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Time-frequency masking is a common solution for the single-channel source separation (SCSS)

problem where the goal is to find a time-frequency mask that separates the underlying sources from

an observed mixture. An estimated mask is then applied to the mixed signal to extract the desired

signal. During signal reconstruction, the time-frequency–masked spectral amplitude is combined

with the mixture phase. This article considers the impact of replacing the mixture spectral phase

with an estimated clean spectral phase combined with the estimated magnitude spectrum using a

conventional model-based approach. As the proposed phase estimator requires estimated funda-

mental frequency of the underlying signal from the mixture, a robust pitch estimator is proposed.

The upper-bound clean phase results show the potential of phase-aware processing in single-

channel source separation. Also, the experiments demonstrate that replacing the mixture phase with

the estimated clean spectral phase consistently improves perceptual speech quality, predicted

speech intelligibility, and source separation performance across all signal-to-noise ratio and noise

scenarios. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4986647]

[CYE] Pages: 4668–4679

I. INTRODUCTION

In many speech processing applications, the received

signal is often corrupted by other interfering sources includ-

ing music, background noise, or other speakers. To circum-

vent this problem, different source separation methods have

been proposed to separate a desired source from the rest of

the sources in a given observed mixture. An ideal solution in

source separation is to produce separated signals with no

trace of interfering sources, but also no artifacts.

Spectral phase has previously been considered unim-

portant for noise reduction (Wang and Lim, 1982; Vary,

1985). Because of the earlier belief on phase unimportance

in audio perception, conventional single-channel source

separation (SCSS) solutions are only focused on filtering

the spectral amplitude of the mixture, and employ the phase

of the mixed signal during signal reconstruction. This

choice limits the source separation performance, as recent

studies showed its positive impact and improved perfor-

mance in noise reduction (Kulmer and Mowlaee, 2014;

Mowlaee and Kulmer, 2015a,b; Gerkmann et al., 2015;

Mowlaee et al., 2016a) or source separation (Gunawan and

Sen, 2010; Mayer and Mowlaee, 2015; Sturmel and

Daudet, 2012, 2013; LeRoux and Vincent, 2013; Magron

et al., 2015a). As another phase-aware source separation

approach, in Bronson and Depalle (2014), complex non-

negative matrix factorization (CMF) was proposed as a tool

for separating overlapping partials in mixtures of harmonic

musical sources. In order to push the limited achievable

performance, it is advantageous to take the phase knowl-

edge into account in spectral amplitude modification as

well as during signal reconstruction stages. In this paper,

we are focused on incorporating phase information during

signal reconstruction to improve the quality of the time-

frequency masked (TFM) separation outcome when applied

on a single-channel mixture.

Traditional speech-separation solutions are categorized

into two groups (Mowlaee, 2010): (1) source-driven, repre-

sented by the computational auditory scene analysis (CASA)

(Wang and Brown, 2006; Wang, 2005) and (2) model-driven

(Virtanen et al., 2015; Hershey et al., 2010). The former

group relies on processing the mixed signal directly with no

prior knowledge about the underlying sources. They include

a segmentation where each time-frequency unit is classified

to target or masker regions followed by a grouping stage,

where regions with common cues like pitch continuity and

common onset/offset are assigned to the same source. The

model-driven group, in contrast, relies on prior knowledge in

the form of pre-trained source-specific dictionaries to cap-

ture the spectral amplitude patterns for the underlying

speaker. The trained dictionaries are in the form of statistical

or spectral models and can be speaker-dependent or speaker-

independent depending on the training procedure applied.

During separation stage, the dictionaries are searched to

ascertain the best combination of the source activities and

their corresponding weights. The estimated states can be

used either directly to synthesize the separated signal or toa)Electronic mail: florian.mayer@fh-joanneum.at.
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generate a TFM (binary or soft) that is applied to the mixture

to reconstruct the separated signal.

The estimated TFM is defined in the spectral amplitude

domain. This mask does not modify the mixture phase,

hence, it limits the achievable separation performance. The

use of the mixture phase results in degraded speech quality

in the separated signals (Mayer and Mowlaee, 2015;

Mowlaee et al., 2012a; Sturmel and Daudet, 2013; Mowlaee

et al., 2016a; Williamson et al., 2014). Several attempts

have been made recently to improve the perceived quality

achievable by source separation using time-frequency

masks. For example in Williamson et al. (2014), Williamson

et al. present an overview study on different techniques for

signal reconstruction with the focus on how to improve the

speech quality of the binary masked speech. They report

improved perceived quality predicted by the perceptual eval-

uation of speech quality (PESQ) (ITU Radiocommunication

Assembly, 2001) without sacrificing the speech intelligibility

predicted by short-time objective intelligibility (STOI) mea-

sure (Taal et al., 2011). The same authors in Williamson

et al. (2015) propose a two-stage procedure to improve the

perceptual quality of the separated speech signal using time-

frequency masking followed by estimating non-negative

matrix factorization (NMF) speech model activations. They

report improved perceived quality predicted by PESQ and

improved intelligibility predicted by STOI. As these solu-

tions utilize mixture phase at their signal reconstruction

stage, the potential improvement due to phase processing is

not addressed, hence is unknown.

