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Complex Ratio Masking for Monaural Speech
Separation
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Abstract—Speech separation systems usually operate on the
short-time Fourier transform (STFT) of noisy speech, and enhance
only the magnitude spectrum while leaving the phase spectrum
unchanged. This is done because there was a belief that the phase
spectrum is unimportant for speech enhancement. Recent studies,
however, suggest that phase is important for perceptual quality,
leading some researchers to consider magnitude and phase spec-
trum enhancements. We present a supervised monaural speech
separation approach that simultaneously enhances the magni-
tude and phase spectra by operating in the complex domain.
Our approach uses a deep neural network to estimate the real
and imaginary components of the ideal ratio mask defined in
the complex domain. We report separation results for the pro-
posed method and compare them to related systems. The proposed
approach improves over other methods when evaluated with sev-
eral objective metrics, including the perceptual evaluation of
speech quality (PESQ), and a listening test where subjects prefer
the proposed approach with at least a 69% rate.

Index Terms—Complex ideal ratio mask, deep neural networks,
speech quality, speech separation.

I. INTRODUCTION

T HERE are many speech applications where the signal
of interest is corrupted by additive background noise.

Removing the noise from these mixtures is considered one of
the most challenging research topics in the area of speech pro-
cessing. The problem becomes even more challenging in the
monaural case where only a single microphone captures the sig-
nal. Although there have been many improvements to monaural
speech separation, there is still a strong need to produce high
quality separated speech.

Typical speech separation systems operate in the time-
frequency (T-F) domain by enhancing the magnitude response
and leaving the phase response unaltered, in part due to the
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findings in [1], [2]. In [1], a series of experiments are per-
formed to determine the relative importance of the phase and
magnitude components in terms of speech quality. Wang and
Lim compute the Fourier transform magnitude response from
noisy speech at a certain signal-to-noise ratio (SNR), and then
reconstruct a test signal by combining it with the Fourier trans-
form phase response that is generated at another SNR. Listeners
then compare each reconstructed signal to unprocessed noisy
speech of known SNR, and indicate which signal sounds best.
The relative importance of the phase and magnitude spectra is
quantified with the equivalent SNR, which is the SNR where
the reconstructed speech and noisy speech are each selected at
a 50% rate. The results show that a significant improvement
in equivalent SNR is not obtained when a much higher SNR
is used to reconstruct the phase response than the magnitude
response. These results were consistent with the results of a pre-
vious study [3]. Ephraim and Malah [2] separate speech from
noise using the minimum mean-square error (MMSE) to esti-
mate the clean spectrum, which consists of MMSE estimates
for the magnitude response and the complex exponential of the
phase response. They show that the complex exponential of the
noisy phase is the MMSE estimate of the complex exponential
of the clean phase. The MMSE estimate of the clean spectrum
is then the product of the MMSE estimate of the clean magni-
tude spectrum and the complex exponential of the noisy phase,
meaning that the phase is unaltered for signal reconstruction.

A recent study, however, by Paliwal et al. [4] shows that
perceptual quality improvements are possible when only the
phase spectrum is enhanced and the noisy magnitude spectrum
is left unchanged. Paliwal et al. combine the noisy magni-
tude response with the oracle (i.e. clean) phase, non-oracle (i.e.
noisy) phase, and enhanced phase where mismatched short-
time Fourier transform (STFT) analysis windows are used
to extract the magnitude and phase spectra. Both objective
and subjective (i.e. a listening study) speech quality measure-
ments are used to assess improvement. The listening evaluation
involves a preference selection between a pair of signals. The
results reveal that significant speech quality improvements are
attainable when the oracle phase spectrum is applied to the
noisy magnitude spectrum, while modest improvements are
obtained when the non-oracle phase is used. Results are sim-
ilar when an MMSE estimate of the clean magnitude spectrum
is combined with oracle and non-oracle phase responses. In
addition, high preference scores are achieved when the MMSE
estimate of the clean magnitude spectrum is combined with an
enhanced phase response.

The work by Paliwal et al. has led some researchers to
develop phase enhancement algorithms for speech separation
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[5]–[7]. The system presented in [5] uses multiple input spec-
trogram inversions (MISI) to iteratively estimate the time-
domain source signals in a mixture given the corresponding
estimated STFT magnitude responses. Spectrogram inversion
estimates signals by iteratively recovering the missing phase
information, while constraining the magnitude response. MISI
uses the average total error between the mixture and the sum
of the estimated sources to update the source estimates at
each iteration. In [6], Mowlaee et al. perform MMSE phase
estimation where the phases of two sources in a mixture
are estimated by minimizing the square error. This mini-
mization results in several phase candidates, but ultimately
the pair of phases with the lowest group delay is cho-
sen. The sources are then reconstructed with their magnitude
responses and estimated phases. Krawczyk and Gerkmann [7]
enhance the phase of voiced-speech frames by reconstruct-
ing the phase between harmonic components across frequency
and time, given an estimate of the fundamental frequency.
Unvoiced frames are left unchanged. The approaches in [5]–
[7] all show objective quality improvements when the phase
is enhanced. However, they do not address the magnitude
response.

