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ABSTRACT
With the rapid progress of global urbanization and function divi-
sion among different geographical regions, it is of urgent need to
develop methods that can find regions of desired future function
distributions in applications. For example, a company tends to open
a new branch in a region where the growth trend of industrial
sectors fits its strategic goals, or is similar to that of an existing
company location; while a job hunter tends to search regions where
his/her expertise aligns with the industrial growth trend provid-
ing sufficient job opportunities to sustain future employment and
job-hopping.

Our solution is to learn a distribution (aka. embedding) of the
growth of various industrial sectors for each region, so that the
embeddings of different regions can be searched, or compared for
similarity querying. We consider the fine granularity of ZIP code
areas as they are usually representative of the regional functions.
By effectively utilizing open data on the Internet such as govern-
ment data (e.g., from US Census Bureau) and third-party data for
supervised learning, we propose to first construct a multigraph
that captures the various relationships between regions such as
direct flight connections and shared school districts, and then learn
region embeddings using a novel graph convolutional network ar-
chitecture. Our multigraph convnet (MGCN) differentiates various
feature types such as demographic, social, economic and housing
features, and learns different weights on different features and
spatial relationships for effective data-driven feature aggregation.

While deep learning is known to require large amounts of data
to train, our weighted MGCN (WMGCN) is designed to minimize
the number of parameters so that it does not underfit on the lim-
ited amount of open data. Extensive experiments are conducted to
compare our WMGCN model with several competitive baselines to
demonstrate the superiority of our WMGCN design.

CCS CONCEPTS
• Information systems→ Data mining.
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1 INTRODUCTION
The Problem. We study the problem of embedding each ZIP code
area into a vector representation that reflects its economic growth
trend, which can be used for searching for a desired ZIP code area
for planning future investments. For example,

• When a company wants to expand its businesses into new
regions, it can search for a ZIP code area to set up its new site
where the distribution of the growth of various industries
is similar to that of an existing site so that the new site can
benefit from prior success experience.
• When one changes his/her job andmoves to a newwork loca-
tion, he/she can search for the ZIP code areas nearby to find
a house with a similar growth trend of industrial sectors to
purchase, e.g., school rating remains high, healthcare service
remains strong, and/or finance industry is booming if the
person and/or his/her spouse are in the financial industry.

US Census Bureau, which is the federal government’s largest sta-
tistical agency, provides current facts and figures about America’s
people, places, and economy. These statistics are often released
at different geographical levels such as states, counties, ZIP Code
Tabulation Areas (ZCTAs), etc., on a yearly basis, and they are fre-
quently used by policy makers and businesses for planning and
decision making. In this paper, we also utilize these statistics to
learn region embeddings.

We adopt the region granularity of ZIP code areas since different
regions of a city can have very different functions and quality of
life, which are important when people make investment decisions.
For example, Whole Foods Market usually targets rich communities
while Walmart is more affordable and may target dense residential
areas. People with children may also want to buy a house in a good
school district.

https://doi.org/10.1145/3340531.3411882
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Table 1: NAICS Industry Sectors

Code Industry Title

11 Agriculture, Forestry, Fishing and Hunting

21 Mining

22 Utilities

23 Construction

31-33 Manufacturing

42 Wholesale Trade

44-45 Retail Trade

48-49 Transportation and Warehousing

51 Information

52 Finance and Insurance

53 Real Estate Rental and Leasing

54 Professional, Scientific, and Technical Services

55 Management of Companies and Enterprises

56 Administrative and Support and Waste Management and 
Remediation Services

61 Educational Services

62 Health Care and Social Assistance

71 Arts, Entertainment, and Recreation

72 Accommodation and Food Services

81 Other Services (except Public Administration)

92 Public Administration

Why Economic Growth? Site selection is often not a short-term
investment, and so it is important to ensure future growth. The
current mass of an industry may not be sufficient.

For example, Rochester, NY is a city known as a home for ed-
ucated engineers and Kodak was one of the biggest employers of
the city’s college graduates, thanks to its mass market for photog-
raphy; however, with the popularity of digital cameras and smart
phones, the industry is actually shrinking and Kodak had to file for
bankruptcy protection in 2012. Regional impacts include forcing
some universities such as Rochester Institute of Technology to shift
emphasis from college education to more on research.

As another example, consider a tech startup in Alabama (e.g.,
Fledging1) which wants to find a location within the state to set
up its office. Such a restriction is reasonable, for example, because
the investors are local businessmen in Alabama. An ideal loca-
tion would show growth of startups and available IT workforce
(e.g., graduated from nearby universities), as in Silicon Valley. Even
though the mass of startups and IT workforce in Alabama cities
is much smaller than in Silicon Valley, the startup can still find
a region in Alabama with the quickest growth of startups and IT
workforce (i.e., most similar to Silicon Valley), such as Innovation
Depot2 in Birmingham, AL where the University of Alabama at
Birmingham is located.
Targeted Region Representation. Unlike existing embedding
methods where elements of the learned vector representations do

1https://fledging.net/
2https://innovationdepot.org/

Figure 1: Sector-by-Sector Growth Vectors at ZIP Code Level

not carry physical meanings per se, we require the dimensional
vector of a zip code in our region embedding to represent the
economic growth trend in the zip code area. This design allows
people to search regions more intuitively, e.g., by searching nearest
neighbors in the embedding space. Meanwhile, region similarities in
terms of economic growth can be estimated from distancemetrics of
their embeddings. Finally, regions in the search results are directly
interpretable using their embeddings.