Apposed to conventional SCSS methods that employ

the phase of the mixed signal at the signal reconstruction

stage, recently there have been several attempts to estimate

the clean spectral phase of the individual sources in a mix-

ture. Mowlaee et al. (2012a), proposed to use a geometric

approach to first find an ambiguous set of phase candidates

for the sources. The ambiguity in the pair of phase estimates

is resolved by applying an additional constraint on the group

delay (minimum group delay deviation) at spectral peaks

found from the separated spectral amplitudes. The geometry-

based approach was extended to other time-frequency con-

straints including across time and harmonics (Mowlaee and

Saeidi, 2014). The results show improved signal reconstruc-

tion performance in PESQ and source separation criteria

using the signal-to-distortion ratio (SDR) and signal-to-inter-

ference ratio (SIR) (Vincent et al., 2006) when compared to

the ideal binary mask (IBM) and multiple input spectrogram

inversion (MISI) (Gunawan and Sen, 2010). Magron et al.
(2015a) proposed phase recovery using a NMF framework.

They applied phase unwrapping to ensure temporal coher-

ence across time and frequency. The results showed that the

method is suitable for a variety of pitched musical signals

(Magron et al., 2015a,b). Mayer and Mowlaee (2015) pro-

posed a phase estimation method that relied on temporal

smoothing of the unwrapped phase provided by a phase

decomposition stage. The smoothed phase estimates were

combined with the NMF and IBM-separated amplitude spec-

tra, showing joint improvement in perceived quality and

intelligibility.

The positive impact of replacing the mixture phase with

an estimated clean phase has recently been reported in

single-channel speech enhancement literature, showing joint

improved perceived quality and speech intelligibility in

speech enhancement (Gerkmann, 2014; Gerkmann and

Krawczyk, 2013; Mowlaee and Kulmer, 2015a; Kulmer and

Mowlaee, 2014; Mowlaee and Kulmer, 2015b). This also

serves as our motivation in the current proposal for single-

channel source separation. For a good recent overview of

phase-aware signal processing in single-channel speech

enhancement, we refer to Gerkmann et al. (2015) and an

overview of phase-aware signal processing in speech com-

munication we refer to Mowlaee et al. (2014) and Mowlaee

et al. (2016a,b).

In this paper, we propose a phase estimation method to

improve the separation performance of an estimated time-

frequency masking (TFM) method that operates in the spec-

tral amplitude domain only. The proposed method replaces

the mixed spectral phase with an estimated clean spectral

phase, which is used for reconstruction of the separated sig-

nals. The estimated spectral phase is calculated by temporal

smoothing of the unwrapped phase, which is provided by

harmonic phase decomposition of the mixture phase given

the fundamental frequency of the target signal. In contrast to

the preliminary work in Mayer and Mowlaee (2015), the

novelty of the current work is the application of a proposed

phase estimator to the estimated (not ideal) T-F masks (both

binary and ratio masks) as well as a detailed analysis of the

proposed pitch estimator and significance analysis of the

phase-modified source separation outcomes.1 The prior work

(Mayer and Mowlaee, 2015) used phase estimation com-

bined with ideal binary mask to demonstrate the achievable

upper-bound performance.

The rest of the paper is organized as follows. Section II

gives the problem definition and notations used. Section III

presents an overview on the conventional TFM methods,

where the mixed signal phase is used unaltered for SCSS.

Section IV presents details about the proposed method to

estimate the clean spectral phase for signal reconstruction.

Section V presents the results, and Sec. VI concludes on the

work.

