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Abstract—MATSim is the state-of-the-art open source 
software for agent-based transport simulation, intended for use 
to evaluate transportation planning models. A standard 
approach to use MATSim is to conduct a user survey about their 
day-plans of travel, from which a synthetic dataset of agents’ 
day-plans for an entire region is generated for transport 
simulation. The simulation output can be used for various 
evaluations, such as congestion conditions of road segments and 
their peak hours. 

This paper aims to conduct a transportation simulation on 
MATSim for the region of Birmingham, AL. A traditional 
approach based on Iterative Proportional Fitting (IPF) is not 
sufficient for generating a realistic synthetic population due to 
the small data problem: Birmingham is a small city with limited 
transport data statistics, and we only have a survey of 451 people 
for their day-plans. To tackle the small data problem, we seek the 
assistance of abundant open data such as US Census data, 
OpenStreetMap, OpenAddresses and Birmingham Business 
Alliance to complete the fine details realistically. We also utilize 
various data science and machine learning techniques to build 
models that utilize these open data to generate a realistic 
population. Preliminary tests demonstrate reasonable accuracy 
of the simulation results.  

Keywords—transport, simulation, MATSim, small data, open 
data 

I. INTRODUCTION 
MATSim (Multi-Agent Transport Simulation) [1] is a software 
project started around 2006 with the goal of generating traffic 
and congestion patterns by following individual synthetic 
travelers through their daily or weekly activities. It has since 
then evolved from a collection of stand-alone C++ programs to 
an integrated Java-based framework which is publicly hosted, 
open-source available, automatically regression tested [2]. 
MATSim has become the de facto standard for urban transport 
simulation, and has been used all over the world [3]. 

MATSim takes as input (1) the travel plans of a population, 
and (2) the underlying road network, and simulates the day-
plans of the population over the road network. Figure 1 shows 
the job configuration file for a MATSim simulation where we 
can see these two data sources along with other configuration 
parameters, and Figure 2 shows a snapshot of the simulation 
using OTFVis, MATSim’s Visualization Tool. 

 
Figure 1: MATSim Job Configuration File 

 

 
Figure 2: A Snapshot of the Birmingham Traffic in OTFVis 

The road network can be obtained from OpenStreetMap 
[4], and so the key problem is to prepare the travel plans of a 
population, which is usually generated from a survey of a 
sample of the population, scaled by Iterative Proportional 
Fitting (IPF) [6] according to the distribution and correlation of 
the agents’ attributes in the census data. However, applying 
IPF requires a large population sample to be statistically 
representative, which is often too costly to obtain. 

Supported by the STRIDE (Southeastern Transportation 
Research, Innovation, Development & Education) Center, we 
have conducted an online survey (with motivating rewards) 
where people in Birmingham report their day-plans as a 
sequence of legs, each associated with the destination location, 
the start and end time of the leg, the activity at the destination, 
and the travel mode (e.g., driving by car, or using Uber/Lyft). 
The initial location and activity of the day are also provided. 
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Figure 3: Examples of Persons with 2 Legs 

 

 
Figure 4: Examples of Persons with 4 Legs 

Figures 3 and 4 show the leg sequences for survey 
participants whose day-plans contain 2 and 4 legs, respectively. 
We see day-plans like Home-Work-Home (e.g., Person 002) 
and Home-Services-Home-Shopping-Home (e.g., Person 016). 

Note that differentiating different mode of traffic allows 
more information in the simulation, as we can check how much 
traffic flow on each road segment is caused by ridesharing 
apps, and further to see whether they are helping bridge the gap 
of insufficient public transport, or are disturbing the traffic. 

Overall, we obtained 451 people and their day-plans that 
are of reasonable quality. The lengths of leg sequences are 
distributed as shown in Figure 5. We can see that day-plans 
with 2 legs are the most common (e.g., Home-Work-Home), 
and most day-plans are within 5 legs. 

 

 
Figure 5: The Distribution of the Number of Legs 

 
Figure 6: The Legs of a Potential Uber/Lyft Driver 

 
Figure 7: Demographic Attributes in the Survey 

Interestingly, we also find a day-plan with 13 legs which 
appears to be an outlier, but this survey participant could be an 
Uber/Lyft driver, whose day-plan is shown in Figure 6. 

Demographic attributes are also collected, 3 of which are 
shown in Figure 7. These attributes are usually used in IPF to 
align with those of the entire population, whose marginal 
distributions are obtained from US Census Bureau [6]. 