One challenge to train a region representation is the need of
ground-truth growth values of different industrial indicators to
provide necessary supervision. This is different from the skip-gram
model widely used in embedding words [23] and graph nodes [13,
25] which uses the current word (or node) to predict its context,
i.e., surrounding words in a sentence (or surrounding nodes in a
random walk). Unlike our problem setting, the skip-gram model
derives supervision directly from large corpus or many random
walks in an unsupervised manner, and thus the training data are
abundant.

Fortunately, the North American Industry Classification System
(NAICS) divides the businesses into 20 sectors [3] as shown in
Table 1: in each year and for each sector, the number of establish-
ments at the ZIP code level within the US can be collected using US
Census Bureau’s ZIP Codes Business Patterns (ZBP) APIs [4]. This
allows us to obtain the number of new establishments created in
a ZIP code area between Year 2011 and Year 2016, for example, by
subtracting the establishment counter vector of the latter by that of
the former. In this paper, we use such a difference vector of each ZIP
code area as its target embedding to learn. Intuitively, similar zip
code areas in terms of economic growth will have similar industrial
distributions of establishments’ growth in the future. Altogether we
collected data of 33119 ZIP codes within the US. Figure 1 illustrates
our sector-by-sector ZIP code area embeddings.
Input Region Features. To predict the sector-by-sector economic
growth vector of a region, we use the region’s current features as
an input source. American Community Survey (ACS) [1] from US
Census Bureau provides such regional features in a yearly basis at
different geographical levels. For each of the 33119 ZIP code areas,
we collected 4 categories of features, including 82 demographic
features (e.g., the total population and citizens), 150 social features
(e.g., total households and fertility), 114 economic features (e.g.,

https://fledging.net/
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income and benefits and population in the labor force), 142 housing
features (e.g., average house value and total housing units).
Integrating Geographical Relations. Using region-specific fea-
tures alone ignores the geographical relations between regions,
which may miss important region similarity factors. For example,
the fact that an airport located in a nearby ZIP code area can have
a profound impact on the current ZIP code area’s economic growth
than on one that is farther away from the airport. Also, cities with
frequent direct flights can share more economic growth opportuni-
ties than cities that are not directly connected by flights. As another
example, parents may consider all ZIP code areas in the same good
school district when purchasing a house; in other words, spatial
units slightly larger than ZIP code areas could be of interest. Finally,
a county usually only has a couple of Costco warehouse stores
visited by residents from many ZIP code areas in the county.

We, therefore, propose to capture these diverse relations between
ZIP code areas with a multigraph where each edge refers to one
particular relationship between two areas. The features from neigh-
boring areas of a ZIP code area can be used to enhance its features
for better prediction, which is critical for a realistic embedding as
ZIP code areas are usually too fine-grained: for example, residents
may drive to a Costco store or airport in nearby area in 10 min-
utes, which does not compromise their preference for the region’s
economic sectors.
Approach Overview. Since spatial smoothing is important for ZIP
code level region embedding, we achieve this by applying graph
convolutional network (GCN) [17] over the previously described
multigraph where nodes are ZIP code areas containing 4 differ-
ent kinds of features, and edges capture different types of spatial
relationships between two ZIP code areas. In GCN, each graph
convolution layer propagates the features of one-hop neighbors.
Our approach effectively executes a spatial regularization based on
Tobler’s first law of geography stating that “near things are more re-
lated than distant things”, to battle the spatial feature discontinuity
caused by the fine granularity of ZIP code area units.

Even though we are able to construct such a multigraph of ZIP
code areas from open data, and use NAICS industry sector growth
vector for supervised representation learning, the amount of data
is still very limited compared with skip-gram models. Specifically,
we only have 33119 ZIP codes within US, and we should only use
the feature data and growth supervision from recent years to avoid
out-of-date growth trend. This poses another challenge to building
our embedding model, since the loss objective function of a deep
learning model is typically non-convex and requires massive data
to train the large quantity of weight parameters. In contrast, we
only have a moderate-sized multigraph and thus a simple model
with fewer parameters is preferred to avoid model underfitting,
according to the principle of Occam’s razor.

We thus adopt a simple GCN design to extract intermediate
features from each category of region input features, which are
then integrated to predict the final sector-by-sector growth region
embeddings. After testing various ways of feature integration, we
find that a simple weighted sumworks the best (e.g., as compared to
adding another dense layer) thanks to its simplicity to train which
aligns with Occam’s razor.
Contributions. Our main contributions are as follows:

• We identify open data sources (including government data
and third-party data) to effectively construct our region-
based multigraph for learning sector-by-sector region em-
beddings from the perspective of economic growth.
• We follow the principle of Occam’s razor to design simple
GCN based models that are easy to train on our limited data
source without model underfitting, including techniques
such as separating feature extraction of different categories
of input region features, feature integration by weighted
sum, and selection of top-k weighted edges for neighbor
feature integration (see Section 4 for details).
• We evaluate our method on real data by comparing it exten-
sively with existing alternative solutions to demonstrate its
effectiveness.

Paper Organization. The rest of this paper is organized as follows.
Section 2 reviews the related work regarding graph neural networks
and region embedding. Section 3 then defines our notations and
presents how our multigraph of ZIP code areas is constructed from
open data. Section 4 introduces our model design and explains why
it is more effective than other alternatives. Finally, Section 5 reports
our experimental results and Section 6 concludes this paper.