II. PROBLEM DEFINITION AND NOTATIONS

Let yðnÞ ¼ xðnÞ þ dðnÞ denote the calculation of the

mixed signal in time domain from a target speech signal,

x(n), and the interfering noise, d(n). Taking the short-time

Fourier transform (STFT), we obtain Yðk; lÞ ¼ Xðk; lÞ
þDðk; lÞ where the complex STFT spectrum of the mixed

signal, Y(k, l), is the sum of the underlying speech and

noise STFTs, with k and l referring to the frequency and time

index, respectively. The STFTs are complex, containing

spectral amplitude and spectral phase components, e.g.,

Yðk; lÞ ¼ jYðk; lÞjej/yðk;lÞ with /yðk; lÞ ¼ /Yðk; lÞ, Xðk; lÞ
¼ jXðk; lÞjej/xðk;lÞ with /xðk; lÞ ¼ /Xðk; lÞ, and Dðk; lÞ
¼ jDðk; lÞjej/dðk;lÞ with /dðk; lÞ ¼ /Dðk; lÞ. The goal is to

estimate the unknown desired signal, x̂ðnÞ, by removing the

interfering source. This separated signal is reconstructed by

J. Acoust. Soc. Am. 141 (6), June 2017 Mayer et al. 4669



computing the inverse STFT of an estimated amplitude and

phase,

x̂ðnÞ ¼ iSTFTðjX̂ðk; lÞjej/̂xðk;lÞÞ; (1)

where jX̂ðk; lÞj is the estimated spectral amplitude of the

desired signal and /̂xðk; lÞ is the estimated spectral phase.

Traditionally, the phase of the mixed signal is used for signal

reconstruction and we have /̂xðk; lÞ ¼ /yðk; lÞ. This how-

ever, introduces artifacts of the interfering source and even-

tually degrades the perceived quality (Mowlaee et al.,
2012a). The separated spectral amplitude is estimated by

applying a time-frequency mask denoted by M̂ðk; lÞ to the

mixture spectral amplitude jYðk; lÞj given by

jX̂ðk; lÞj ¼ M̂ðk; lÞjYðk; lÞj; (2)

where M̂ðk; lÞ can be a binary mask [i.e., M̂ðk; lÞ
¼ dIBMðk; lÞ] or a ratio mask [i.e., M̂ðk; lÞ ¼ dIRMðk; lÞ].
Further details on how to estimate the IBM and IRM are

given in Sec. III.

III. CONVENTIONAL TIME-FREQUENCY MASKING

Time-frequency masking is an effective approach for

source separation, where two types of time-frequency masks

are commonly used: binary and ratio. The IBM is a two-

dimensional binary matrix used to label T-F units of a mix-

ture as noise or speech dominant (Wang, 2005), where T-F

units with the value of 1 are deemed speech dominant and

retained, and noise dominant T-F units are removed. Given

the T-F representation of the speech, X(k, l), and noise, D(k,

l), the IBM is defined as follows:

IBMðk; lÞ ¼
1; if jXðk; lÞj > jDðk; lÞj
0; otherwise:

(
(3)

An estimate of the speech signal is generated by applying

the estimated IBM to the T-F representation of the mixture.

Recent studies, that use binary masks to address monaural

speech separation in noisy environments, have shown

improved speech intelligibility (Kim et al., 2009; Healy

et al., 2013), but the resulting speech quality is still not satis-

factory (Williamson et al., 2015). Applying the estimated

IBM for SCSS, results in errors due to the removal of certain

portions of the speech and retaining portions of the noise

miss-classified as speech, hence, degrading the perceived

quality.

An alternative to binary masking is a continuous (ratio)

mask. Before describing this mask, let us consider the geom-

etry of source separation in the power-spectrum domain,

jYðk; lÞj2 ¼ jXðk; lÞj2 þ jDðk; lÞj2

þ 2jXðk; lÞjjDðk; lÞj cosðhÞ; (4)

where h ¼ /xðk; lÞ � /dðk; lÞ is the phase difference

between the two sources. We assume that the phase differ-

ence is uniformly distributed and the two sources are uncor-

related. This brings us directly to the assumption, that the

sum of the power spectra of two uncorrelated sources result

in the power spectrum of the mixture signal. Further approxi-

mation of Eq. (4) yields a mask, in contrast to NMF or

related soft-masks, but similar to the square root Wiener fil-

ter defined in Loizou (2013),

H k; lð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pxx k; lð Þ

Pxx k; lð Þ þ Pdd k; lð Þ

s
; (5)

where Pxx and Pdd denote power spectral densities for speech

and noise, respectively, and are approximated by their short-

term magnitude spectrum squared. Similarly in F�evotte and

Godsill (2005), the authors proposed an IRM for audio

source separation, taking into account the spectral magnitude

ratio. The IRM is a two-dimensional matrix where each T-F

unit represents the proportion of energy that is attributed to

speech. Therefore, IRM-separated speech retains the correct

amount of speech energy in each T-F unit. The IRM has val-

ues in the range of [0,1] and is defined in Wang et al. (2014)

as follows:

IRM k; lð Þ ¼ jX k; lð Þj2

jX k; lð Þj2 þ jD k; lð Þj2

 !1=2

: (6)

The IRM has been shown to be more effective for DNN

based estimation than other training targets such as the IBM,

cochleagram, and spectrogram in terms of achievable

improvement in the perceived quality and intelligibility

(Wang et al., 2014).

