
EasyRain: A User-Friendly Platform for Comparing
Precipitation Nowcasting Models

Ji Cheng∗1, Guimu Guo#2, Da Yan#3, Xiaotian Hao∗4, Wilfred Ng∗5

∗Department of Computer Science and Engineering, The Hong Kong University of Science and Technology
{1jchengac, 4xhao, 5wilfred}@cse.ust.hk

#Department of Computer Science, The University of Alabama at Birmingham
{2guimuguo, 3yanda}@uab.edu

Abstract—Precipitation nowcasting, which predicts rainfall
intensity in the near future, has been studied by meteorologists
for decades. Currently, computer vision techniques, especially
optical flow based methods, are widely adopted by observatories
since they deliver reasonable performance without the need of
model training. However, their performance is highly sensitive to
model parameters which require a lot of empirical knowledge
to optimize. With the recent success of deep learning (DL),
machine learning researchers have started to explore the use of
spatiotemporal DL models for precipitation nowcasting, which
have demonstrated a better performance than optical flow based
methods. However, DL models are not easy to configure for non-
DL experts such as meteorologists. In this poster, we introduce
EasyRain, a platform with a user-friendly web interface to help
users without domain knowledge (in DL and/or meteorology)
to efficiently build DL and optical flow based models. We will
demonstrate the efficiency and usability of EasyRain for training,
tuning, and comparing precipitation nowcasting models.

I. INTRODUCTION

The goal of precipitation nowcasting is to predict the future
rainfall intensity in a local region over a relatively short period
of time based on radar echo maps [4]. The radar echo maps
are Constant Altitude Plan Position Indicator (CAPPI) images
that encode the rainfall density information at each local
region and can be converted to rainfall intensity maps using
either Marshall-Palmer relationship or Z-R relationship [2]. As
illustrated in Figure 1, the problem takes several consecutive
frames of radar echo maps as the input, and output the
predicted future radar echo maps. The obtained radar echo
maps can then be further converted into rainfall intensity maps.

This problem is of great significance since heavy rain may
cause natural disasters such as flooding and landslide, which
may in turn lead to infrastructure failures, traffic congestion,
and mass casualties in extreme cases.

Two types of methods have been proposed by meteorol-
ogy and machine learning research communities, respectively.
(1) Optical flow based models, as represented by the Real-
time Optical flow by Variational methods for Echoes of Radar
(ROVER) [7] algorithm. (2) Deep learning models, where
the state-of-the-arts are sequence-to-sequence DL models with
novel RNN (recurrent neural network) components such as
ConvLSTM [3], ConvGRU and TrajGRU [4].

As the abstract has explained, both methods have their pros
and cons. It is challenging for meteorologists to compare the

t0 t1 t2 t3 t4

Input Radar Echo Maps Predicted Radar Echo Maps

Fig. 1. Illustration of Precipitation Nowcasting

GUI for Training/Tuning

Front End

Evaluation & Visualization

Back End

DL Models ROVER

…

Training Data Model
Configurations

③ Inference

② Training / Finetuning
Pretrained

① User Request

Fig. 2. EasyRain System Architecture

performance of optical flow based methods with deep learning
(DL) based methods, as it is not a trivial task for scientists
without DL experience to configure and run deep learning
models. To help users efficiently build and tune precipitation
nowcasting models, we propose a platform called EasyRain
with a user-friendly browser-based graphical user interface
(GUI). EasyRain allows meteorologists to easily train and tune
DL models, to tune parameters of optical flow based methods
like ROVER, and to compare different models. Users can
dynamically change the model parameters with performance
feedback of interactive speed; users can also compare the
performance of selected models in both quantitative and qual-
itative manners using visualization plots. A rich set of models
have been pretrained on the HKO-7 dataset [4] for users to
choose from; users may further finetune a pretrained DL model
on their own dataset by initializing the parameters to be those
of the pretrained model, to achieve faster convergence.

Figure 2 summarizes our EasyRain platform consisting of
(1) a front-end web interface for users to easily train and make
inference with DL models and ROVER, and to visualize the
results for model comparison; (2) a back end that automatically
manages data splitting (into training and validation sets),
efficient training of DL models, and result evaluation.