Another factor that motivates us to examine phase estima-
tion is that supervised mask estimation has recently been shown
to improve human speech intelligibility in very noisy condi-
tions [8], [9]. With negative SNRs, the phase of noisy speech
reflects more the phase of background noise than that of tar-
get speech. As a result, using the phase of noisy speech in the
reconstruction of enhanced speech becomes more problematic
than at higher SNR conditions [10]. So in a way, the success of
magnitude estimation at very low SNRs heightens the need for
phase estimation at these SNR levels.

Recently, a deep neural network (DNN) that estimates the
ideal ratio mask (IRM) has been shown to improve objective
speech quality in addition to predicted speech intelligibility
[11]. The IRM enhances the magnitude response of noisy
speech, but uses the unprocessed noisy phase for reconstruc-
tion. Based on phase enhancement research, ratio masking
results should further improve if both the magnitude and phase
responses are enhanced. In fact, recent methods have shown that
incorporating some phase information is beneficial [12], [13].
In [12], the cosine of the phase difference between clean and
noisy speech is applied to IRM estimation. Wang and Wang
[13] estimate the clean time-domain signal by combining a
subnet for T-F masking with another subnet that performs the
inverse fast Fourier transform (IFFT).

In this paper, we define the complex ideal ratio mask (cIRM)
and train a DNN to jointly estimate real and imaginary com-
ponents. By operating in the complex domain, the cIRM is
able to simultaneously enhance both the magnitude and phase
responses of noisy speech. The objective results and the prefer-
ence scores from a listening study show that cIRM estimation
produces higher quality speech than related methods.

The rest of the paper is organized as follows. In the next
section, we reveal the structure within the real and imaginary
components of the STFT. Section III describes the cIRM. The
experimental results are shown in Section IV. We conclude with
a discussion in Section V.

Fig. 1. (Color online) Example magnitude (top-left) and phase (top-right) spec-
trograms, and real (bottom-left) and imaginary (bottom-right) spectrograms, for
a clean speech signal. The real and imaginary spectrograms show temporal and
spectral structure and are similar to the magnitude spectrogram. Little structure
is exhibited in the phase spectrogram.

II. STRUCTURE WITHIN SHORT-TIME FOURIER

TRANSFORM

Polar coordinates (i.e. magnitude and phase) are commonly
used when enhancing the STFT of noisy speech, as defined
in (1)

St,f = |St,f |eiθSt,f (1)

where |St,f | represents the magnitude response and θSt,f
repre-

sents the phase response of the STFT at time t and frequency f .
Each T-F unit in the STFT representation is a complex number
with real and imaginary components. The magnitude and phase
responses are computed directly from the real and imaginary
components, as given below respectively.

|St,f | = 2

√
�(St,f )

2
+ �(St,f )

2 (2)

θSt,f
= tan−1 �(St,f )

�(St,f )
(3)

An example of the magnitude (top-left) and phase (top-right)
responses for a clean speech signal is shown in Fig. 1. The mag-
nitude response exhibits clear temporal and spectral structure,
while the phase response looks rather random. This is often
attributed to the wrapping of phase values into the range of
[−π, π]. When a learning algorithm is used to map features to
a training target, it is important that there is structure in the
mapping function. Fig. 1 shows that using DNNs to predict the
clean phase response directly is unlikely effective, despite the
success of DNNs in learning clean magnitude spectrum from
noisy magnitude spectrum. Indeed, we have tried extensively to
train DNNs to estimate clean phase from noisy speech, but with
no success.

As an alternative to using polar coordinates, the definition
of the STFT in (1) can be expressed in Cartesian coordinates,
using the expansion of the complex exponential. This leads to
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the following definitions for the real and imaginary components
of the STFT:

St,f = |St,f |cos(θSt,f
) + i|St,f |sin(θSt,f

) (4)

�(St,f ) = |St,f |cos(θSt,f
) (5)

�(St,f ) = |St,f |sin(θSt,f
) (6)

The lower part of Fig. 1 shows the log compressed, absolute
value of the real (bottom-left) and imaginary (bottom-right)
spectra of clean speech. Both real and imaginary components
show clear structure, similar to magnitude spectrum, and are
thus amenable to supervised learning. These spectrograms look
almost the same because of the trigonometric co-function iden-
tity: the sine function is identical to the cosine function with a
phase shift of π/2 radians. Equations (2) and (3) show that the
magnitude and phase responses can be computed directly from
the real and imaginary components of the STFT, so enhanc-
ing the real and imaginary components leads to enhanced
magnitude and phase spectra.