In the current work, separate DNNs are used to estimate

the IBM and IRM for a given mixture. The DNNs are trained

from the set of complementary features that is extracted

from a 64-channel gammatone filterbank: amplitude modula-

tion spectrogram (AMS), relative spectral transform and per-

ceptual linear prediction (RASTA-PLP), and Mel-frequency

cepstral coefficients (MFCC), as well as their deltas (Wang

et al., 2013). The DNNs are identical in terms of structure

and parameter values. A sliding context window is used to

splice adjacent frames into a single vector for each time

frame. This is employed for the input features and target

labels of the DNNs. In other words, the DNN maps a set of

frames of features to a set of frames of labels for each time

frame (Zhang and Wang, 2014; Wang et al., 2014). Useful

information is carried across time frames, and a context win-

dow allows the DNN to incorporate this information. During

testing, the set of estimated labels for each time frame is

unwrapped and averaged in order to obtain estimates of the

IBM and IRM. As illustrated in Fig. 1(a), the estimated

masks are applied to the cochleagram of the mixed signal to

produce a speech estimate.

IV. PROPOSED PHASE ESTIMATOR

In this section, we present details about the proposed

phase estimation approach. The method relies on harmonic

phase decomposition, first proposed in Degottex and Erro

(2014), which itself demands access to the pitch trajectories

of the underlying sources in the mixed signal. The obtained

4670 J. Acoust. Soc. Am. 141 (6), June 2017 Mayer et al.



noise robust f0-estimates are then used to extract an

unwrapped harmonic phase, followed by temporal smooth-

ing to provide an enhanced spectral phase for reconstructing

the separated signals.

A. Phase estimation

Figure 1(b) illustrates the principle of the proposed

phase-aware TFM method. After TF-masking, the f0
trajectories of the separated speech signals are required to be

used as prior information for the subsequent phase

estimation step. Given the mixed signal, our goal here is to

estimate the clean spectral phase denoted by /̂xðk; lÞ using

the estimated fundamental frequency. The enhanced phase

obtained by temporal smoothing of unwrapped phase is

then used for synthesis, where we replace the phase obtained

from the mixture, with the estimated one. The steps

required for phase estimation are explained in detail in the

following.

1. Phase decomposition

The spectral phase at harmonics alters at multiples of 2p
due to phase wrapping. To circumvent these discontinuities,

we apply the phase decomposition from Degottex and Erro

(2014) to extract an unwrapped harmonic phase, known for

its smooth changes across time within speech regions. In

order to reduce the error variance, the linear phase, which

wraps the harmonic phase across time according to its

harmonics, needs to be removed from the harmonic phase.

Applying a temporal smoothing filter on the resulting

unwrapped phase enables us to reduce the impact of noise.

As the linear phase is caused by cyclic wrapping of the fun-

damental frequency, having access to a reliable pitch esti-

mate plays a key role in the ultimate accuracy of the phase

estimation procedure described here. The pitch estimation

will be discussed in Sec. IV A 2.

Let f0ðlÞ represent the fundamental frequency of the

desired source at the lth frame, provided by a pitch estimator

(see Sec. IV A 2 for further details). In the harmonic model,

phase distortion (Degottex and Erro, 2014) is applied

to access different harmonic components of the phase

described in the following. Using f0ðlÞ, pitch-synchronous

time-segmentation is applied to the time-domain TFM sepa-

rated signal denoted by x̂maskðnÞ. The segmentation is char-

acterized by time stamps tðlÞ ¼ tðl� 1Þ þ 1=½4f0ðl� 1Þ�,

where t(l) is defined as the time instant at the lth frame. This

results in time-segments x̂hðn0; lÞ ¼ x̂maskðn0 þ tðlÞÞwðn0Þ
where wðn0Þ is the analysis window of the length N and n0

2 ½�ðN � 1Þ=2; ðN � 1Þ=2�. For phase estimation, a careful

consideration about the window type and length is necessary.