However, we find that 451 participates are insufficient for 
this purpose, as we have the data sparsity problem. Assuming 
that only the 3 demographic attributes shown in Figure 7 are 
considered for IPF, then there are 2 x 7 x 10 = 140 possible 
combinations of attribute values. Given the 451 survey 
participants, on average each combination will have around 3 
persons, which is a too small sampling pool to allow diversity 
when scaled up to the population scale, i.e., many people will 
share the same source and destination locations as well as 
departure time. In fact, there misses any participant in a lot of 
combinations of demographic attributes. 

As a result, only geospatial information is considered for 
population generation. 

Challenges. Even so, there are still 2 challenges remaining: 

(1) For user-designated geographic regions, IPF only generates 
the number of people (e.g., residents) in them, and there is no 
information on where these people are, and on what activities 
they conduct and when they conduct these activities. 

(2) Given the number of people generated above, denoted by n, 
a conventional population generation algorithm simply samples 
the pool of survey participates with the designated attribute 
values (regions here) for n day-plans [5]. While this approach 
compensates for the lack of spatial-temporal information on 
user activities, it requires a survey on many people. With only 
451 people surveyed, each person’s day-plan could be sampled 
many times. This leads to a synthetic population where many 
people commute to work from the same house to the same 
office at the same time, which gives rise to unrealistic traffic 
congestions. 

Solution. To enable a more realistic simulation, we adopt a 
data-driven approach to model the different aspects of travel 
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including (1) time, (2) location, (3) activities, and (4) mode. 
Since our survey data is small, we enrich it with public data in 
order to generate a more realistic population for Birmingham 
with realistic day-plans. 

 This is an example of Data Science where a domain-
specific problem (transport simulation for planning) is solved 
by data-driven analytics and machine learning. 

 This is also an example of how to tackle the Small Data 
problem [7] using external data sources, and provides a 
valuable solution for small cities who wants to improve 
transport planning with MATSim but do not have a lot of funds 
for transport survey and curating transport data statistics. 

Organization. The rest of this paper is organized as follows. 
Section II introduces our methods for population generation, 
and Section III reports some evaluation and visualization 
results with MATSim. Finally, Section IV concludes this 
paper. 

 

 

 

 
Figure 8: PDFs of start_time and end_time Obtained by 

Kernel Density Estimation (KDE) 

II. METHODS 
This section presents our data-driven approach to model the 
different aspects of travel including (1) time, (2) location, (3) 
activities, and (4) mode; we then present how we use these 
models to generate a realistic population for Birmingham. 

A. Time Modeling 
Currently, we model the time aspects of a leg as a pair 
(start_time, time_span) which can derive other information 
such as: end_time = start_time + time_span. 

We consider both start_time and time_span as random 
variables that follow a distribution conditional on the specific 
activity adopted. Once the activity of a leg is determined, we 
can sample (start_time, time_span) from the distribution for 
that activity to timestamp that leg. 

To illustrate why conditioning time on activity makes good 
sense, we plot the probability density functions (PDFs) of 
start_time and end_time for 4 activities “Work”, “Home”, 
“Shopping-Grocery” and “Eat/Get take-out” in Figure 8 for 
illustration. These PDFs are estimated from the survey data 
using kernel density estimation (KDE). For example, to get 
the PDF of start_time for the activity “Work”, we collect the 
start time of all legs in the survey whose destination activity is 
“Work”, which are then input to the KDE model to fit a PDF. 

We can see that Figure 8 aligns well with our intuition. For 
example, the time to “Work” peaks at 8 am and the time back 
“Home” peaks at 5 pm. Also, the “Eat/Get take-out” time 
peaks at noon and right after work, and “Shopping” happens 
mostly between 9 am and 8 pm. 

 

 
 

B. Maintaining the Integrity of the Specifications 
The template is used to format your paper and style the 

text. All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note 
peculiarities. For example, the head margin in this template 
measures proportionately more than is customary. This 
measurement and others are deliberate, using specifications 
that anticipate your paper as one part of the entire proceedings, 
and not as an independent document. Please do not revise any 
of the current designations. 