Based on this structure, a straightforward idea is to use DNNs
to predict the complex components of the STFT. However, our
recent study shows that directly predicting the magnitude spec-
trum may not be as good as predicting an ideal T-F mask [11].
Therefore, we propose to predict the real and imaginary com-
ponents of the complex ideal ratio mask, which is described in
the next section.

III. COMPLEX IDEAL RATIO MASK AND ITS ESTIMATION

A. Mathematical Derivation

The traditional ideal ratio mask is defined in the magnitude
domain, and in this section we define the ideal ratio mask in the
complex domain. Our goal is to derive a complex ratio mask
that, when applied to the STFT of noisy speech, produces the
STFT of clean speech. In other words, given the complex spec-
trum of noisy speech, Yt,f , we get the complex spectrum of
clean speech, St,f , as follows:

St,f = Mt,f ∗ Yt,f (7)

where ‘∗’ indicates complex multiplication and Mt,f is the
cIRM. Note that Yt,f , St,f and Mt,f are complex numbers, and
can be written in rectangular form as:

Y = Yr + iYi (8)

M = Mr + iMi (9)

S = Sr + iSi (10)

where the subscripts r and i indicate the real and imaginary
components, respectively. The subscripts for time and fre-
quency are not shown for convenience, but the definitions are
given for each T-F unit. Based on these definitions, Eq. (7) can
be extended:

Sr + iSi = (Mr + iMi)∗(Yr + iYi)

= (MrYr −MiYi) + i(MrYi +MiYr) (11)

From here we can conclude that the real and imaginary compo-
nents of clean speech are given as

Sr = MrYr −MiYi (12)

Si = MrYi +MiYr (13)

Using Eqs. (12) and (13), the real and imaginary components
of M are defined as

Mr =
YrSr + YiSi

Y 2
r + Y 2

i

(14)

Mi =
YrSi − YiSr

Y 2
r + Y 2

i

(15)

resulting in the definition for the complex ideal ratio mask

M =
YrSr + YiSi

Y 2
r + Y 2

i

+ i
YrSi − YiSr

Y 2
r + Y 2

i

(16)

Notice that this definition of the complex ideal ratio mask is
closely related to the Wiener filter, which is the complex ratio
of the cross-power spectrum of the clean and noisy speech to
the power spectrum of the noisy speech [14].

It is important to mention that Sr, Si, Yr, and Yi ∈ R, mean-
ing that Mr and Mi ∈ R. With this, the complex mask may
have large real and imaginary components with values in the
range (−∞,∞). Recall that the IRM takes on values in the
range [0, 1], which can be conducive for supervised learning
with DNNs. The large value range may complicate cIRM esti-
mation. Therefore, we compress the cIRM with the following
hyperbolic tangent

cIRMx = K
1− e−C·Mx

1 + e−C·Mx
(17)

where x is r or i, denoting the real and imaginary components.
This compression produces mask values within [−K, K] and C
controls its steepness. Several values for K and C are evaluated,
and K = 10 and C = 0.1 perform best empirically and are used
to train the DNN. During testing we recover an estimate of the
uncompressed mask using the following inverse function on the
DNN output, Ox:

M̂x = − 1

C
log

(
K −Ox

K +Ox

)
(18)

An example of the cIRM, along with the spectrograms of the
clean, noisy, cIRM-separated and IRM-separated speech are
shown in Fig. 2. The real portion of the complex STFT of each
signal is shown in the top, and the imaginary portion is in the
bottom of the figure. The noisy speech is generated by combin-
ing the clean speech signal with Factory noise at 0 dB SNR. For
this example, the cIRM is generated with K = 1 in (17). The
denoised speech signal is computed by taking the product of the
cIRM and noisy speech. Notice that the denoised signal is effec-
tively reconstructed as compared to the clean speech signal. On
the other hand, the IRM-separated speech removes much of the
noise, but it does not reconstruct the real and imaginary compo-
nents of the clean speech signal as well as the cIRM-separated
speech.
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Fig. 2. (Color online) Spectrogram plots of the real (top) and imaginary (bottom) STFT components of clean speech, noisy speech, the complex ideal ratio mask,
and speech separated with the complex ideal ratio mask and the ideal ratio mask.

Fig. 3. DNN architecture used to estimate the complex ideal ratio mask.

B. DNN Based cIRM Estimation

The DNN that is used to estimate the cIRM is depicted
in Fig. 3. As done in previous studies [11], [15], the DNN
has three hidden layers where each of the hidden layers has
the same number of units. The input layer is given the fol-
lowing set of complementary features that is extracted from a
64-channel gammatone filterbank: amplitude modulation spec-
trogram (AMS), relative spectral transform and perceptual
linear prediction (RASTA-PLP), mel-frequency cepstral coef-
ficients (MFCC), and cochleagram response, as well as their
deltas. The features used are the same as in [11]. A combina-
tion of these features has been shown to be effective for speech
segregation [16]. We also evaluated other features, including
noisy magnitude, noisy magnitude and phase, and the real and
imaginary components of the noisy STFT, but they were not
as good as the complementary set. Useful information is car-
ried across time frames, so a sliding context window is used
to splice adjacent frames into a single feature vector for each
time frame [11], [17]. This is employed for the input and out-
put of the DNN. In other words, the DNN maps a window of
frames of the complementary features to a window of frames
of the cIRM for each time frame. Notice that the output layer
is separated into two sub-layers, one for the real components
of the cIRM and the other for the imaginary components of the

cIRM. This Y-shaped network structure in the output layer is
commonly used to jointly estimate related targets [18], and in
this case it helps ensure that the real and imaginary components
are jointly estimated from the same input features.