As reported in Mowlaee and Kulmer (2015b),

x̂hðn0; lÞ �
XH

h¼1

aðh; lÞ cosðhx0ðlÞn0 þ wðh; lÞÞwðn0Þ; (7)

where a(h, l) and wðh; lÞ are the harmonic amplitude and

phase, respectively, h is the harmonic index, and H is the

harmonic model order. In voiced regions, each time-segment

x̂hðn0; lÞ can be approximated as a sum of harmonics consist-

ing of amplitude a(h, l) and harmonic phase wðh; lÞ, shown

in Eq. (7). This assumption is due to the speech production

model assumed in the harmonic model plus phase distortion

(HMPD), proposed in Degottex and Erro (2014). We extract

the phase information wðh; lÞ defined as the phase at the hth

harmonic and lth frame index. As shown in Mowlaee and

Kulmer (2015a) the harmonic phase can be decomposed into

three components:

wðh; lÞ ¼ /Vðh; lÞ þ wdðh; lÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Unwrapped phase: Wðh;lÞ

þ h
Xl

l0¼0

x0ðl0Þðtðl0Þ � tðl0 � 1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Linear phase: wlinðh;lÞ

: (8)

The minimum phase spectrum represents the first term of

Eq. (8), and it is attributed to the vocal tract filter. The dis-
persion phase, or source shape, wdðh; lÞ denotes the second

term and characterizes the pulse shape. It also captures the

stochastic characteristic of the phase at harmonic h and, as

shown in Degottex and Erro (2014), is known to smoothly

evolve across time. The linear phase, the last term, wraps

the harmonic phase across time according to h, normalized

fundamental frequency x0ðlÞ and the time interval between

two consequent frames tðlÞ � tðl� 1Þ. When the signal is

corrupted with an interfering signal or noise, the unwrapped

phase component becomes corrupted as well.

We define Wðh; lÞ, the unwrapped phase, as the combi-

nation of the minimum phase spectrum and dispersion phase,

FIG. 1. (a) Conventional time-frequency masking (TFM)-
SCSS methods (Ideal Binary Mask and Ideal Ratio Mask),

and (b) proposed method to incorporate phase information

at signal reconstruction in TFM-SCSS leading to x̂peðnÞ.
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therefore the harmonic phase is given by the superposition

of the unwrapped phase and the linear phase

wðh; lÞ ¼ Wðh; lÞ þ wlinðh; lÞ: (9)

In our proposed phase estimation method, given the funda-

mental frequency estimate we propose to approximate the

linear phase contribution between consequent frames

denoted by ŵlinðh; lÞ. We further define x̂0ðlÞ ¼ 2pf̂ 0ðlÞ=fs

with f̂ 0ðlÞ as the estimated fundamental frequency for the lth
frame and fs as the sampling frequency. Then the linear

phase estimate is given by

ŵlinðh; lÞ ¼
Xl

l0
hx̂0ðl0Þðtðl0Þ � tðl0 � 1ÞÞ: (10)

This estimate is used to find the unwrapped harmonic phase

which is given by subtracting the linear phase from the har-

monic phase, thus we have

Ŵðh; lÞ ¼ wðh; lÞ � ŵlinðh; lÞ: (11)

2. Robust pitch estimation using frequency
histograms (RPEFH)

To perform accurate phase estimation, a smooth trajectory

of the fundamental frequency f0, with the least number of f0
outliers is desired. The outliers in the f0 estimate are introduced

by the interfering signal in the mixture. Fundamental fre-

quency estimation becomes difficult when the underlying fre-

quency trajectories of the target and interfering signal are close

together, hence, the fundamental frequency of the target signal

is hard to distinguish. To address the multi-pitch estimation

problem, we propose to incorporate the histogram of the

fundamental frequencies, obtained from the TFM-separated

signals (using estimated IBMs and IRMs). Figure 2 shows the

block diagram of the pitch estimator used in this work.

The initial pitch estimate is provided using the pitch

estimation filter with amplitude compression (PEFAC)

proposed in Gonzales and Brookes (2014). To estimate the

frequency trajectory of the desired source, hypotheses of the

minimum and maximum occurring f0 value (fmin and fmax)

have to be provided as additional inputs to the PEFAC

algorithm. Initially we assume a frequency range of 50 to

500 Hz, which covers the possible pitch range for speech.

The histogram analysis reveals that the estimated f0 trajec-

tory from the mixed signal, f̂0 , consists of values that are not

within the confidence interval (l61:96r) of the desired pitch

information. These outliers, caused by the interfering signal

in the mixture, cause errors in the linear phase approxima-

tion required in Eq. (8). Statistical analysis is performed on

the estimated trajectories to characterize the mean, l, and

the variance, rf0 , of the underlying pitch distribution. To this

end, we fit a Gaussian probability density function to f̂0 ,

where its mean, l, is assumed to be within the valid pitch

range of ½f0min
; f0max

� and we have

f̂ 0 � Nðl; rf0Þ where l 2 f0min
; f0max½ �: (12)

As a result we ascertain an updated pitch range of f0min
and

f0max
as well as a new voicing probability from PEFAC.