III. PREPARE YOUR PAPER BEFORE STYLING 
Before you begin to format your paper, first write and save 

the content as a separate text file. Complete all content and 
organizational editing before formatting. Please note sections 
A-D below for more information on proofreading, spelling and  

 

Figure 9: PDFs of time_span Obtained by KDE 
 

Figure 9 shows the PDF of time_span for 3 activities, 
where the x-axis is in the unit of hours. We can see that most 
legs finish within 1 hour, which is within expectation as the 
survey is conducted for the Birmingham area only (Jefferson 
county + Shelby county). 
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There is, however, still some room to further improve the 
time modeling. For example, we can include the distance 
between the source and destination locations as another factor 
that impacts travel time (i.e., time_span). As a future work, we 
plan to model time_span as a regression function of the travel 
distance which can be learned from the survey data for each 
activity, to enable more realistic modeling. 

B. Location Modeling: A ZCTA-based Approach 
Public data such as census data usually report aggregate 
statistics for individual geographic regions, and thus we need 
to align the surveyed locations with these geographic regions 
in order to scale up the population and their locations in each 
region. Since we are only interested in two counties, Jefferson 
and Shelby, a county-level granularity is too coarse for an 
accurate modeling. We thus choose the granularity of ZIP 
Code Tabulation Areas (ZCTAs). Figure 10 below shows the 
counties and ZCTAs in Alabama, which are obtained from 
TIGERweb [8]. 

            
Figure 10: Counties (Left) and ZCTAs (Right) in Alabama 

 

Since we are only interested in Jefferson and Shelby 
counties, we first partition the surveyed locations by ZCTAs 
as shown in Figure 11, where the brighter a ZCTA is, the more 
surveyed locations it contains. 

 
 

 
 

Figure 11: ZCTAs with Surveyed Locations (with Zip Codes) 
 

In order to scale up the population from the seed survey, 
we can create a seed matrix A where each element A[i][j] 
indicates how many legs have source in ZCTA i and 
destination in ZCTA j. 

 
Figure 12: A Fragment of the Adjusted Seed Matrix by IPF 

 

We can scale up the travel plans of the population for 
different activities individually. For example, for “Work” 
which is often a major factor for traffic congestion, we can 
obtain marginals such as how many people commute to work 
from each ZCTA (i.e., they live there), and how many people 
commute to work at each ZCTA (i.e., they work there) from 
public data. Assuming that the seed matrix A is also 
constructed out of only those legs whose activity is “Work”, 
then we can adjust A to align with the marginals using IPF as 
illustrated in Figure 12. 

To get the marginals of how many people commute to 
work from home in each ZCTA, we can use American 
Community Survey (ACS) [9], more specifically, variable 
“P03_0018E: COMMUTING TO WORK” which indicates 
how many people commute to work at each region. This can 
be obtained using the Census API of ACS; for example, in our 
scenario we used the following URL request: 

https://api.census.gov/data/2017/acs/acs5/profile?get=NAME,DP03_0018E&for=zip%20code%2
0tabulation%20area:35215,35173,35206,35209,35226,35205,35242,35223,35207,35233,35211,35235,
35222,35243,35203,35216,35217,35244,35208,35210,35214,35213,35218,35221,35204,35228,35212,3
5094,35234,35224,35071,36117,35023,35022,35020,35126,35043,35401,35096,35080,35490,35068,35
124,35116,35128,35229,35064,35077,35115,35160,35007,35579,35127,36106,35120,35005,35111 

 

The returned data is illustrated in Figure 13 below. For 
example, ZCTA 35401 has 11,636 people commuting to work. 

 
 

Figure 13: Variable DP03_0018E Values for Selected ZCTAs 



 

 5 

Unfortunately, even though ACS has another variable 
“B08604_001E: WORKER POPULATION FOR 
WORKPLACE GEOGRAPHY”, it only delves into the 
county level, and the ZCTA level data is missing (nulls are 
returned). We have to obtain the related data from other 
sources such as the major employer list from Birmingham 
Business Alliance (BBA) [10], as shown in Figure 14. 

 

 
…  … 

 

 
Figure 14: Birmingham Major Employer List from BBA 

 

In fact, the list has covered more than 35% of the 
employees in Birmingham, and we can generate workplaces 
for the other 65% employees following the same distribution. 
For example, we can plot the work destinations in the survey 
to visualize the number of components and then fit a Gaussian 
mixture model (GMM) over these destination locations. We 
can then sample the other 65% work locations from the GMM 
(we should actually use the nearest OpenAddresses address of 
each sampled location to be described next). The marginals of 
how many people commute to work at each ZCTA can then be 
obtained for IPF. 