2 RELATEDWORK
2.1 Node Embedding & Graph Neural Networks
Topology-Based Node Embedding. Since deep learning layers
take fixed-size tensors (or, a mini-batch of fixed-length vectors) as
the input, a number of works propose to embed nodes in a graph
into vectors so that graph data become admissible to deep learning
tasks such as node classification and graph classification. For exam-
ple, DeepWalk [25] traverses a graph to generate random walks to
capture local structures by neighborhood relationships, and then
uses the skip-gram model to learn the embedding of each node that
is most likely to generate its nearby nodes (or their embeddings) in
a walk. This is similar to word2vec [23] except that now sentences
become walks and words become nodes. Node2vec [13] further
introduces Breadth-Fast-Sampling (BFS) and Depth-First-Sampling
(DFS) to control the random behavior. BFS reaches immediate neigh-
bors while DFS prefers nodes away from the source.

A problem with using DeepWalk and node2vec in our setting
is that, these methods only consider graph topology and cannot
incorporate input node features. However, in our multigraph, edges
only reflect the connection strength between different ZIP code
areas, and it is the input node features that propagate along these
edges to mutually reinforce each other w.r.t. economic factors.
Graph Neural Networks (GNNs). The notion of GNN was ini-
tially outlined in [12] and further elaborated by [27] as a form of
recurrent neural network (RNN). They propagate neighbor informa-
tion in an iterative manner until reaching a stable fixed point. This
process is expensive and is recently improved by several studies
such as [21]. Encouraged by the success of convolutional neural
networks (CNNs) in computer vision which extracts higher-level
features from images using a sequence of interleaving convolution
layers and pooling layers, recent models focus on adapting these
layers to work directly on graph input (rather than tensor input).



Graph Convolutional Networks (GCNs). Graph convolution
layers can be divided into two categories, spectral graph convolu-
tion and localized graph convolution [32].

Early works mainly focus on spectral graph convolutions, as
pioneered by [6]. In a follow-up work, ChebyNet [8] defines graph
convolutions using Chebyshev polynomials to remove the expen-
sive Laplacian eigendecomposition. Then, GCN [17] as the state of
the art, further simplify graph convolution by a localized first-order
approximation, leading to a simple form of

H (ℓ+1) = σ (D̃−
1
2 ÃD̃−

1
2H (ℓ)W (ℓ) ),

where Ã = A+I is the adjacencymatrix with self-connections added,
D̃ is a diagonal matrix with D̃ii =

∑
j Ãi j ,W (ℓ) is the weight matrix

to train for Layer ℓ, σ is an activation function such as ReLU, and
H (ℓ) is the state matrix where each row keeps the features of a
node at Layer ℓ; H (0) = X , i.e., the input matrix where each row
keeps the features of a node.

However, spectral methods require operating on the entire graph
Laplacian during training which is expensive, though some follow-
up works endeavor to mitigate the cost as in FastGCN [7] and
SGC [31]. To avoid operating on graph Laplacian, GraphSAGE [14]
proposes to learn a function f (·) that generates node embeddings by
aggregating features from a node’s local neighborhood. Specifically,
each convolution layer performs two transformations on each node
v :

h(ℓ)
N (v ) ← f ({h(ℓ−1)u | ∀u ∈ N (v )}),

h(ℓ)v ← σ (W(ℓ) · CONCAT(h(ℓ−1)v , h(ℓ)
N (v ) ) + b

(ℓ) ),

where we denote N (v ) as v’s neighborhood. Specifically, we first
aggregate features ofv’s neighborsu, i.e., hu from the previous layer
by function f (·); then the aggregated features are concatenated
with the old features of v itself, which then pass through a dense
layer to obtain v’s new features at Layer ℓ. GraphSAGE proposes
3 different choices of aggregating function f (·): mean aggregator,
LSTM aggregator and pooling aggregator. For example, the mean
aggregator simply averages the features of v and its neighbors.

PinSage [32] further improves the performance of localized graph
convolution by only incorporating top-k nodes that exert the most
influence on node v into N (v ) rather than using the full neighbor-
hood, which is selected based on node visit frequencies of short
random walks starting from v . PinSage also adopts a different ag-
gregation function from GraphSAGE:

h(ℓ)
N (v ) ← AVG({ReLU(Q(ℓ) · h(ℓ−1)u + q(ℓ) ) | ∀u ∈ N (v )}),

h(ℓ)v ← ReLU(W(ℓ) · CONCAT(h(ℓ−1)v , h(ℓ)
N (v ) ) + b

(ℓ) ).

Here, AVG(.) is weighted average where the weight for neighbor u
equals the L1 normalized visit counts of u by random walks from v .
Note that different from GraphSAGE that directly averages neigh-
bor features, PinSage transforms neighbor features h(ℓ−1)u by a
dense layer plus ReLU activation first before taking their weighted
average, which introduces additional parameters <Q(ℓ) , q(ℓ)> be-
sides <W(ℓ) , b(ℓ)> to each graph convolution layer, allowing more
model capacity.
Graph Pooling. Besides convolution, pooling has been studied
in the context of graph data as input, which reduces graph size

for upper layers (hence reduces their parameter size). This is espe-
cially true when going from node embeddings to a representation
of the entire graph for the task of graph classification, where global
pooling is essential as in [9, 21]. SortPool [35] sorts nodes accord-
ing to their structural roles within a graph, truncates the sorted
embeddings to a fixed size k and then feeds them to the next layer.