978-1-7281-0858-2/19/$31.00 © 2019 IEEE

RNN

RNN

RNN

Downsample

Downsample

Convolution

RNN

RNN

RNN

Downsample

Downsample

Convolution

RNN

RNN

RNN

Upsample

Upsample

Convolution

RNN

RNN

RNN

Upsample

Upsample

Convolution

Encoder Forecaster

Figure 1: Example of the encoding-forecasting structure used
in the paper. In the figure, we use three RNNs to predict two
future frames Î3, Î4 given the two input frames I1, I2. The spatial
coordinates G are concatenated to the input frame to ensure the
network knows the observations are from different locations. The
RNNs can be either ConvGRU or TrajGRU. Zeros are fed as input
to the RNN if the input link is missing.

(a) For convolutional RNN, the recurrent
connections are fixed over time.

(b) For trajectory RNN, the recurrent con-
nections are dynamically determined.

Figure 2: Comparison of the connection
structures of convolutional RNN and tra-
jectory RNN. Links with the same color
share the same transition weights. (Best
viewed in color)

where L is the total number of local links, (pl,i,j(θ), ql,i,j(θ)) is the lth neighborhood parameterized
by θ.

Based on this observation, we propose the TrajGRU, which uses the current input and previous
state to generate the local neighborhood set for each location at each timestamp. Since the location
indices are discrete and non-differentiable, we use a set of continuous optical flows to represent these
“indices”. The main formulas of TrajGRU are given as follows:

Ut,Vt = γ(Xt,Ht−1),

Zt = σ(Wxz ∗ Xt +
L∑

l=1

W l
hz ∗ warp(Ht−1,Ut,l,Vt,l)),

Rt = σ(Wxr ∗ Xt +
L∑

l=1

W l
hr ∗ warp(Ht−1,Ut,l,Vt,l)),

H′t = f(Wxh ∗ Xt +Rt ◦ (
L∑

l=1

W l
hh ∗ warp(Ht−1,Ut,l,Vt,l))),

Ht = (1−Zt) ◦ H′t + Zt ◦ Ht−1.

(4)

Here, L is the total number of allowed links. Ut,Vt ∈ RL×H×W are the flow fields that store the
local connection structure generated by the structure generating network γ. TheW l

hz,W l
hr,W l

hh
are the weights for projecting the channels, which are implemented by 1 × 1 convolutions. The
warp(Ht−1,Ut,l,Vt,l) function selects the positions pointed out by Ut,l,Vt,l from Ht−1 via the
bilinear sampling kernel [10, 9]. If we denoteM = warp(I,U,V) whereM, I ∈ RC×H×W and
U,V ∈ RH×W , we have:

Mc,i,j =
H∑

m=1

W∑

n=1

Ic,m,nmax(0, 1− |i+Vi,j −m|)max(0, 1− |j +Ui,j − n|). (5)

The advantage of such a structure is that we could learn the connection topology by learning the
parameters of the subnetwork γ. In our experiments, γ takes the concatenation of Xt and Ht−1 as
the input and is fixed to be a one-hidden-layer convolutional neural network with 5× 5 kernel size
and 32 feature maps. Thus, γ has only a small number of parameters and adds nearly no cost to the
overall computation. Compared to a ConvGRU with K ×K state-to-state convolution, TrajGRU
is able to learn a more efficient connection structure with L < K2. For ConvGRU and TrajGRU,
the number of model parameters is dominated by the size of the state-to-state weights, which is
O(L× C2

h) for TrajGRU and O(K2 × C2
h) for ConvGRU. If L is chosen to be smaller than K2, the

5

Fig. 3. The Encoding-Forecasting Network Structure [4]

II. THE EASYRAIN PLATFORM

As Figure 2 shows, at the front end of EasyRain, a user
may upload their datasets for training and/or inference, and
specify/tune model hyperparameters via a friendly browser-
based graphical interface. EasyRain maintains three DL mod-
els: ConvGRU, TrajGRU and 3D CNN which are pretrained
on the HKO-7 dataset [4], and users may directly use a
pretrained DL model to make inference on their uploaded
dataset. Optionally, users may train a new model from their
uploaded training dataset, to be used subsequently for making
inference on their uploaded test dataset.

In the latter scenario, one may train a new DL model from
scratch, e.g., by specifying weight initialization methods such
as random Gaussian weights, Xavier/He initialization. Users
may also choose to finetune the parameters of a pretrained
DL model over their own training dataset to allow faster
convergence, in which case the model parameters start from
those already trained over HKO-7. Our user interface provides
timely feedback on the current training loss and epoch/iteration
number for users to track the training progress.