For this network structure, the mean-square error (MSE)
function for complex data is used in the backpropagation algo-
rithm to update the DNN weights. This cost function is the
summation of the MSE from the real data and the MSE from
the imaginary data, as shown below:

Cost =

1

2N

∑
t

∑
f

[(Or(t, f)−Mr(t, f))
2 + (Oi(t, f)−Mi(t, f))

2
]

(19)

where N represents the number of time frames for the input,
Or(t, f) and Oi(t, f) denote the real and imaginary outputs
from the DNN at a T-F unit, and Mr(t, f) and Mi(t, f) cor-
respond to the real and imaginary components of the cIRM,
respectively.

Specifically, each DNN hidden layer has 1024 units [11]. The
rectified linear (ReLU) [19] activation function is used for the
hidden units, while linear units are used for the output layer
since the cIRM is not bounded between 0 and 1. Adaptive
gradient descent [20] with a momentum term is used for opti-
mization. The momentum rate is set to 0.5 for the first 5 epochs,
after which the rate changes to 0.9 for the remaining 75 epochs
(80 total epochs).

IV. RESULTS

A. Dataset and System Setup

The proposed system is evaluated on the IEEE database
[21], which consists of 720 utterances spoken by a single male
speaker. The testing set consists of 60 clean utterances that
are downsampled to 16 kHz. Each testing utterance is mixed
with speech-shaped noise (SSN), cafeteria (Cafe), speech bab-
ble (Babble), and factory floor noise (Factory) at SNRs of −6,
−3, 0, 3, and 6 dB, resulting in 1200 (60 signals ×4 noises
×5 SNRs) mixtures. SSN is a stationary noise, while the other
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noises are non-stationary and each signal is around 4 minutes
long. Random cuts from the last 2 minutes of each noise are
mixed with each testing utterance to create the testing mix-
tures. The DNN for estimating the cIRM is trained with 500
utterances from the IEEE corpus, which are different from the
testing utterances. Ten random cuts from the first 2 minutes of
each noise are mixed with each training utterance to generate
the training set. The mixtures for the DNN are generated at −3,
0, and 3 dB SNRs, resulting in 60000 (500 signals ×4 noises
×10 random cuts ×3 SNRs) mixtures in the training set. Note
that the −6 and 6 dB SNRs of the testing mixtures are unseen
by the DNN during training. Dividing the noises into two halves
ensures that the testing noise segments are unseen during train-
ing. In addition, a development set determines parameter values
for the DNN and STFT. This development set is generated from
50 distinct clean IEEE utterances that are mixed with random
cuts from the first 2 minutes of the above four noises at SNRs
of −3, 0, and 3 dB.

Furthermore, we use the TIMIT corpus [22] which consists
of utterances from many male and female speakers. A DNN is
trained by mixing 500 utterances (10 utterances from 50 speak-
ers) with the above noises at SNRs of −3, 0, and 3 dB. The
training utterances come from 35 male and 15 female speakers.
Sixty different utterances (10 utterances from 6 new speakers)
are used for testing. The testing utterances come from 4 male
and 2 female speakers.

As described in Section III-B, a complementary set of four
features is provided as the input to the DNN. Once the com-
plementary features are computed from the noisy speech, the
features are normalized to have zero mean and unit variance
across each frequency channel. It has been shown in [23] that
applying auto-regressive moving average (ARMA) filtering to
input features improves automatic speech recognition perfor-
mance, since ARMA filtering smooths each feature dimension
across time to reduce the interference from the background
noise. In addition, an ARMA filter improves speech separa-
tion results [24]. Therefore, we apply ARMA filtering to the
complementary set of features after mean and variance normal-
ization. The ARMA-filtered feature vector at the current time
frame is computed by averaging the two filtered feature vec-
tors before the current frame with the current frame and the
two unfiltered frames after the current frame. A context win-
dow that spans five frames (two before and two after) splices
the ARMA-filtered features into an input feature vector.

The DNN is trained to estimate the cIRM for each training
mixture where the cIRM is generated from the STFTs of noisy
and clean speech as described in (16) and (17). The STFTs are
generated by dividing the time-domain signal into 40 ms (640
sample) overlapping frames, using 50% overlap between adja-
cent frames. A Hann window is used, along with a 640 length
FFT. A three-frame context window augments each frame of
the cIRM for the output layer, meaning that the DNN estimates
three frames for each input feature vector.