Hierarchical pooling aims to learn hierarchical representations
to capture structural information. DiffPool [33] coarsens each in-
put graph by learning a differentiable soft assignment of nodes at
Layer ℓ to clusters which are essentially nodes of Layer (ℓ + 1).
gPool [11] achieves performance comparable to DiffPool with less
cost. It uses a trainable projection vector p to project all node fea-
tures to 1D, and then pick top-k nodes with the largest projected val-
ues to form a smaller graph. A gUnpool operation is also proposed
so that a U-Net style encoder-decoder network can be constructed
for node classification and graph classification. SAGPool [18] uses
a self-attention layer to select top-ranked nodes to form a smaller
graph, and the layer has the same form as a spectral convolution
layer of GCN [17] though the activation function adopted is tanh.

2.2 Region Embedding
The problem of city similarity comparison was studied by [26]
which simply models a city as a vector of counts of different venues,
which are obtained from Foursquare check-in data. Two cities are
compared using the cosine similarity of their vectors. This work
finds that directly aggregated amenity counts in a city give slightly
different similarity than if amenity counts are first aggregated by
subareas in a city and then averaged, which hints that a city-level
representation is too coarse to be stable. In fact, different regions in
a city can have different economic features and functions. For exam-
ple, the GDP of Manhattan Borough in New York City is one order
of magnitude larger than that of Queens Borough, and [34] identi-
fies different functional zones in Beijing through a topic model over
human mobility trajectories. We thus consider the finer granularity
of ZIP code areas in this paper.

The work of [29] goes beyond modeling a region simply with
a frequency vectors of PoI (Point of interest) categories, to incor-
porate features that represent the spatial distribution of PoIs in
the region. Specifically, the features are computed based on the
distances of each object to five predefined reference points in the
region. Since such hand-crafted spatial features do not consider the
relative locations between objects, [22] addresses this problem by
leveraging a deep learning model that is similar to FaceNet [28] to
learn a ranking metric for comparing rectangular regions that are
modeled as images with objects in grid cells (regarded as pixels).

The work of [10] uses Foursquare check-in data to derive fea-
tures of venues (e.g., number of check-ins, number of likes) so that
each venue is associated with a 30-dimensional feature vector. The
work considers neighborhoods as regions, and each neighborhood
is represented by its set of venues (and their feature vectors). Dif-
ferent neighborhoods are compared using Earth mover’s distance,
where the distance between venues is computed by a learned Maha-
lanobis distance of their feature vectors. Another work, [16], learns
a generative process for the geotags inside a neighborhood from
Flicker photos, and uses the distribution of sampling local tags of a
neighborhood as its feature vector.
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Figure 2: Illustration of Common School District

Our problem setting is different from those of the above works
which utilize objects (e.g., PoIs, check-ins, geotags) inside a region
to extract features, as our input features for each region are directly
available from ACS which are related to the economy rather than
PoI distribution or visiting preference. Also, we capture region
relationships using a multigraph so that GCN can learn node (i.e.,
region) embeddings, while previous works directly consider the
distance between region representations without resorting to a
graph data model.

3 NOTATIONS AND THE MULTIGRAPH
A key difference of our work from those reviewed in Section 2.2 is
that we not only consider the content information of each individ-
ual region, but also consider the structural relationships between
regions. In this section, we define our notations and explain how
we construct our multigraph over ZIP code areas; these definitions
will provide sufficient context for understanding our methods to
be described in Section 4.

We consider the geographic unit of ZIP code areas. Specifi-
cally, we denote the set of all ZIP code areas within US by X =
{x1, x2, . . . , x33119}, where xi is the input feature vector of the i-th
ZIP code area. Recall that we collected 4 categories of features from
American Community Survey (ACS) including 82 demographic
features, 150 social features, 114 economic features, 142 housing
features. We organize features in xi accordingly into 4 segments:

xi = CONCAT(xi,c1 , xi,c2 , xi,c3 , xi,c4 ),

where xi,c refers to the segment of all features of the i-th ZIP code
area that belong to Category c . We denote the set of all feature
categories by C = {c1, c2, c3, c4}.

Besides the regions’ own features, we also consider 3 kinds of
spatial relations between two regions, which are modeled by 3 types
of edges in our region multigraph. The first one is the school district
relationship, where two regions are connected by such an edge if
they belong to the same school district. Figure 2 shows an example
of two common school districts, where ZIP code areas 91006 and
91016, for example, are in the same school district highlighted in
yellow, and so they are connected by an edge.

We consider ourmultigraph as an undirected graphwithweighted
and typed edges, and the weight of a school-district edge between
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Figure 3: Illustration of the Relation of Direct Flights
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Same school district 
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Figure 4: An illustration of the Multigraph
two ZIP code areas is computed as the reciprocal of the geograph-
ical distance between their internal points3 [2]. This is based on
Tobler’s first law of geography. For example, in Figure 2, the edge
between 91776 and 91007 has a lower weight than the edge between
91776 and 91780.

While the quality of a school district often affects the housing
price and is a strong indicator of a region’s economic characteristic,
the county that a region belongs to is another important factor. For
example, in Alabama, Jefferson County is themost populated county
where Birmingham, the state’s biggest city, is located, clustered by
businessmen, medical and healthcare practitioners and people in
the banking industry. The second most populated county is Mobile
which contains Alabama’s only saltwater port, and is considered
one of the Gulf Coast’s cultural centers and the most popular place
for tourism for people in Alabama during holidays. The third most
populated county is Madison County where the city of Huntsville
is located, known as the home of engineers thanks to the fact that
the largest NASA center, Marshall Space Flight Center, is located
in Huntsville.