Incorporating this statistical framework for fundamental fre-

quency estimation allows to further incorporate the renewed

signal characteristics, to re-apply the pitch estimation step

on the TFM-separated signal x̂ðnÞ for a second time. As the

TFM-separated signal inherits less trace of the interfering

masking signal, an improved f0 estimate, hence, a more reli-

able linear phase is expected at this stage. In Sec. IV A 3, we

demonstrate the effectiveness of the proposed pitch estima-

tor for single-channel source separation and phase enhance-

ment for signal reconstruction.

3. Temporal smoothing of unwrapped phase

A low variance of the spectral phase at harmonics is a

desired characteristic for high quality synthesized speech

(Koutsogiannaki et al., 2014). Further, recent advances in

phase-aware processing for speech enhancement (Mowlaee

and Kulmer, 2015b; Kulmer and Mowlaee, 2014; Mowlaee

and Kulmer, 2015a) report improved signal reconstruction

and noise reduction when the variance of estimated phase at

harmonics is reduced. Therefore, in the current contribution,

we apply temporal smoothing filters on the unwrapped

phase, in order to reduce the large circular variance caused

by interferences but also artifacts.

From circular statistics, we compute the circular mean

of Ŵðh; lÞ by averaging out the contribution of the interfer-

ing signal applied on voiced frames-only. A smoothed

unwrapped phase estimate is given by

�W h; lð Þ ¼ /
1

jRj
X
l02R

ejŴ h;l0ð Þ; (13)

where R is the set of neighboring frames lying within the

time span of 20 milliseconds. This balances the trade-off

between getting reliable statistical estimates and fulfilling the

stationarity of processing speech within short enough frames.

B. Improved signal reconstruction using enhanced
spectral phase

By adding back the approximated linear phase, provided

in Eq. (10), to the temporally smoothed unwrapped harmonic

phase, �Wðh; lÞ, an enhanced harmonic phase is provided,

ŵðh; lÞ ¼ ŵlinðh; lÞ þ �Wðh; lÞ: (14)

To combine the estimated phase with the spectral amplitude,

obtained by applying an estimated IBM or IRM computed in

the STFT-domain, we need to transform the estimatedFIG. 2. Block diagram of the fundamental frequency estimator.
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enhanced phase from harmonic domain back to the STFT

domain. To this end, Magron et al. (2015b) introduced

regions of influence to ensure that the phase at a given fre-

quency channel is unwrapped appropriately to its instanta-

neous frequency. They estimated an instantaneous attack

time n0, by taking into account the instantaneous frequency

used for unwrapping over time (temporal). This leads to the

estimation of n0 in each frequency channel in order to per-

form an unwrapping along frequency bins (spectral).

In this work, the STFT-frequency bins k within the

mainlobe width Np, located adjacent to the harmonic multi-

ples hf̂0 , are replaced by ŵðh; lÞ. We assume that the under-

lying harmonics are well separated in frequency domain

given a long enough frame length. Further, we transform the

estimated harmonic phase into STFT domain by modifying

the enhanced spectral phase at frame l and frequency bin k
within the mainlobe width Np of the analysis window

/̂xðbhx0NDFT=ð2pÞcþi;lÞ¼ ŵðh;lÞ; 8i2 �Np=2;Np=2
� �

;

Np¼DxMWNDFT=ð2pÞ (15)

with NDFT as the DFT size and DxMW as the mainlobe band-

width. The estimated STFT phase is combined with the esti-

mated source spectral amplitude denoted by jX̂ðk; lÞj. The lth
segment of the phase-enhanced separated signal is then

given by

x̂lðnÞ ¼ DFT�1 jX̂ðk; lÞjej/̂xðk;lÞ
n o

: (16)

Applying overlap-add on x̂lðnÞ, for all l, reveals the phase-

enhanced time-frequency masked signal x̂peðnÞ.

V. EXPERIMENTS

We demonstrate the effectiveness of the proposed phase

estimation method for single-channel source separation.

After a description regarding the chosen experiment setup,

we provide a detailed analysis of the pitch estimation used as

input for phase estimator. A proof-of-concept demonstrates

the impact of phase modification on the source separation

outcome. Finally, we report the averaged results (on blind

scenario) with comparison to benchmark methods.

