then we say that clique C is a maximal clique in G.

Quasi-Cliques. Given a density threshold γ ≤ 1 and a subgraph G(V ′) of G,
if for every vertex v′ ∈ V ′, its degree in the subgraph G(V ′) satisfies d(v′) ≥
γ · (|V ′| − 1), then we say that G(V ′) is a γ-quasi-clique in G. To ensure the
γ-quasi-clique to be a connected graph, we require γ ≥ 0.5.

Intuitively, a quasi-clique relaxes the requirement of a clique where every
vertex is connected to every other vertex, into that every vertex is connected
to the majority of other vertices in V ′. It is a more realistic model for a social
community.

k-core. The k-core of a graph G is the maximal subgraph such that every
vertex has degree at least k. It can be found by keeping removing vertices that
have degree less than k. We call k(G) as the core number of G if k is the largest
integer such that the k-core of G is not empty.

2.2 Problem Statement

Without loss of generality, this work studies four specific problems on top of our
parallel framework, and we use the graph in Figure 1 to illustrate the concepts.
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Fig. 1. An Example Input Graph

Triangle Counting. The problem counts the number of triangles in an input
graph G. For example, there are 5 triangles {v1, v2, v3}, {v1, v2, v4}, {v1, v2, v5},
{v1, v3, v4} and {v2, v3, v4} in Figure 1.

Clique Counting. The problem counts the number of cliques in G with differ-
ent sizes of 1, 2, 3, ..., c(G), respectively. In Figure 1, there are 5 size-1 cliques
(i.e., all 5 vertices), 8 size-2 cliques (i.e., all 8 edges), 5 size-3 cliques (i.e., 5
triangles) and 1 size-4 clique (i.e., {v1, v2, v3, v4}) in the example graph.

Maximal Clique Listing. The problem lists all the maximal cliques in G. For
example, there are 2 maximal cliques {v1, v2, v3, v4} and {v1, v2, v5} in Figure 1.

Quasi-Clique Listing. Given a real number 0.5 ≤ γ ≤ 1 and an integer s, the
problem lists all the γ-quasi-cliques in G whose sizes are at least s. For example,
there are 3 γ-quasi-cliques {v1, v2, v3, v4}, {v1, v2, v3, v5} and {v1, v2, v4, v5} in
Figure 1 with γ = 0.6 and s = 4.

3 The Parallel Framework

Overview. In this section, we introduce our parallel framework generic clique-
like subgraph counting and listing, which consists of three phases: tasks parti-
tioning, parallel execution and result aggregation, which are described as follows:

– Task Partitioning. The framework first loads an input graph G from a
file, and then computes a total ordering of the vertices in G. It then divides
the computation workloads into multiple tasks each with a bounded cost,
and adds them into a concurrent queue [16] to be fetched and processed
concurrently by the computing threads.

We will discuss the vertex ordering schemes in Section 3.1, and introduce
our task partitioning method in Section 3.2.

– Parallel Execution. Multiple threads are executed concurrently in this
phase. Threads are numbered with IDs i = 1, 2, 3, ..., t, where t is the to-
tal number of threads. The threads keep fetching tasks from the queue for
processing, until the task queue becomes empty.

We will discuss how to compute the tasks in Section 3.3. Once the queue is
empty, the idle threads will steal works from the busy threads, so that the
workloads are dynamically balanced. The threads will terminate when they
all become idle and the task queue is empty.
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– Result Aggregation. For listing problems, each thread will store the sub-
graph results in a local buffer of bounded size, and will flush them to disk
when the buffer is full, to empty the buffer for keeping more results. After all
threads finish running, we can obtain the final results by concatenating the
output files of all threads. For counting problems, each thread will maintain
its own counter, and their values are summed in the end to get the final
count.

3.1 Vertex Ordering Schemes

We assign ranks to vertices using three ordering schemes that are commonly
used in existing work [26, 25] as listed below. However, our novelty lies in that we
further adjust the resulting ordering by putting a pivot vertex and its neighbors
in front of all the other vertices. We will compare all of these ordering schemes
in Section 4.

– Scheme 1: Original Ordering. This ordering scheme simply assigns the
rank of the vertices according to the order that they appear in the input
file (which is an edge list). Namely, the two end vertices of the first edge
in the input file are ranked with 1 and 2, and the two end vertices of the
second edge are ranked with 3 and 4 (if they are different from the first two
vertices), and so on.