In contrast, ROVER directly takes user-specified parameters
for inference and does not require training; and therefore, users
can directly tune the model parameters in the browser, and
visualize the dynamic feedback of the model performance.

EasyRain also provides an intuitive interface to compare the
quantitative and qualitative model performance results among
DL models and ROVER. In the rest of this section, we will
introduce in Section II-A our built-in models that users can
select for precipitation nowcasting; then, Section II-B explains
how the model performance are evaluated and compared.

A. Built-in Models

ConvLSTM and ConvGRU. The pioneering work of [3]
adapts the sequence-to-sequence RNN-based prediction model
to conduct precipitation nowcasting, by extending RNN to
have convolutional structures in both the input-to-state and
state-to-state transitions so as to accommodate radar echo
maps as model inputs.

As an illustration, Figure 3 shows the adopted encoding-
forecasting network structure. In the figure, three layers of
RNNs are used to predict two future frames Î3, Î4 given two
input frames I1, I2. The encoding network compresses the
input sequence into hidden state tensors and the forecasting
network then unfolds them to give the predicted frames.

Shi et al. adopt convolutional LSTM1 (ConvLSTM) [3] as
the RNN component in Figure 3; later, Shi et al. [4] further
replaces LSTM with another RNN variant GRU2. Both LSTM
and GRU overcomes the problem of vanishing gradients in
RNN, but GRU has less parameters and is thus compu-
tationally more efficient; GRU extended with convolutional
structures produces ConvGRU which is computationally more
efficient than ConvLSTM and is thus adopted in EasyRain.
TrajGRU. The limitation of ConvLSTM and ConvGRU is
that the connection structure and weights are fixed for all
the locations in a receptive field. However, natural motion
and transformation (e.g., rotation) in radar echo maps are
location-variant in general. To overcome this limitation, [4]
proposed a location-variant convolutional RNN component
called TrajGRU where the recurrent connections between
consecutive frames are dynamically determined. TrajGRU
is demonstrated in [4] to give better performance without
increasing the number of parameters.
3D CNN3. CNN-based models are known to be faster to
train than RNN-based models. Tran et al. [5] used 3D CNN
to encode temporal information as depth of the input in the
task of video action recognition. In 3D CNN, convolution and
pooling operations are performed spatio-temporally, which is
in contrast to 2D CNN where they are done only spatially.
3D CNN is demonstrated to be effective in [5] in modeling
temporal information; 3D CNN has also been used to perform
prediction task on videos with fractionally-strided convolu-
tions in [6], which is similar to our task of precipitation
nowcasting (i.e., a video of radar echo maps).
ROVER. Conventional precipitation nowcasting methods use
optical flow4 to accurately extrapolate the future radar echo
maps. One such example is ROVER [7] which is the state-
of-the-art optical flow based method currently used at the
Hong Kong Observatory (HKO). ROVER first generates flow
fields through optical flow calculation [1] and converts them
to the prediction through semi-Lagrangian advection. ROVER
requires six optical flow parameters and the choice of the
parameters could significantly affect the quality of a predicted
radar echo map. While empirically-set parameters that work
well for Hong Kong are provided as default in EasyRain,
parameter tuning is often required to achieve optimal perfor-
mance on radar echo maps from a different region.
Pretrained Models. EasyRain provides 3 pretrained DL mod-
els ConvGRU, TrajGRU, and 3D CNN to users, whose hyper-
parameters have been tuned to demonstrate good performance
on the HKO-7 dataset. For ROVER, we use widely accepted
parameters currently used in Hong Kong Observatory.

B. Model Evaluation

Qualitative Performance. Radar echo maps are usually
recorded every several minutes. EasyRain allows users to view

1LSTM stands for long short-term memory.
2GRU stands for Gated Recurrent Unit.
3CNN stands for convolutional neural network.
4Optical flow is a technique in computer vision.