A. Experiment setup

1. Experiment one: Speech in noise

We use 550 utterances from the IEEE corpus (IEEE

Audio and Electroacoustics Group, 1969) as our training

utterances. The IEEE corpus consists of 720 utterances read

by a single male speaker. The testing set consists of 60 ran-

domly chosen utterances from the IEEE corpus which are

disjoint from the utterances used for training. Each signal is

down-sampled to 16 kHz. The training utterances are mixed

with speech-shaped noise (SSN), cafeteria, factory, and bab-

ble noise. SSN is stationary, while the other selected noise

types are non-stationary. The noisy test files are produced by

mixing the clean speech utterances with the aforementioned

noise files at signal-to-noise ratios (SNRs) of �6, �3, 0, 3,

and 6 decibels.

Each noise is around 4 min long. To create the training

sets, we use random cuts from the first 2 min of each noise to

mix with the training utterances. The test mixtures are con-

structed by mixing random cuts from the last 2 min of each

noise with the test utterances. Dividing the noises into two

halves ensures that the testing noise segments are unseen

during training.

The DNNs used for estimating the IBM and IRM have

three hidden layers, each having 1024 rectified linear hidden

units (ReLU) (Glorot et al., 2011). The standard backpropa-

gation algorithm coupled with the mean-square error cost

function is used to train the DNNs. A momentum term and

the adaptive gradient descent (Duchi et al., 2011) are used

for optimization. A momentum rate of 0.5 is used for the first

5 epochs, after which the rate changes to 0.9. A sigmoid acti-

vation function is used in the output layer. A context window

that spans five frames centered at the current frame is used

to splice the input features, while the length of the context

window is three frames for the DNN training targets.

The separation results are reported in terms of blind

source separation evaluation (BSS EVAL) measures (Vincent

et al., 2006) standardized for speech quality estimation of

source separation algorithms. BSS EVAL toolkit is composed

of three SNR measures: signal-to-distortion ratio (SDR),

signal-to-interference ratio (SIR), and signal-to-artifact ratio

(SAR) all measured in decibels. STOI (Taal et al., 2011) and

PESQ (ITU Radiocommunication Assembly, 2001) are also

used to predict the speech intelligibility and perceived qual-

ity, respectively, where both show a high correlation with

subjective tests in single-channel source separation (Mowlaee

et al., 2012b).

Furthermore for the phase estimation setup, the masked-

speech signals are downsampled to 8 kHz. A Blackman

window [minimizing spectral leakage (Harris, 1978) also

reported in Mowlaee and Kulmer (2015b)] with length of

32 ms is used. For the temporal smoothing step in the pro-

posed phase estimation method [see Eq. (13)], a moving

average filter with a filter length R of 20 milliseconds is

used. This decision is based on finding a reasonable trade off

between a low circular phase variance and preserving the

short-time speech stationarity.

2. Experiment two: Speech mixture in noise

This experiment evaluates separation performance when

two speakers and noise are present in a mixture. The two

speaker mixtures are generated by combining IEEE utteran-

ces from a single male and a single female speaker with

SSN, cafeteria, babble, and factory noise. The speech-

to-speech ratio (SSR) between the male and female utteran-

ces is set to �3, 0, or 3 dB. The two-speech mixed signal is

combined with random cuts of noise at a 10 dB SNR. Four

separate DNNs are used to extract the male or female speech

by estimating the IBM or IRM. A total of 14 700 mixtures

(35 male utterances, 35 female utterances, 3 SSRs, and 4

noises) are used to train each DNN. The features and net-

work configuration are as described in experiment 1. Each

DNN is evaluated with a testing set that consists of 1200

mixtures (10 male utterances, 10 female utterances, 3 SSRs,
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and 4 noises), where the utterances and random cuts of noise

are different than those used during training. An NMF algo-

rithm, proposed in Virtanen et al. (2013), was used as a

benchmark method. To create the target and masker NMF

dictionaries we chose 35 sentences for each speaker for

training speaker dependent dictionaries.

B. Performance evaluation of the proposed f0

estimator

To assess the effectiveness of the proposed histogram-

based pitch estimator, described in Sec. IV A 2, we quantify

its performance in terms of the Gross Pitch Error (GPE) and

the Fine Pitch Error (FPE) proposed in Chu and Alwan

(2009) and Babacan et al. (2013). GPE represents the frames

considered voiced by the estimator and the ground truth, for

which the error is higher than 20%. The FPE is the standard

deviation of the error from frames without Gross Pitch Error.

In this experiment we used 15 sentences from IEEE corpus,

mixed with noise files at different SNRs.

Table I shows the evaluation results for GPE and FPE.