– Scheme 2: Static Degree Ordering. This ordering scheme arranges the
vertices by descending order of their original degree in the input graph.
Namely, the vertex with the highest degree is ranked with 1, and the vertex
with the second highest degree is ranked with 2, and so on.

– Scheme 3: Dynamic Degree Ordering. This ordering scheme arranges
each vertex v according to its degree in the subgraph induced by v plus those
vertices ranked before v. Namely, the vertex with the lowest degree in the
original graph is ranked with n, and the vertex with the lowest degree in the
subgraph induced by the remaining n− 1 vertices is ranked with n− 1, and
the vertex with the lowest degree in the subgraph induced by the remaining
n− 2 vertices is ranked with n− 2, and so on.

Pivot Vertex Reordering. After vertices are ordered as above, we propose to
further adjust the order of the vertices by prioritizing a pivot vertex and all of
its neighbors to the top. After making this adjustment, a selected pivot vertex v
is ranked with 1, and its neighbors are ranked with 2, 3, ..., d(v) + 1, respectively
(in an arbitrary order), and then the remaining vertices are ranked with d(v) +
2, d(v) + 3, ..., n respectively (keeping the same order as in the original ordering
scheme). We select the vertex v with the highest degree as the pivot vertex, since
v tends to have the heaviest workload and the task partitioning method to be
described in Section 3.2 will separate it from the rest of the workloads for further
divide-and-conquer to distribute the workload among multiple threads.
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3.2 Task Partitioning

For simplicity, let A(G′, S) be the task of counting or listing clique subgraphs in
G′ given that vertices in S are already assumed to be included in a clique sub-
graph found by the task. Typically, S refers to those vertices already considered.

Let us denote Vi = {v1, v2, . . . , vi}. Then, we can divide the “root” task of
computing A(G, ∅) into two subtasks as follows:

A(G, ∅) = A(G(Vn), ∅)
→ A(G(Vn−1), ∅) ∪ A(G−(vn), {vn}). (1)

In other words, we consider two disjoint cases: (1) A(G(Vn−1), ∅) finds those
clique-like subgraphs that do not contain vn, where Vi = {v1, v2, ..., vi}, and
(2) A(G−(vn), {vn}) finds those clique-like subgraphs that contain vn.

We can similarly divide the first subtask A(G(Vn−1), ∅) as follows:

A(G(Vn−1), ∅)
→ A(G(Vn−2), ∅) ∪ A(G−(vn−1), {vn−1}). (2)

In general, we can keep recursively dividing the first subtask A(G(Vn−i), ∅)
as:

A(G(Vn−i), ∅)
→ A(G(Vn−i−1), ∅) ∪ A(G−(vn−i), {vn−i}). (3)

In the end, we will obtain:

A(G, ∅)

→ A(G(Vd(v1)+1), ∅) ∪
n⋃

i=d(v1)+2

A(G−(vi), {vi}). (4)

If v1 is the pivot vertex with the highest degree, and its d(v1) neighbors
are also ordered right after v1 as done by our pivot vertex reordering approach,
then task A(G(Vd(v1)+1), ∅) in Equation (4) essentially performs the original
listing/counting task on the 1-ego network of v1. We call this task as the pivot
task, and call

⋃n
i=d(v1)+2A(G−(vi), {vi}) the list of minor tasks.

When pivot vertex reordering is used together with our vertex ordering
Scheme 3 “dynamic degree ordering”, we can show that the size of a minor
task is bounded by k(G), the core number of G. This result is formalized by
Lemma 1 below.

Lemma 1. Given a graph G−(vi) (i > d(v1) + 1) of a minor task, the number
of vertices in the graph is bounded by k(G).
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Table 1. Maximum Degree v.s. Core Number

Dataset n m d(v1) k(G)

Google 875713 4322051 6353 44

Youtube 1134890 2987624 28754 51

Patents 3774768 16518947 793 64

Flixster 2523386 7918801 1474 68

Skitter 1696415 11095298 35455 111

Wiki 2394385 4659565 100032 131

Proof: According to our scheme of dynamic pivot vertex reordering, vertex
vn has the lowest degree, followed by vn−1, and so on. Therefore, our recursive
division steps are equivalent to iteratively removing a vertex with the lowest
degree at a time. This corresponds exactly to the algorithm of k-core decom-
position [14], and thus at any step, d(vi) ≤ k(G) and thus G−(vi) has no more
than k(G) vertices.