B. Comparison Methods

We compare cIRM estimation to IRM estimation [11],
phase-sensitive masking (PSM) [12], time-domain signal

reconstruction (TDR) [13], and complex-domain nonnega-
tive matrix factorization (CMF) [25]–[27]. Comparing against
IRM estimation helps determine if processing in the com-
plex domain provides improvements over processing in the
magnitude domain, while the other comparisons determine
how complex ratio masking performs relative to these recent
supervised methods that incorporate a degree of phase.

The IRM is generated by taking the square root of the ratio of
the speech energy to the sum of the speech and noise energy at
each T-F unit [11]. A separate DNN is used to estimate the IRM.
The input features and the DNN parameters match those for
cIRM estimation with the only exception that the output layer
corresponds to the magnitude, not the real and imaginary com-
ponents. Once the IRM is estimated, it is applied to the noisy
magnitude response which, with the noisy phase, produces a
speech estimate. The PSM is similar to the IRM, except that
the ratio between the clean speech and noisy speech magni-
tude spectra is multiplied by the cosine of the phase difference
between the clean speech and noisy speech. Theoretically this
amounts to using just the real component of the cIRM. TDR
directly reconstructs the clean time-domain signal by adding a
subnet to perform the IFFT. The input to this IFFT subnet con-
sists of the activity of the last hidden layer of a T-F masking
subnet (resembling a ratio mask) that is applied to the mix-
ture magnitude, and the noisy phase. The input features and
DNN structures for PSM and TDR estimation match that of
IRM estimation.

CMF is an extension of non-negative matrix factorization
(NMF) with the phase response included in the process. More
specifically, NMF factors a signal into a basis and activation
matrix, where the basis matrix provides spectral structure and
the activation matrix linearly combines the basis elements to
approximate the given signal. It is required that both matrices
be nonnegative. With CMF, the basis and weights are still non-
negative, but a phase matrix is created that multiplies each T-F
unit, allowing each spectral basis to determine the phase that
best fits the mixture [26]. We perform speech separation using
supervised CMF as implemented in [27], where the matrices
for the two sources (speech and noise) are separately trained
from the same training data used by the DNNs. The speech and
noise basis are each modeled with 100 basis vectors, which are
augmented with a context window that spans 5 frames.

For a final comparison, we combine different magnitude
spectra with phase spectra to evaluate approaches that enhance
either magnitude or phase responses. For phase estimation,
we use a recent system that enhances the phase response of
noisy speech [7] by reconstructing the spectral phase of voiced
speech using the estimated fundamental frequency. It analyzes
the phase spectrum to enhance the phase along time and in-
between harmonics along the frequency axis. Additionally, we
use a standard phase enhancing method by Griffin and Lim
[28], which repeatedly computes the STFT and the inverse
STFT by fixing the magnitude response and only allowing the
phase response to update. Since these approaches only enhance
the phase responses, we combine them with the magnitude
responses of speech separated by an estimated IRM (denoted as
RM-K&G and RM-G&L) and of noisy speech (denoted as NS-
K&G and NS-G&L), as done in [7]. These magnitude spectra
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TABLE I
AVERAGE PERFORMANCE SCORES FOR DIFFERENT SYSTEMS ON −3 dB IEEE MIXTURES. BOLD INDICATES BEST RESULT

TABLE II
AVERAGE PERFORMANCE SCORES FOR DIFFERENT SYSTEMS ON 0 dB IEEE MIXTURES. BOLD INDICATES BEST RESULT

TABLE III
AVERAGE PERFORMANCE SCORES FOR DIFFERENT SYSTEMS ON 3 dB IEEE MIXTURES. BOLD INDICATES BEST RESULT

are also combined with the phase response of speech separated
by an estimated cIRM, and they are denoted as RM-cRM and
NS-cRM, respectively.

C. Objective Results

The separated speech signals from each approach are evalu-
ated with three objective metrics, namely the perceptual evalu-
ation of speech quality (PESQ) [29], the short-time objective
intelligibility (STOI) score [30], and the frequency-weighted
segmental SNR (SNRfw) [31]. PESQ is computed by compar-
ing the separated speech with the corresponding clean speech,
producing scores in the range [−0.5, 4.5] where a higher score
indicates better quality. STOI measures objective intelligibility
by computing the correlation of short-time temporal envelopes
between clean and separated speech, resulting in scores in the
range of [0, 1] where a higher score indicates better intel-
ligibility. SNRfw computes a weighted signal-to-noise ratio
aggregated across each time frame and critical band. PESQ and
SNRfw have been shown to be highly correlated to human
speech quality scores [31], while STOI has high correlation
with human speech intelligibility scores.