C. Location Sampling: Solving the Location Scarcity Problem 
Now that we have the value for each A[i][j] indicating how 
many legs have source in ZCTA i and destination in ZCTA j, 
we can generate that many legs about “Work” whose time 
information can be sampled from the PDFs for the “Work” 
activity as described earlier. However, it is still unclear how to 
generate the source (e.g., home) and destination (e.g., office) 
of each leg. 

One approach is to sample a random location in the 
corresponding ZCTA, but this is unlikely to be realistic as 
many places are sparsely populated or even far from the road 
network. Another approach is to sample only from the 
surveyed locations which are real. However, given that we 
only have 451 participants in our survey each with a few legs, 
there are only slightly more than 2,000 reported locations in 
total. This is quite a small pool to sample from if we want to 
generate the source and destination locations for the entire 
population in Birmingham, leading to unrealistic scenarios 
like many people commute to work from the same house. 

 

 
Figure 15: OpenAddresses Locations in Jefferson and Shelby 

Counties 
 
Fortunately, OpenAddresses [11] collects address data 

which can be used to enrich our location pool for sampling. 
Figure 15 shows Jefferson county (green) and Shelby county 
(blue) with ZCTA boundaries marked (we only show those 
ZCTAs that intersect with any of the two counties); it also 
shows the addresses from OpenAddresses inside the two 
counties in red, and shows the surveyed locations in black. We 
can see that the red points significantly enrich the black ones. 

In fact, the OpenAddresses locations well capture the road 
network and building block structures, as shown in Figure 16 
which is a zoomed-in version. Moreover, our surveyed 
locations well align with the OpenAddresses locations: the 
black points appear more often at those regions where the red 
points are dense. 

 

 
 

Figure 16: A Zoomed-in Version of Figure 15 
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Table I: Surveyed Activities and the Corresponding 
OpenStreetMap POI Types 

 

Activity OpenStreetMap POI Types 
Shopping-Grocery supermarket, convenience 

Services (e.g. Bank, Post Office) bank, atm, post_office 
School school 

Shopping-Retail department_store, mall 
Eat / Get Take-out restaurant, fast_food, café, deli, bar, pub 

Nightlife / Bar nightclub, bar, pub 
Drop-off Passenger all POIs (50%) and OpenAddresses locations (50%) 
Pick-up Passenger all POIs (50%) and OpenAddresses locations (50%) 

 

So far, we have only discussed the activities “Home” and 
“Work”. However, the sample pool should be different 
conditional on different activity. Fortunately, OpenStreetMap 
[12] maintains different types of points-of-interest (POIs) [13] 
that correspond to different activities, as listed in Table I. 

Figure 17 shows some examples of POIs in types 
‘supermarket’, ‘department_store’, ‘fast_food’ and ‘school’. 
However, we remark that the list of POIs in each category 
may not be complete since OpenStreetMap is a project to 
share data by collaborative efforts but there is no guarantee of 
data completeness. 

 

 
 

 
 

 
 

Figure 17: Examples of POIs from OpenStreetMap 

 
Figure 18: Three Nearest POIs and Their Walking Distances 

 

In order to estimate the coverage of POIs for each activity, 
we use k nearest neighbor (k-NN) queries to find the nearest 
POIs of the destination of each leg of that activity. Figure 18 
shows the 3-NN query results for activities “Shopping-
Grocery” (left) and “Eat / Get Take-out” (right) and their 
walking distances. We can see that many of them are an 
obvious hit with walking distance < 3 minutes, but a few of 
them are missed with walking distance > 10 min. 

We can use the hit rate to estimate the fraction of POIs 
covered, denoted by p. During location sampling for an 
activity, we sample from the OpenStreetMap POIs with 
probability p, and sample a random location from 
OpenAddresses locations with probability (1 – p). For 
activities about picking up and dropping off passenger, we 
expect that one end of a leg is home and the other end is 
another activity, and thus we can sample locations from 
OpenAddresses with 50% probability (as home locations) and 
from POIs of all types with 50% probability. Of course, the 
probability may also be estimated using the actual ratio 
observed in our survey rather than 50%. 

OpenStreetMap allows us to download map data in a 
region with a bounding box. Besides POIs, we also use it to 
get the road network as required by MATSim. 

D. Modeling Activity Sequence 
So far, we have conditioned time and location generation on 
activities, and travel mode can be similarly generated. There 
is, however, one key problem remaining: how to generate a 
day-plan as a sequence of activities? 

Our solution is to generate the day-plans according to our 
survey data. The intuition is that the day-plan of people 
usually does not change much with their locations; for 
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example, most people go to work at around 8 am and leave at 
around 5 pm, regardless of where they are. This allows us to 
use the entire 451 survey participants to generate day-plans to 
counteract the data scarcity issue. 