Therefore, the second spatial relation we consider is whether two
ZIP code areas are in the same county, where edge weight is also
computed as the reciprocal of the geographical distance between
the internal points of the two regions considered. Sometimes a ZIP
code area on county boundaries may overlap with more than one
county, in which case it is linked by edges to nearby ZIP code areas
from different counties.

A third important spatial relation is the flight connections be-
tween regions. An international airport can benefit the econom-
ics of surrounding areas, such as the Birmingham metropolitan
area of Alabama covering 10 counties surrounding Birmingham-
Shuttlesworth International Airport. In fact, if there are direct flights

3According to the glossary of the US Census Bureau [2], an internal point is calculated
for each geographic entity as its geographic center.
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between two regions, these two regions will share great economic
growth, and the number of daily flights reflects how closely they are
connected. Therefore, we add an edge between two ZIP code areas
if there are direct flights between them, and the edge weight equals
the number of daily direct flights. See Figure 3 for an illustration of
the edges.

Overall, we obtain a multigraph G = (X,E), where node set X
are the ZIP code areas, and edge set E = Eschool ∪Ecounty∪Ef l iдht
which consists of the 3 kinds of edges we described above. The result
is a multigraph since two ZIP code areas could be connected by
both a school-district edge and a same-county edge. See Figure 4
for an illustration of G.

We remark that we only model one-hop relations in G, since
multi-hop relations can be captured by stacking GCN layers as we
shall see in Section 4. Two-hop relations could improve performance
as two regions with one-stop flight connects are also economically
related, and nearby counties could have impacts over each other. But
since our spatial relations are over much larger spatial units (school
districts, counties, flight routes) than ZIP code areas, too many hops
may cause oversmoothing in addition to the disadvantage of adding
more cost and difficulty in model training.

4 THE MODEL
In this section, we present our model for embedding ZIP code areas,
and explain why we make these design choices.

Figure 5 overviews our end-to-end model architecture, where
we temporarily treat the GCN module as a black box for extracting
intermediate region features from our multigraph. We will explain
how we design our GCN shortly afterward.

Note that since our learning relies on open data that is still
limited in size, our design principle is to use a simple model with
fewer parameters to train, to make the model easy to learn and not
underfitting following the principle of Occam’s razor.
Feature Category Decoupling. For each ZIP code area xi in a
training mini-batch, we separate its features into 4 categories:

• xi,c1 for Category c1 with 82 demographic features;
• xi,c2 for Category c2 with 150 social features;
• xi,c3 for Category c3 with 114 economic features;
• xi,c4 for Category c4 with 142 housing features,

and for each category of features xi,c j , we use GCN to extract a
vector of intermediate features for this category, denoted by hi,c j .
Note that compared with working on xi directly, we effectively
reduce the number of parameters in our GCNs since, for example,
when computing features hi,c1 , we know that we do not need to
consider the path from xi,c j for j = 2, 3, 4 in the computation graph
of our model.

Intuitively, here we are building a more accurate graphical model
by utilizing the background knowledge that different feature cat-
egories are not dependent on each other, and similar benefits of
this idea have been observed in other works such as [20]. As we
shall see in Section 5, our decoupling of input feature categories
when extracting features more effectively improves the embedding
quality than if we extract intermediate features using a GCN by
blindly treating xi as a whole.
Weighted Feature Integration. Now that we have obtained in-
termediate features from the input features of all 4 categories, i.e.,
hi,c1 , hi,c2 , hi,c3 and hi,c4 , a naïve approach is to concatenate them
into a big feature vector hi , and then to use a dense layer (fully
connected neural network) to transform hi to our 20-dimensional
vector ŷi to predict, which keeps the sector-by-sector predicted
economic growth values.

However, this approach creates a large amount of weight param-
eters to train: let the length of each vector hi,c j be ℓ, then we have
a weight matrix of size 4ℓ × 20 = 80ℓ elements as the parameters
of the dense layer.

In contrast, we make the assumption that a GCN by itself is
powerful enough to directly learn the target 20-dimensional vector
of predicted economic growth values from a multigraph with node
features {xi,c j | ∀xi ∈ X} from Category c j . That is, we require that
each vector hi,c j is already 20-dimensional with the sectors aligned
to the vector positions. These 4 intermediate prediction vectors are
then integrated into our final prediction ŷi simply using a weighted
sum:

ŷi ← wc1 · hi,c1 +wc2 · hi,c2 +wc3 · hi,c3 +wc4 · hi,c4 ,

which only has 4 trainable weight parameters (wc1 ,wc2 ,wc3 ,wc4 ),
rather than the entire weight matrix of a dense layer. Besides fewer
parameters to train, our weighted-sum scheme also has the physical
implication that the growth contributions from different categories
are additive.