In a real graph, the maximum degree d(v1) is often much larger than k(G)
(which is typically not much larger than 100), and thus most workload is at-
tributed to the pivot task. In other words, the pivot task may need further
divide-and-conquer to distribute its workload; while a minor task can directly
be processed by a single thread. We show the maximum vertex degree and the
core number of the 6 real graphs used in our experiments in Table 1, where we
see that d(v1)� k(G).

Even though Lemma 1 may not always hold for the other two vertex ordering
schemes, the pivot task is the same and is always the bottleneck of computing
workloads, and thus our solution of partitioning the pivot task is still valid.
For quasi-cliques, the task partitioning method still works but G−(v) should be
computed using v’s two-hop neighborhood (rather than one-hop).

Pivot Task Partitioning. Refer back to Equation (4) again. For maximal
clique/quasi-clique counting/listing, the pivot task A(G(Vd(v1)+1), ∅) is equiva-
lent to A(G(Vd(v1)+1 − {v1}), {v1}), i.e., assuming v1 is in a clique/quasi-clique
found and continues to examine the subgraph induced by v1’s neighbors. This is
because v1 is connected to every vertex in G(Vd(v1)+1) and thus any clique/quasi-
clique in it without v1 cannot be maximal.

Similarly, for triangle counting, the pivot task A(G(Vd(v1)+1), ∅) can be di-
vided into two cases: (1) count the triangles that contain v1, which is essentially
the number of edges in G(Vd(v1)+1−{v1}) (as the two end vertices of an edge also
connects to v1); (2) count the triangles that do not contain v1, which essentially
counts triangles in G(Vd(v1)+1 − {v1}), another triangle counting task that can
be recursively solved. The overall count is just their sum.

To summarize, unlike in Equation (1) where a task generates two subtasks,
a pivot task A(G(Vd(v1)+1), ∅) only generates one subtask computed over the
graph G(Vd(v1)+1 − {v1}).
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Fig. 2. Task Partitioning

Since a pivot task can be time-consuming, we can recursively divide the pivot
task over G′ = G(Vd(v1)+1−{v1}) into a new pivot task and a list of minor tasks.
Specifically, we can perform dynamic pivot vertex reordering in G′; let v′1 be the
new pivot vertex with the maximum degree in G′, then we can obtain a level-2
pivot task for v′1 and a list of minor tasks. The pivot task for v′1 can be further
partitioned if its graph is still too big.

In general, for a task with a set S of already-selected vertices, we call |S| = `
the level of the task. The pivot task at level-` can generate a level-(`+ 1) pivot
task and a list of level-(`+1) minor tasks. While a minor task is always processed
by a single thread.

Task Representation. After phase 1 “task partitioning” we obtain at most
one pivot task at each level, as well as a list of minor tasks. Since there are many
minor tasks (e.g., up to n at level-1), it is costly to enqueue them one by one
to the task queue, and for computing threads to fetch them one at a time. To
reduce this cost, we represent a group of minor tasks at each level by a range; for
example, the group of all minor tasks

⋃n
i=d(v1)+2A(G−(vi), {vi}) can be simply

denoted by [d(v1) + 2, n].

Generally, for a minor task at level ` = |S| over graph G′ with n′ vertices and
v′1 be the pivot vertex, the complete group of tasks at this level can be denoted
by range [d(v′1) + 2, n′], where we abuse d(.) to measure vertex degree in G′.

While a minor task is usually efficient to compute, a group of them may
contain much workload and may need to be distributed to multiple cores for
concurrently processing. In this case, we may evenly split the task range into
subranges and assign them to different computing threads.

Therefore, in the task queue, it is sufficient to use 〈`, [a, b]〉 to denote a batch
of tasks at level-` and with range [a, b], and this is the basic unit to be fetched
by computing threads for processing (though the batch can be split to create
new batches for fetching when another thread is idle).
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Table 2. Dataset Sizes and Properties

Dataset n m d(v1) k(G) c(G)

Google 875713 4322051 6353 44 44

Youtube 1134890 2987624 28754 51 17

Patents 3774768 16518947 793 64 11

Flixster 2523386 7918801 1474 68 31

Skitter 1696415 11095298 35455 111 67

Wiki 2394385 4659565 100032 131 26

Task Initialization. From level 1, we keeps partition the pivot task at each
level until when a newly-generated pivot task has an empty graph. Let the last
level be `max, then this task initialization approach generates `max group of
minor tasks. Figure 2 illustrates this task generation process.