A straightforward approach is to sample from the 451 day-
plans in our survey. However, given a sequence of activities 
A1, A2, …, we need to ensure that the A1 ends before A2 starts, 
which means that we need to fix our previous model of time 
generation to one that is conditioned on an activity sequence 
rather than an individual activity. 

Suppose that we already sampled activities A1, A2, …, Ai–1, 
and the next activity sampled is Ai (or we may decide that the 
sequence ends). To maximize the pool of samples that we can 
use to fit a PDF for the travel time of Ai (e.g., using KDE), we 
need to find all day-plans among our 451 participants that 
have A1, A2, …, Ai–1 as a subsequence. While we can find the 
pool in a brute-force manner for each activity sequence when 
we need it, here we propose a more efficient method that 
indexes the 451 day-plans as a preprocessing step to enable 
much more efficient branch-and-bound search given any 
activity sequence as a query. 

One way is to index all 451 activities using a trie (or prefix 
tree) structure, but in that case, (1) Home-Work-Home and (2) 
Home-Eat-Work-Home will diverge into two different 
branches, and so when we have a sequence Home-Work-
Home sampled and would like to decide the time for the last 
activity Home and its time (e.g., 5 pm), we will only have 
access to Sequence (1) following the trie, while Sequence (2) 
is lost even though it also well captures the time off work, for 
example, the two sequences may be contributed by one person 
had breakfast at home while the other had breakfast at Chick-
fil-A before heading to work. Similarly, (3) Home-Work-Eat-
Work-Home will not contribute to the estimation of off-work 
time even though it makes a perfect sense. 

 
Figure 19: A Fragment of Activity Trie 

 

To tackle this problem, we first mine all frequent 
sequential activity patterns from the 451 day-plans in our 
survey, where we consider an activity sequence as a frequent 
pattern if it is a subsequence of at least 4 persons’ entire 
activity sequence in our survey. 

Then, instead of building a trie over all day-plans, we build 
a trie over these frequent patterns, and for each tree-path A1 → 
… → Ai–1 → Ai that stops at node labeled with activity Ai, we 

maintain the set of day-plans that contain A1 → … → Ai–1 → 
Ai as a subsequence, denoted by D(Ai). Note that to construct 
D(Ai) we only need to filter D(Ai–1) rather than going through 
all the 451 day-plans. 

Figure 19 shows such a trie where each activity node Ai is 
also marked with how many day-plans contain pattern A1 – … 
– Ai–1 – Ai. These frequency numbers are used to estimate the 
probability of sampling the next activity. For example, if we 
already sampled Home-Work stopping at the node with 
frequency 170, then we sample the next event as ‘Home’ with 
probability 80/170, while we sample ‘Eat/Get take-out’ with 
probability only 10/170. 

Once the next event is sampled, we can estimate its time 
with all the possible day-plans. For example, consider again 
the previous 3 day-plans (1) Home-Work-Home, (2) Home-
Eat-Work-Home and (3) Home-Work-Eat-Work-Home. Given 
that subsequence Home-Work-Home is already sampled and 
corresponding tree-path reaches a node Ai marked “Home”, 
D(Ai) contains all the 3 day-plans (1), (2) and (3) which are 
used collectively to estimate the time off work. 

Of course, those day-plans whose time off work is before 
the end time of Ai–1 should be filtered during the KDE fitting 
of the time PDF. If the number of day-plans for KDE fitting is 
less than 4, we consider the sequence as ending at Ai–1 since 
the subsequent activities sequence may not generalize to the 
population. 

III.  EVALUATION 
The current project is still under development even though 
many modules have been ready. Therefore, this workshop 
paper only reports a preliminary test considering Home-Work 
traffic flow only, which should be sufficient to model the peak 
hour traffic. For simplicity of leg sampling, we currently 
model each person to have only one Home-Work leg, where 
time is sampled from the “Work” PDF estimated by KDE, 
followed by a random address location in the source ZCTA 
(for Home) and one in the destination ZCTA (for Work). The 
simulation can be visualized at 
https://youtu.be/ZIm0WsmKB4E. A more comprehensive 
modeling and evaluation effort will be our future work, where 
traffic flows of different types and multiple legs will be 
properly generated according to their proportion in the survey 
data following our activity trie. 