In fact, such weighted-sum scheme has been successfully applied
in other scenarios that require additivity. For example, [30] predicts
the success rate of an itemset with different types of items by
creating a feature vector for the itemset as a weighted sum of the
feature vectors of individual items. The intuition is that whether
a paper is accepted depends additively on the various items like
authors, keywords, references cited, etc. We are different in that
[30] treats their weights as hyperparameters to tune, while our
weight parameters (wc1 , wc2 , wc3 , wc4 ) are directly computed by
end-to-end training.
Loss Function. The goal of our model is to predict the ground-
truth sector-by-sector economic growth vector yi , and thus our
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loss function for region xi is defined as the difference between our
prediction ŷi and the actual yi , measured in L2-norm:

Li = ∥ŷi − yi ∥22 ,

and our overall loss function is simply summing the per-region
losses for all regions in a mini-batch. Next, we give some analysis
based on our weighted-sum feature integration design.

We can rewrite the loss as (where <., .> is the inner product):

Li = (ŷi − yi )T (ŷi − yi )

= ∥ŷi ∥22 + ∥yi ∥
2
2 − 2< ŷi , yi >,

and since we have defined ŷi =
∑
j wc j hi,c j , the first term of Li

can be written as:

∥ŷi ∥22 = (
∑
j
wc j h

T
i,c j ) (

∑
k

wck hi,ck )

=
∑
j
w2
c j ∥hi,c j ∥

2
2 + 2

∑
j,k :j<k

wc jwck <hi,c j , hi,ck>,

so to minimize the loss, we try to reduce < hi,c j , hi,ck > which
pushes our different GCN modules (over different ACS feature
categories) to learn different aspects of economic growth, so as to
be more specialized. Also, ∥hi,c j ∥22 serves as a regularization term
to avoid value exploding in any hi,c j .

In contrast, the third term of Li can be written as:

−2< ŷi , yi > = −2 <
∑
j
wc j hi,c j , yi >

= −2
∑
j
wc j <hi,c j , yi >,

so to minimize the loss, we try to increase <hi,c j , yi> which pushes
the per-category 20-dimensional prediction hi,c j to be close to the
ground truth yi .

To summarize our analysis, our loss function combined with our
weighted-sum feature integration scheme allows our training to
consider not only the contribution division and regularization of
intermediate feature vectors, but also the target prediction vectors’
similarity to the ground truth.
GCN over the Region Multigraph. In Figure 5, we have 4 GCNs,
one to be trained on each category of ACS input region features.
We remark that the 4 GCNs are operating on the same multigraph
topology we introduced in Section 3, and the only difference is on
region-nodes’ input features.

Recall that we require each GCN to have sufficient model capac-
ity to learn the targeted sector-by-sector embeddings. Therefore,
we adopt PinSage’s localized graph convolution scheme as we have
reviewed in Section 2.1, which has two sets of learnable weight
parameters <Q, q> and <W, b> at each layer: (1) a dense layer
parameterized with <Q, q> to transform neighboring features be-
fore aggregation, and (2) another dense layer parameterized with
<W, b> to transform the aggregated feature. We choose PinSage’s
GCN scheme [32] since it is more recent and well verified in indus-
trial applications.

However, the unique characteristic of our problem setting is
that our multigraph has three different types of edges, and their
weight scales can be very different and incomparable: for school-
district and common-county edges, the weights are the reciprocal
of distance, while for flight edges, the weights are the number of
daily flights. Moreover, the importance of different edge types could
also be very different.

Therefore, we need to adapt PinSage’s graph convolution layer
to account for the edge heterogeneity of our multigraph. Figure 6(b)
illustrates our design of one GCN layer where we specifically show
how we extract the intermediate features of ZIP code area x1 (i.e.,
the output feature vector h1) from its neighbors in the toy multi-
graph in Figure 6(a).

We remark that each GCN of ours takes only one category of
input region features (see Figure 5), i.e., xi,c j for Category c j . How-
ever, for ease of presentation, we ignore notation c j in Figure 6(b)
and abuse our notation to directly use xi (not to be confused with
the entire input features including all our 4 categories).

In Figure 6(a), we use colors red, blue and green to denote our 3
types of edges: school-district, common-county, flight-connection,
respectively. Considering all the neighbors of a region-node not
only increases a model’s training cost, but also introduces noisy
features from less related regions which negatively impacts our
smoothing quality, and therefore we only pick top-k most related
neighboring regions for smoothing. This k-nearest-neighbor strat-
egy is used by many GNN studies [19, 32] as well as other applica-
tions such as indoor localization [24].

Recall from Section 2.1 that PinSage uses random walks to select
the most influential neighbors of a vertex for smoothing by GCN.
However, PinSage’s solution is not applicable in our setting since
our graph edges are heterogeneous and the edge weights cannot
properly reflect the transition probability beyond their relative
order of importance.



We propose a voting strategy instead of those commonly used by
ensemble models. Specifically, for each edge type, we consider the
top-k neighbors of a node where the edge weights are the highest,
and then integrate these nodes’ feature vectors by a weighted-
average where weights are simply the edge weights, and as in
PinSage, nodes’ feature vectors xi are first transformed by a dense
layer into qi before the weighted aggregation (see Figure 6(b)).

Consider, for example, Figure 6(a) where we consider Node 1 and
pick top-2 neighbors for smoothing in each edge category. While
Nodes 3, 5 and 6 are all connected to Node 1 with green edges, we
do not incorporate Node 6 in our smoothing in Figure 6(b) (see
the green box) since the edge weightwд3 is less thanwд1 andwд2
and we only consider top-2 neighbors. In other words, Node 1’s
integrated feature vector from its top-2 neighbors connected by
green edges is given by (wд2q3 +wд1q5)/(wд2 +wд1), where q3
and q5 are transformed representations of x3 and x5 by an initial
dense layer. Note thatwд1 andwд2 have the same scale and thus the
weighted average makes good sense, similar to the mean aggregator
of GraphSAGE [14].