3.3 Task Computation

As long as the task queue Q is not empty, a computing thread will keep de-
queueing a batch of minor tasks 〈`, [a, b]〉 from Q for computation. The thread
will compute the tasks within the range [a, b] one by one. Each task is computed
by a serial recursive counting/list algorithm, which consumes a stable and small
amount of memory as the search space tree is traversed in a depth-first manner.

Subgraph Construction. The pivot tasks’ subgraphs G1, G2, ..., G`max
are

kept in the memory after task partitioning, so that computing threads can read
them whenever needed. The subgraph of a level-` (minor) task can thus be in-
crementally constructed from G`−1 for serial processing, rather than constructed
from scratch from G. We remark that the former is faster since we only need to
examine a smaller graph (and thus less edges/adjacency list items).

4 Performance Evaluation

This section evaluates the performance of the various algorithms on top of par-
allel framework using large real graph datasets. All the experiments were run on
a Linux server with 40 3GHz CPU cores and 32GB memory. The programs were
written in C++ and compiled with GCC.

For quasi-clique listing, we use parameters γ = 0.8 and s = k(G) (i.e., G’s
core number), which essentially finds quasi-cliques from the γ(s− 1)-core of G.
We report computation time in the unit of seconds.

Datasets. We used 6 graph datasets in our experiments as shown in Table 2,
which correspond to different types of real-world networks.

Specifically, Google [1] is a web graph of Google; Youtube [2] is the social
network of Youtube users and their connections; Patents [3] is the US Patent
citation network; Flixster [4] is the social network of a movie rating site; Skitter [5]
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Table 3. The Computation Cost

Problem Dataset Original Static Dynamic

Triangle
Counting

Google 52.86 42.76 40.03
Youtube 64.74 41.07 38.23
Patents 223.32 214.82 182.26
Flixster 181.86 135.34 119.70
Skitter 312.54 210.47 189.48
Wiki 174.88 86.70 78.90

Clique
Counting

Google 66.72 67.84 63.75
Youtube 47.53 47.26 45.64
Patents 190.76 173.27 155.68
Flixster 285.04 238.15 189.00
Skitter 3052.21 2868.00 2759.43
Wiki 2949.47 2823.36 2179.24

Maximal
Clique
Listing

Google 210.37 203.82 211.82
Youtube 188.20 185.88 186.74
Patents 593.28 601.10 606.32
Flixster 1201.00 1055.19 905.90
Skitter 8287.91 8348.78 7590.01
Wiki 10619.76 10160.41 7973.61

Quasi-Clique
Listing

Google 47840.84 47532.52 48344.17
Youtube 62716.50 75432.17 65563.62

Wiki 126553.08 94453.64 82456.81

is an Internet topology graph; and finally, Wiki [6] is a user communication
network from Wikipedia.

In Table 2, d(v1) means the maximum degree, k(G) means the core number,
and c(G) means the size of the maximum clique. The datasets are listed in
ascending order of their core numbers k(G).

4.1 Experiments on Vertex Ordering Schemes

We first conduct experiments to compare different vertex ordering schemes. For
each problem and each dataset, we run a single-threaded program with each of
our 3 proposed ordering schemes “original order”, “static degree”, and “dynamic
degree”, respectively (c.f. Section 3.1). The ordering is adjusted by moving the
pivot vertex and its neighbors ahead.

Table 3 reports the computation time of various problems on various datasets
using the 3 schemes. We do not report the time of quasi-clique listing on Patents,
Flixster and Skitter since they ran over 48 hours due to the giant search space [17]
and are thus killed.

From Table 3, we can see that the dynamic degree ordering scheme (along
with pivot vertex reordering) is a clear and consistent winner, and therefore we
adopt this vertex ordering scheme in the following experiments.