The objective results of the different methods using the IEEE
utterances are given in Tables I, II, and III, which show the
results at mixture SNRs of −3, 0, and 3 dB, respectively.
Boldface indicates the system that performed best within a
noise type. Starting with Table I, in terms of PESQ, each

approach offers quality improvements over noisy speech mix-
tures, for each noise. CMF performs consistently for each noise,
but it offers the smallest PESQ improvement over the noisy
speech. The estimated IRM (i.e. RM), estimated cIRM (i.e.
cRM), PSM and TDR each produce considerable improvements
over the noisy speech and CMF, with cRM performing best for
SSN, Cafe, and Factory noise. Going from ratio masking in
the magnitude domain to ratio masking in the complex domain
improves PESQ scores for each noise. In terms of STOI, each
algorithm produces improved scores over the noisy speech,
where again CMF offers the smallest improvement. The STOI
scores for the estimated IRM, cIRM, and PSM are approx-
imately identical. In terms of SNRfw, the estimated cIRM
performs best for each noise except for Babble noise where
PSM produces the highest score.

The performance trend at 0 dB SNR is similar to that at
−3 dB, as shown in Table II, with each method improving
objective scores over unprocessed noisy speech. CMF at 0 dB
offers approximately the same amounts of PESQ and STOI
improvements over the mixtures as at −3 dB. The STOI scores
for CMF are also lowest, which is consistent with the common
understanding that NMF-based approaches tend to not improve
speech intelligibility. CMF improves SNRfw on average by
1.5 dB over the noisy speech. Predicting the cIRM instead of the
IRM significantly improves objective quality. The PESQ scores
for cRM are better than PSM and TDR for each noise except for
Babble. The objective intelligibility scores are approximately
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TABLE IV
AVERAGE SCORES FOR DIFFERENT SYSTEMS ON −6 AND 6 dB IEEE MIXTURES. BOLD INDICATES BEST RESULT

TABLE V
AVERAGE PESQ SCORES FOR DIFFERENT SYSTEMS ON −3, 0, AND 3 dB

TIMIT MIXTURES. BOLD INDICATES BEST RESULT

identical for RM, cRM, and PSM across all noise types. In
terms of the SNRfw performance, PSM performs slightly better
across each noise type.

Table III shows the separation performance at 3 dB, which is
relatively easier than the −3 and 0 dB cases. In general, the esti-
mated cIRM performs best in terms of PESQ, while the STOI
scores between RM, cRM, and PSM are approximately equal.
PSM produces the highest SNRfw scores. CMF offers consis-
tent improvements over the noisy speech, but it performs worse
than the other methods.

The above results for the masking-based methods are gener-
ated when the DNNs are trained and tested on unseen noises,
but with seen SNRs (i.e. −3, 0, and 3 dB). To determine if
knowing the SNR affects performance, we also evaluated these
systems using SNRs that are not seen during training (i.e. −3
and 6 dB). Table IV shows the average performance at −6 and
6 dB. The PESQ results at −6 dB and 6 dB are highest for the
estimated cIRM for SSN, Cafe, and Factory noise, while PSM
is highest for Babble. The STOI results are approximately the
same for the estimated cIRM, IRM, and PSM. PSM performs
best in terms of SNRfw.

To further analyze our approach, we evaluate the PESQ per-
formance of each system (except CMF) using the TIMIT corpus
as described in Section IV-A. The average results across each
noise are shown in Table V. Similar to the single speaker case
above, cRM outperforms each approach for SSN, Cafe, and
Factory noise, while PSM is the best for Babble noise.

Fig. 4 shows the PESQ results when separately-enhanced
magnitude and phase responses are combined to reconstruct
speech. The figure shows the results for each system at all
SNRs and noise types. Recall that the magnitude response is
computed from the noisy speech or speech separated by an esti-
mated IRM, while the phase response is computed from the
speech separated by an estimated cIRM or from the methods
in [7], [28]. The results for the unprocessed noisy speech, an
estimated cIRM, and an estimated IRM are copied from Tables I

through IV and are shown for each case. When the noisy magni-
tude response is used (lower portion of each plot), the objective
quality results between the different phase estimators are close
across different noise types and SNRs. More specifically, for
Cafe and Factory noise the results for NS-K&G and NS-cRM
are equal, with NS-G&L performing slightly worse. This trend
is also seen with SSN at SNRs above 0 dB. Similar results are
obtained when the magnitude response is masked by an esti-
mated IRM, with each phase estimator producing similar PESQ
scores. These results also reveal that small objective speech
quality improvement is sometimes obtained when these phase
estimators are applied to unprocessed and IRM-enhanced mag-
nitude responses, as seen by comparing the phase enhanced
signals to unprocessed noisy speech and speech separated by
an estimated IRM. This comparison indicates that separately
enhancing the magnitude and phase responses would not be
optimal. On the other hand, it is clear from the results that
jointly estimating the real and imaginary components of the
cIRM leads to PESQ improvements over the other methods
across noise types and SNR conditions.