Now that we obtain the edge-weight integrated neighbor feature
vectors from all the 3 edge relations, denoted by hr , hд and hb ,
we use a weighted sum to aggregate them into Node 1’s neighbor
features:

hN (1) = wr hr +wдhд +wbhb ,

where weights (wr ,wд ,wb ) are learnable parameters to balance the
contributions of features from different edge relations, to be tuned
end-to-end. We remark that using weights effectively simplifies
our model training, which is following the same idea as now we
integrate features outputs from different GCNs as shown in Figure 5.

The second half of the graph convolution layer is the same as in
PinSage and GraphSage: we concatenate the aggregated neighbor
features hN (1) with Node 1’s own features x1, and the resulting
feature vector is then transformed by a dense layer to the output
feature vector h1 of the current GCN layer (for Node 1).

To consider multi-hop neighbors, we can stack the previous
GCN layers to extract higher-level features. Assume that we have
extracted features h1 to h6 for Nodes 1 to 6 as in Figure 6(b); then
we can input them in replace of x1 to x6 as the GCN layer’s input
at the 2nd layer, to extract new features h(2)1 to h(2)6 ; these features
can then be returned for integration as shown in Figure 5. This
two-layer GCNmodel considers 2-hop neighbors since, for example,
h(2)2 ’s computation uses h1, which further uses x4 of Node 4 which
is 2 hops away from Node 2. We use multi-layer GCNs so that each
GCN has sufficient capacity to learn good sector-by-sector growth
predictions to be integrated by a simple weighted sum.

5 EXPERIMENTS
Data Collection. We adopt data from US Census Bureau which
has been widely used for data mining [5]. Recall from Section 1 that
we collected 33119 ZIP code areas released by ACS in 2011, which
contains 4 categories of region features: 82 features on demographic,
150 on social, 114 on economic, 142 on housing collected in Year
2010; we also used the ZIP Codes Business Patterns API to collect
the establishment growth counts from Year 2011 to Year 2016 for
the 20 NAICS sectors, though growth counts between other recent
years can also be used.

We also used the following open sources to collect edge relations
between ZIP code areas:
• School districts: http://proximityone.com/zip-sd.htm;
• Counties:
https://data.world/niccolley/us-zipcode-to-county-state;
• Flight routes: https://openflights.org/data.html#airline,

which were used to build our multigraphs. The number of flights
we collected is 4897. We remark that the data is still limited which
requires us to adopt a simple model design to avoid underfitting.
Evaluation Metrics.We evaluate the performance of our model
and compare it with other baseline approaches using the following
two metrics.
• Mean Reciprocal Rank (MRR) [22]:MRR is a rank-based
metric defined as follows. Given a ZIP code area xi to query,
let x∗ be the most similar ZIP code area to xi in terms of
economic growth (i.e., x∗ = argminxj ∈X−xi ∥yi−yj ∥2), then
we define rank (xi ) as the rank of x∗ if we sort all the ZIP
code areas xj ∈ X −xi by non-decreasing value of ∥ŷi − ŷj ∥.
If our prediction is accurate, rank (xi ) will be small.
We define the Reciprocal Rank (RR) of query region xi as

RR (xi ) =
1

⌈rank (xi )/10⌉
,

so that if our prediction is accurate, rank (xi ) is small and
thus RR (xi ) is large. The scaling factor 10 ensures that, for
example, the difference between rank at 100 and rank at 200
is still noticeable, instead of being very close to 0.
We report the average RR over a randomly selected test set

Q of n = 1000 queries in our experiments, which is defined
as the Mean Reciprocal Rank (MRR):

MRR (Q ) =
1
n

∑
xi ∈Q

RR (xi ).

• Ratio of Triplets (RoT): we sample region triplets [15] to
evaluate our method. Given a region triplet <x1, x2, x3>
ordered such that ∥y1 − y2∥2 ≤ ∥y1 − y3∥2, we say that
our embedding is successful if ∥ŷ1 − ŷ2∥2 ≤ ∥ŷ1 − ŷ3∥2. In
our experiment, we randomly generate 1000 triplets as our
test set and compute the ratio of triplets (RoT) which are
successfully embedded.

Both metrics have their emphasis: MRR evaluates the effective-
ness of similar-region queries (e.g., if the top-10 result list contains
a valid region that users are looking for), while RoT evaluates the
overall quality of our embedding in preserving the similarity order
among all the ZIP code areas.
Baselines.We adapt the existing work on geographical area recom-
mendation that we reviewed in Section 2.2 to serve as our baseline
region embedding competitors, including:
• COS [29]: this method directly compares the input feature
vector xi of two regions using cosine similarity;
• LargeMarginNearestNeighbor (LMNN) [10]: thismethod
evaluates the similarity of two input region feature vec-
tors using Mahalanobis distance, whose covariance matrix
is learned from data using a method called Large Margin
Nearest Neighbor (LMNN) described in [10];

http://proximityone.com/zip-sd.htm
https://data.world/niccolley/us-zipcode-to-county-state
https://openflights.org/data.html#airline


Table 2: MRR and RoT Comparison: WMGCN v.s. Baselines

Algorithm MRR RoT
COS 0.1570 0.7107
LMNN 0.1705 0.6960
Triplet 0.1792 0.7922
PinSage 0.2475 0.8037
MGCN 0.2501 0.8107

WMGCN (1 GCN Layer) 0.2485 0.8277
WMGCN (2 GCN Layers) 0.2755* 0.8319*
WMGCN (3 GCN Layers) 0.2661 0.8123

• Triplet [22]: this method applies a triplet network to learn
a ranking metric for comparing regions. The outputs are
region embeddings that respect the similarity ranking;
• PinSage [32]: this is the only GCN baseline that considers
both graph topology and node features. PinSage uses random
walks to select influential neighbors for smoothing, so edge
weights in our multigraph are ignored. We implemented
PinSage with 2 graph convolution layers.