MATSim outputs a sequence of events in chronological 
order, and Figure 20 provides an illustration. We can see in 
the top part that (1) Person #3 ends its stay at home (Event 
Type: actend) and goes to work, (2) he/she then enters Vehicle 
#3 on Link #1. At the bottom part, the same person finishes 
work and starts to drive home, where we can see events like 
“entered link 20”, “left link 20”, “entered link 21”, “left link 
21”, “entered link 22”, “left link 22”, “entered link 23”, “left 
link 23”, “entered link 1” (where home locates), “vehicle 
leaves traffic” and “PersonLeavesVehicle”. 

Using a one-pass streaming algorithm over the events, we 
can calculate the traffic conditions on every road segment for 
the entire day. The information can then be compared with the 
ground truth to evaluate the accuracy of simulation. 
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… 

        
Figure 20: Part of the Event File Output by MATSim 

 
Table II: Average Link Speed Between 10 am and 11 am 

 

MATSim ID Interstate AVG Monitored Speed AVG Simulation Speed 
50779678_0 I-65 N 59 58.17957611 
50779677_0 I-65 N 59 74.02948169 
50779689_0 I-65 N 59 72.39813154 
50779690_1 I-65 N 64 73.73942556 
50779690_2 I-65 N 64 52.64153811 
50779701_0 I-65 N 56 63.17555545 
50779764_0 I-65 N 57 55.39014001 
50779763_0 I-65 N 57 72.006793 
50779763_1 I-65 N 59 73.10841707 
50779839_1 I-65 N 62 72.87918497 
50779839_2 I-65 N 60 71.91137377 

176219152_0 I-65 N 60 49.9337033 
176219153_0 I-65 N 60 71.9594894 
176219153_1 I-65 N 60 69.63908062 
176217152_0 I-65 N 60 74.31905239 
176217151_1 I-65 N 59 73.62659128 
83144665_0 I-65 N 59 66.78876233 
83144673_1 I-65 N 61 72.13814069 

... ... ... ... 
191520276_1 I-20 W/ I-59 S 52 72.41188686 
83142927_0 I-20 W/ I-59 S 56 65.31363755 

119869823_0 I-20 W/ I-59 S 62 72.82643204 
119869818_0 I-20 W/ I-59 S 62 73.91760037 
119869818_1 I-20 W/ I-59 S 65 74.44139168 
119869818_2 I-20 W/ I-59 S 66 73.68865908 
50780387_0 I-20 W/ I-59 S 66 61.1290964 

119869818_2 I-20 W/ I-59 S 66 73.68865908 
50780385_0 I-20 W/ I-59 S 66 58.74780766 
50780374_1 I-20 W/ I-59 S 67 67.23911964 
50780369_0 I-20 W/ I-59 S 67 71.16430077 
50780365_0 I-20 W/ I-59 S 67 71.23445757 
50780365_1 I-20 W/ I-59 S 64 73.74722821 

119869822_0 I-20 W/ I-59 S 63 68.11513108 
119869822_0 I-20 W/ I-59 S 63 68.11513108 
50780962_0 I-20 W/ I-59 S 63 59.42168602 
50780963_1 I-20 W/ I-59 S 64 70.78876887 
50781075_0 I-20 W/ I-59 S 64 59.92531749 

 

We use a sample of the real road monitoring data from the 
National Performance Management Research Data Set 
(NPMRDS) obtained from Federal Highway Administration 
(FHWA) with the help of the Regional Planning Commission 
of Greater Birmingham (RPCGB). 

Table II shows the ground-truth average speed (miles per 
hour) of important road segments between 10 am and 11 am, 
and the average speed from our simulation for the same time 
period. We can see that the speed values of simulation match 
approximately to that of the monitored readings, though ours 
tend to be higher as we do not consider other trips such as 
those for school or for shopping. We also notice that the trips 
are not sufficiently clustered around the morning peak hours, 
and may need to improve our methods to fit the KDE model of 
activity “Work”, such as to isolate out regular working trips 
from special ones such as those of Uber drivers, and to boost 
the proportion of the former to make the peak hour speed 
match better to the monitored speed readings. As this 
workshop paper just aims to be a proof of concept and 
feasibility of our approach, we will leave the more accurate 
modeling of the Birmingham traffic model as our future work. 

III.  CONCLUSION 
While the current project is still under development, we 

have demonstrated a reasonable match of our simulation with 
the real traffic data on various road segments. This shows that 
our data-driven approach using open data to address the small 
data problem of our user survey is effective. 
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