D. Listening Results

In addition to the objective results, we conducted a listen-
ing study to let human subjects compare pairs of signals. IEEE
utterances are used for this task. The first part of the listening
study compares complex ratio masking to ratio masking, CMF,
and methods that separately enhance the magnitude and phase.
The second part of the listening study compares cIRM estima-
tion to PSM and TDR which are sensitive to phase. During
the study, subjects select the signal that they prefer in terms of
quality, using the preference rating approach for quality com-
parisons [32], [33]. For each pair of signals, the participant is
instructed to select one of three options: signal A is preferred,
signal B is preferred, or the qualities of the signals are approxi-
mately identical. The listeners are instructed to play each signal
at least once. The preferred method is given a score of +1
and the other is given a score of −1. If the third option is
selected, each method is awarded the score of 0. If the sub-
ject selects one of the first two options, then they provide an
improvement score, ranging from 0 to 4 for the higher quality
signal. Improvement scores of 1, 2, 3 and 4 indicate that the
quality of the preferred signal is slightly better, better, largely
better, and hugely better than the other signal, respectively (see
[33]). In addition, if one of the signals is preferred the partici-
pant indicates the reasoning behind their selection, where they
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Fig. 4. PESQ results for different methods of combining separately estimated phase and magnitude responses. Enhancement results for each noise type and SNR
are plotted.

can indicate that the speech quality, noise suppression, or both
helped lead them to their decision.

For the first part of the listening study, the signals and
approaches are generated as described in Section III through
IV-B, including the estimated cIRM, estimated IRM, CMF, NS-
K&G, and unprocessed noisy speech. Signals processed with
combinations of SSN, Factory, and Babble noise at 0 and 3 dB
SNRs are assessed. The other SNR and noise combinations are
not used to ensure that the processed signals are fully intelligi-
ble to listeners, since our goal is a perceptual quality assessment
and not intelligibility. Each subject test consists of three phases:
practice, training, and formal evaluation phase, where the prac-
tice phase familiarizes the subject with the types of signals and
the training session familiarizes the subject with the evaluation
process. The signals in each phase are distinct. In the formal
evaluation phase, the participant performs 120 comparisons,
where 30 comparisons of each of the following pairs are per-
formed: (1) noisy speech to estimated cIRM, (2) NS-K&G to
estimated cIRM, (3) estimated IRM to estimated cIRM, and
(4) CMF to estimated cIRM. The 30 comparisons equate to
five sets of each combination of SNR (0 and 3 dB) and noise
(SSN, Factory, and Babble). The utterances used in the study
are randomly selected from the test signals, and the order of
presentation of pairs is randomly generated for each subject,
and the listener has no prior knowledge on the algorithm used
to produce a signal. The signals are presented diotically over
Sennheiser HD 265 headphones using a personal computer, and
each signal is normalized to have the same sound level. The
subjects are seated in a sound proof room. Ten subjects (six
males and four females), between the ages of 23 and 38, each
with self-reported normal hearing, participated in the study. All
the subjects are native English speakers and they were recruited
from The Ohio State University. Each participant received a
monetary incentive for participating.

The listening study results for the first part of the listening
study are displayed in Fig. 5(a)–(c). The preference scores are
shown in Fig. 5(a), which shows the average preference results
for each pairwise comparison. When comparing the estimated
cIRM to noisy speech (i.e. NS), users prefer the estimated
cIRM at a rate of 87%, while the noisy speech is preferred
at a rate of 7.67%. The quality of the two signals is equal
at 5.33% of the time. The comparison with NS-K&G gives
similar results where the cRM, NS-K&G, and equality prefer-
ence rates are 91%, 4.33%, and 4.67%, respectively. The most

Fig. 5. Listening results from the pairwise comparisons. Plots (a), (b), and
(c) show the preference ratings, improvement scores, and reasoning results for
the first part of the listening study, respectively. Preference results from the
second part of pairwise comparisons are shown in (d).

important comparison is between the estimated cIRM and IRM,
since this indicates whether complex-domain estimation is use-
ful. For this comparison, participants prefer the estimated cIRM
over the IRM at a rate of 89%, where 1.67% and 9.33% pref-
erence rates are selected for the estimated IRM and equality,
respectively. The comparison between the estimated cIRM and
CMF produces similar results, and the estimated cIRM, CMF,
and equality have selection rates of 86%, 9%, and 5%, respec-
tively. The improvement scores for each comparison is depicted
in Fig. 5(b). This plot shows that on average, users indicate that
the estimated cIRM is approximately 1.75 points better than
the comparison approach, meaning that the estimated cIRM is
considered better according to our improvement score scale.
The reasoning results for the different comparisons are indi-
cated in Fig. 5(c). Participants indicate that noise suppression is
the main reason for their selection when the estimated cIRM is
compared against NS, NS-K&G, and CMF. When the estimated
cIRM is compared with the estimated IRM, users indicate that
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speech quality is the reason for their selection with a 81% rate
and noise suppression with a 49% rate.