To justify our design, we also compare with the following variant
of our Weighted Multigraph GCN (WMGCN) algorithm.

• Multigraph GCN (MGCN): this treats all input region fea-
tures as an entire feature vector to be input to a single GCN
for feature extraction. This is in contrast to our WMGCN
that applies four GCNs over four different categories of input
region features followed by a weighted-sum feature aggre-
gation (see Figure 5);

Recall that WMGCN picks the top-k neighbors (according to
edge weights) in each edge category for feature aggregation. To
explore the effectiveness of smoothing from different neighborhood
size, we also conduct experiments with different values of k .

To test the limit of our GCN layer, we also test the effect of
stacking different numbers of GCN layers for feature extraction.
Model Configuration. For all the above algorithms, we use the
following default design and hyperparameters unless otherwise
stated. For our GCN (see Figure 6(b)), the default value of k is 2, i.e.,
we only aggregate features from the 2 nearest neighbors in each
edge type. The feature vector size of any hidden layer is set to be
40. The models are trained using an SGD optimizer with a learning
rate of 0.01 and a weight decay of 0.5. Other optimizer settings can
be used but we find the difference in performance is insignificant.
Experimental Environment.All the algorithmswere implemented
in PyTorch 0.4.0. The experiments were conducted on a machine
equipped with an NVIDIA Tesla P100 GPU, 26 GB RAM and a
2.20GHz CPU. Each of our experiments is repeated 3 times and
the average results are reported to deal with the randomness of
parameter initialization in training, though we find our results to
be quite stable across different runs.
Algorithm Comparison. Table 2 shows the performance of our
WMGCN (with different number of GCN layers) and the baseline
algorithms for comparison.

We can obtain the following observations from Table 2:

• Models that leverage both region features and relations be-
tween regions, i.e., PinSage MGCN and WMGCN, outper-
form the other methods (COS, LMNN and Triplet) by a large
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margin, since the latter algorithms only consider region fea-
tures. This demonstrates that smoothing effect by neighbor-
ing regions, as realized by GCN, is vital to the quality of
region embedding.
• Our WMGCN model improves in both MRR and RoT as
the number of GCN layers increases from 1 to 2, but going
beyond 2 layers does not improve the performance further
but actually backfires a bit due to the need to train more
parameters (recall the principle of Occam’s razor).
• Among differentmodels that use 2 GCNLayers, ourWMGCN
model beats MGCN by a large margin thanks to its differen-
tiation of different types of input region features.
• MGCN, in turn, beats PinSage by a large margin, thanks to
the top-k neighbor smoothing technique and feature aggre-
gation scheme from different spatial relation types; recall
that PinSage simply finds top-k neighbors using random
walks without considering edge types and edge weights in
our multigraph. Our scheme exactly follows and thus re-
spects Tobler’s first law of geography that “near things are
more related than distant things”.

Effect of Neighbor Smoothing. Recall that for each spatial rela-
tion (i.e., edge type), we smooth a region’s features by integrating
them with those of its top-k neighbors in our GCNs. Closer neigh-
bors are more similar but more neighbors can better cancel the
spatial discontinuity caused by the low granularity of ZIP code ar-
eas, and therefore, there is a tradeoff here and we want to conduct
experiments to find the value of k that works the best in terms of
our two metrics MRR and RoT.



We therefore vary the value of k from 1 to 5, and Figure 7 (resp.
Figure 8) reports their performance w.r.t. MRR (resp. RoT). We can
see that WMGCN with k = 3 achieves the best MRR, and that RoT
is the highest when k = 2. Overall, 2 and 3 are good choices for k .

Figure 9: Nearest Neighbors of ZIP Code 11377

Visualization. We cannot directly visualize our embeddings in
20D space. Therefore, we group the 20 sectors in Table 1 into 3
groups by the sector code ranges 11–49, 51–56 and 61–92. For
each 20D embedding vector, we compute the summation of the
element values in each group, which gives us 3D coordinates of the
form (sum11−49, sum51−56, sum61−92) which can be visualized in 3D
space to get a feeling of the distance between regions. To avoid
scale difference of the 3 dimensions, we use min-max normalization
to normalize (sum11−49, sum51−56, sum61−92), and Figure 9 shows
the 3D coordinates of 5 ZIP code areas.

Given a query ZIP code 11377, ZIP code areas 11802 and 70601 are
more similar to 11377 than 98034 and 80111. The 3D visualization
is, however, more intuitive, and sectors can be grouped in different
ways depending on the needs.

6 CONCLUSION
We described a novel GCN-based model for learning economic
growth sector-by-sector predictions from ACS features of ZIP code
areas expanded with spatial relations. The design principle is to
reduce the number of parameters to train, and to decouple the
feature extraction process of different types of region and edge
types. Experiments confirm that our learned region embeddings
have a higher quality than existing baselines.
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