Comparison with Existing Work on Clique Counting. The works of [10]
and [11] proposed an algorithm called FFFk for counting cliques with small
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Table 4. Comparison on Clique Counting

Dataset FFF7 Our Algorithm Speedup

Google 48.62 70.82 0.69

Youtube 38.33 54.10 0.71

Patents 105.62 186.21 0.57

Flixster 458.68 246.38 1.86

Skitter 5491.22 2890.53 2.20

Wiki 4220.07 2832.20 1.49

Table 5. Comparison on Maximal Clique Listing

Dataset Existing Approach Our Approach Speedup

Google 361.07 244.30 1.48

Youtube 236.90 217.01 1.09

Patents 769.63 780.18 0.99

Flixster 1146.16 972.42 1.18

Skitter 9571.65 7693.29 1.24

Wiki 9676.89 8017.03 1.21

sizes k. The ordering scheme they used is essentially the static degree ordering
defined in our Section 3.1 (without pivot vertex reordering).

To explore whether pivot vertex reordering reduces the workload, we com-
pare our clique counting algorithm with FFFk. Since the largest k used in their
experiments is k = 7, we run our clique counting algorithm with static degree or-
dering plus pivot vertex reordering as an equivalence to FFF7. Note that we are
counting cliques with very large sizes up to c(G) = 67. The results are reported
in Table 4, where we can see that our computation time is comparable to FFF7

when the computation time is short, but much faster when the computation time
is long, which justifies the need of pivot vertex reordering.

Comparison with Existing Work on Maximal Clique Listing. The work
of [26] and [25] proposed an algorithm for maximal clique listing. They explored
the static and dynamic degree ordering schemes described in our Section 3.1.
They decompose the task into subtasks M(G−(v))⊕ {v} for all v ∈ V , and for
each subtask, they solve it using pivot vertex reordering. However, pivot vertex
reordering is not performed on the root task M(G), and it is interesting to see
how this affects the amount of overall workloads.

Table 5 reports the computation time of our algorithm with/without root-
task pivot vertex reordering, and we can see that after applying the pivot vertex
reordering for the root task, the computation time is consistently improved.

Another problem with [26] and [25] is that they do not support recursive
partitioning of a pivot task which usually contains a lot of workloads needing
parallel computation.
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Table 6. Parallel Computation on Wiki Dataset

Problem # of Threads 1 2 4 8 16 32

Triangle
Counting

Time 78.89 39.49 21.86 11.09 7.35 5.83
Speedup 1.00 2.00 3.61 7.12 10.74 13.53

Clique
Counting

Time 2179.24 1206.20 612.21 323.43 181.88 119.99
Speedup 1.00 1.81 3.56 6.74 11.98 18.16

Maximal
Clique

Time 7973.61 4608.41 2311.60 1228.39 657.33 443.84
Speedup 1.00 1.73 3.45 6.49 12.13 17.96

Quasi-
Clique

Time 82500.23 45493.54 24127.00 14223.90 8202.75 5139.22
Speedup 1.00 1.81 3.42 5.80 10.06 16.05

4.2 Experiments on Parallel Computation

We now explore how our parallel framework scales up with the number of threads
using various applications and datasets. We run our programs with 1, 2, 4, 8, 16
and 32 threads, respectively, for testing vertical scalability. We report both the
computation time and speedup ratio (w.r.t. single-threaded execution). Dynamic
degree ordering plus pivot vertex reordering is used for task partitioning in all
the following experiments. Due to the space limitation, we only report the results
on Wiki dataset.

Table 6 shows the computation time and the corresponding speedup ratio
w.r.t. single-threaded execution. We can see that the speedup ratio increases
near-linearly with the number of threads all the way till 16, but the increment
of the speedup trend slows down when we run 32 threads, possibly because
the overheads of task generation and fetching stand out compared with the
significantly amortized task computation time. The increment of the speedups
are similar for clique counting and quasi-clique listing. Overall, our framework
demonstrates a near-optimal speedup.

Compared with maximal clique listing where the vertical scalability slows
down at 32 threads, triangle counting slows down earlier at 16 threads mainly
because the computing workloads of triangle counting is much lower than that
of maximal clique listing, and thus the other overheads stand out sooner.

5 Conclusion

In this paper, we proposed a framework of task partitioning and workload balanc-
ing for triangle counting, clique counting, maximal clique listing and quasi-clique
listing. For task partitioning, we proposed pivot path partitioning, which recur-
sively explores a node in the search tree which has the most heavily workload. For
workload distribution, we dynamically balanced the workload by a work steal-
ing strategy. Our experiments showed that our pivot path partitioning strategy
reduced the total amount of work to be computed. We also demonstrated that
our parallel executions have a almost ideal speedup ratio for up to 32 threads.
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