Separate subjects were recruited for the second part of the lis-
tening study. In total, 5 native English subjects (3 females and
2 males) between the ages of 32 and 69, each with self-reported
normal hearing, participated. One subject also participated in
the first part of the study. cRM, TDR, and PSM signals pro-
cessed with combinations of SSN, Factory, Babble, and Cafe
noise at 0 dB SNRs are used during the assessment. Each
participant performs 40 comparisons, where 20 comparisons
are between cRM and TDR signals and 20 comparisons are
between cRM and PSM signals. For each of the 20 compar-
isons in each of the two cases, 5 signals from each of the 4
noise types are used. The utterances were randomly selected
from the test signals and the listener has no prior knowledge on
the algorithm used to produce a signal. Subjects provide only
signal preferences when comparing cIRM estimation to PSM
and TDR estimation.

The results for the second part of the listening study are
shown in Fig. 5(d). On average, cRM signals are preferred over
PSM signals with a 69% preference rate, while PSM signals are
preferred at a rate of 11%. Listeners feel the quality of cRM and
PSM signals is identical at a rate of 20%. The preference rate
and equality rates between cRM and TDR signals are 85% and
4%, respectively, and subjects prefer TDR signals over cRM
signals at a 11% rate.

V. DISCUSSION AND CONCLUSION

An interesting question is what the appropriate training tar-
get should be when operating in the complex domain. While
we have shown results with the cIRM as the training target, we
have performed additional experiments with two other train-
ing targets, i.e. a direct estimation of the real and imaginary
components of clean speech STFT (denoted as STFT) and an
alternative definition of a complex ideal ratio mask. With the
alternative definition of the cIRM, denoted as cIRMalt, the real
portion of the complex mask is applied to the real portion of
noisy speech STFT, and likewise for the imaginary portion. The
mask and separation approach are defined below:

cIRMalt =
Sr

Yr
+ i

Si

Yi

S = (cIRMalt
r · Yr) + i(cIRMalt

i · Yi) (20)

where separation is performed at each T-F unit. The data,
features, target compression, and DNN structure defined in
Sections III and IV are also used for the DNNs of these
two targets, except for STFT where we find that compress-
ing with the hyperbolic tangent improves PESQ scores, but
it severely hurts STOI and SNRfw. The STFT training tar-
get is thus uncompressed. We also find that the noisy real and
imaginary components of the complex spectra work better as
features for STFT estimation. The average performance results,
using IEEE utterances, over all SNRs (−6 to 6 dB, with 3 dB
increment) and noise types for these targets and the estimated
cIRM are shown in Table VI. The results show that there is
little difference in performance between the estimated cIRM

TABLE VI
COMPARISON BETWEEN DIFFERENT COMPLEX-DOMAIN TRAINING

TARGETS ACROSS ALL SNRS AND NOISE TYPES

and the estimated cIRMalt, but directly estimating the real and
imaginary portions of the STFT is not effective.

In this study, we have defined the complex ideal ratio mask
and shown that it can be effectively estimated using a deep
neural network. Both objective metrics and human subjects
indicate that the estimated cIRM outperforms the estimated
IRM, PSM, TDR, CMF, unprocessed noisy speech, and noisy
speech processed with a recent phase enhancement approach.
The improvement over the IRM and PSM is largely attributed to
simultaneously enhancing the magnitude and phase response of
noisy speech, by operating in the complex domain. The impor-
tance of phase has been demonstrated in [4], and our results
provide further support. The results also reveal that CMF, which
is an extension of NMF, suffers from the same drawbacks as
NMF, which assumes that a speech model can be linearly com-
bined to approximate the speech within noisy speech, while a
noise model can be scaled to estimate the noise portion. As
indicated by these results and previous studies [34], [15], this
assumption does not hold well at low SNRs and with non-
stationary noises. The use of phase information in CMF for
performing separation is not enough to overcome this draw-
back. The listening study reveals that the estimated cIRM can
maintain the naturalness of human speech that is present in
noisy speech, while removing much of the noise.

An interesting point is when a noisy speech signal is
enhanced from separately estimated magnitude and phase
responses (i.e. RM-K&G, RM-G&L, and RM-cRM), the per-
formance is not as good as joint estimation in the complex
domain. Sections IV also shows that the DNN structure for
cIRM estimation generalizes to unseen SNRs and speakers.

The results also reveal somewhat of a disparity between the
objective metrics and listening evaluations. While the listen-
ing evaluations indicate a clear preference for the estimated
cIRM, such a preference is not as clear-cut in the quality met-
rics of PESQ and SNRfw (particularly the latter). This may
be attributed to the nature of the objective metrics that ignores
phase when computing scores [35].

To our knowledge, this is the first study employing deep
learning to address speech separation in the complex domain.
There will likely be room for future improvement. For example,
effective features for such a task should be systematically exam-
ined and new features may need to be developed. Additionally,
new activation functions in deep neural networks may need to
be introduced that are more effective in the complex domain.
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