Ground
Truth

ConvGRU

TrajGRU

ROVER

t t + 1 t + 2 t + 3 t + 4

Conv3D

Fig. 4. Video Frames from Different Models and the Ground Truth

C
onfigurations

Training Logs

Model 1 Model 2

In
pu
tF
ra
m
es

Pr
ed
ic
te
d
Fr
am
es

G
ro
un
d
Tr
ut
h

In
pu
tF
ra
m
es

Pr
ed
ic
te
d
Fr
am
es

G
ro
un
d
Tr
ut
h

Fig. 5. GUI for Inference Result Comparison

a sequence of radar echo maps (or simply, frames) as a video;
the predicted frames of different models can be juxtaposed
as videos along with the video of ground-truth frames for
comparison, as illustrated in Figure 4. When the videos are
played together, their frames are aligned in time which gives
users an intuitive feeling of how the prediction differs from
the ground truth as time goes by.

Quantitative Performance. Each predicted (or ground-truth)
frame will be converted into a rainfall density map by applying
Marshall-Palmer relationship [2]. Then, each pixel in the
rainfall density map is converted into 0 (for not raining) or
1 (for raining) using a cutoff threshold which is typically set
as 0.5 mm/hr. In a nutshell, each predicted frame is converted
into a 0/1 matrix. The 0/1 matrix computed from a predicted
frame at time t can be evaluated against that computed from
the ground-truth frame at time t by calculating well-established
quantitative evaluation metrics [3], [4] including Critical Index
Score CSI , Probability of Detection POD, and Heidke Skill
Score HSS. Figure 5 illustrates how users may compare two
different models in EasyRain, where the 3 quantitative scores
CSI, POD and HSS are presented.

III. USER WEB INTERFACE

C
onfigurations

Training Logs

Model 1 Model 2

In
pu
tF
ra
m
es

Pr
ed
ic
te
d
Fr
am
es

G
ro
un
d
Tr
ut
h

In
pu
tF
ra
m
es

Pr
ed
ic
te
d
Fr
am
es

G
ro
un
d
Tr
ut
h

Fig. 6. GUI for Model Training

Figure 6 shows our DL
model training interface on
the left. To start training, a
user needs to upload their
own training dataset, se-
lect a DL model, and spec-
ify its hyperparameters. Fi-
nally, the user may click
the “Start Training!” button
to begin the training pro-
cess. When the training fin-
ishes, the user may further
click the “Export Trained
Model” button to save the
trained model to a Python
pickle file. During training,

the current loss value will be reported after each epoch.
As Figure 5 shows, to start a comparison, a user first needs

to upload a test dataset containing a sequence of radar echo
maps, and then to select the types of models to compare. If
the model is a DL one, the user needs to specify the trained
model which is stored as a pickle file; otherwise, ROVER is
used, and the user needs to input the 6 parameters of ROVER.
Finally, the user may click the “Confirm” button to start
the inference and evaluation. Once inference is completed,
quantitative scores CSI, POD and HSS will be presented in a
table, and the input frames (e.g., before time t), the predicted
frames (e.g., since time t) and their corresponding ground-truth
frames will be presented as videos for intuitive comparison.

Instead of using a DL model trained by users themselves,
EasyRain also provides pretrained models on the HKO-7
dataset. In this case, users choose a pretrained model rather
than specify a model pickle file.

IV. CONCLUSION

EasyRain allows users to easily train and make inferences
with DL models and ROVER for precipitation nowcasting.
Models are compared in quantitative and qualitative manners.
Acknowledgment. This project is partially supported by NSF
OAC-1755464 and NSF DGE-1723250.

REFERENCES

[1] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical
flow estimation based on a theory for warping. In ECCV, volume 3024
of Lecture Notes in Computer Science, pages 25–36, May 2004.

[2] J. S. Marshall and W. M. Palmer. The Distribution of Raindrops with
Size. Journal of Atmospheric Sciences, 5:165–166, Aug. 1948.

[3] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo.
Convolutional lstm network: A machine learning approach for precipita-
tion nowcasting. In NIPS, pages 802–810. 2015.

[4] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c.
WOO. Deep learning for precipitation nowcasting: A benchmark and a
new model. In NIPS, pages 5617–5627. 2017.

[5] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning
spatiotemporal features with 3d convolutional networks. In ICCV, pages
4489–4497, 2015.

[6] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with scene
dynamics. In NIPS, pages 613–621, 2016.

[7] W.-c. Woo and W.-k. Wong. Operational application of optical flow
techniques to radar-based rainfall nowcasting. Atmosphere, 8(3):48, 2017.