As upper-bound scenario, denoted as “UB,” we report the

estimated fundamental frequency from the TFM-separated

signal combined with clean spectral phase. As lower-bound,

denoted as “LB,” we report the results for the f0 estimates

from the observed mixed signal. The estimates for both sce-

narios are obtained using PEFAC, addressing the question

regarding the importance of the clean spectral phase for a

reduced fundamental frequency estimation error. As a

benchmark, we compare the PEFAC f0 estimate of the esti-

mated TFM signals denoted as “est. TFM (mixture phase)”

with the f0 estimate obtained from the same signal using the

proposed pitch estimator denoted as “est. TFM (proposed).”

For all SNRs, the TFM separated signals provide an

improved GPE and FPE compared to the mixture. The

results also show an improved GPE obtained by the clean

spectral phase or the proposed f0 estimation compared to

TFM and scenarios which makes use of the mixed signal

phase. In terms of FPE, for �3 and 6 dB SNRs, the IBM

with mixed signal phase provides less error than the pro-

posed method. For IRM scenario, the proposed pitch estima-

tor outperforms the mixed signal phase scenario for all

SNRs. This suggests the advantages of incorporating a soft

mask rather than a binary mask for pitch estimation. The

pitch evaluation results reveal, that the use of a proper fre-

quency range, obtained by the statistical analysis, signifi-

cantly improves the pitch estimation accuracy.

C. Proof-of-concept experiment

We consider two proof-of-concept experiments to dem-

onstrate the usefulness of the proposed phase estimator when

combined with the estimated time-frequency mask signals.

The results are shown in Fig. 3(a) and 3(b) for estimated

IBM and IRM scenarios, respectively.

As our first experiment, we consider a male speaker say-

ing “The small red neon lamp went out” mixed with SSN

noise file at 0 dB SNR. The results are shown in Fig. 3 for

the estimated IBM and different phase outcomes in terms of

(top) spectrogram, (middle) group delay, and (bottom) phase

variance. From left to right, the outcomes for clean refer-

ence, mixed signal, time-frequency masked (TFM) signal

using mixture phase, and proposed phase-enhanced TFM

signal are shown. From the spectrograms of the mixed sig-

nal, shown on the first row, SSN widely masks the desired

speech signal, in particular at fundamental frequency and

lower harmonics. The estimated IBM is capable of recon-

structing certain time-frequency regions of the target signal.

The proposed method contributes to further emphasize

the desired harmonic structure in the separated signal. The

group delay plot (second row) reveals that the binary TFM,

when combined with enhanced spectral phase, is capable of

recovering certain harmonic structure across frequencies.

The circular variance (bottom row) shows a reduction of the

large variance of the mixed signal in the phase-enhanced

reconstructed IBM.

The results from the estimated IRM are shown in Fig.

3(b). The mixed signal is produced by mixing a male target

speaker saying “The fan whirled its round blades softly”

with cafeteria noise at 0 dB SNR. From the spectrograms

(first row), the estimated IRM, compared to IBM, provides

smoother transitions between the harmonics. Some masker

components are removed via applying the proposed phase

estimation method. Comparing the patterns to clean and

mixture phase outcomes, group delay and circular phase var-

iance shows further improvement after applying the pro-

posed phase estimator.2

TABLE I. Evaluation of the proposed fundamental frequency estimator compared to the clean phase upper-bound (UB), the lower bound mixture (LB), as

well as the f0 estimate from the input signal (mixture phase) and the proposed f0 estimator outcome (phase-enhanced).

Gross-Pitch Error (GPE) (%) Fine-Pitch Error (FPE) (Hz)

SNR (dB) SNR (dB)

GPE/FPE input signal �6 �3 0 3 6 �6 �3 0 3 6

(UB): est. BM (PEFAC) 26.07 23.67 21.10 19.41 18.56 0.71 0.59 0.75 0.63 0.69

(UB): est. RM (PEFAC) 25.16 22.29 18.51 18.62 16.54 0.71 0.63 0.79 0.74 0.88

est. BM (PEFAC) 48.01 39.75 32.13 28.22 23.26 1.49 0.84 0.86 0.92 0.69

est. BM (proposed PE) 39.37 33.77 27.96 25.05 21.90 1.25 0.85 0.80 0.87 0.88

est. RM (PEFAC) 52.45 44.44 37.80 31.98 27.65 1.99 1.09 1.26 0.89 0.85

est. RM (proposed PE) 46.32 39.21 32.13 28.89 25.34 1.46 0.97 0.94 0.83 0.69

(LB): Mixed signal (PEFAC) 66.2 60.55 53.98 46.52 40.33 2.96 2.42 2.22 1.71 1.46
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D. Source separation results

1. Experiment one: Speech in noise

Here, we report the results for the first experiment aver-

aged on the whole utterances and noise types at different

SNRs. Figure 4 and Fig. 5 show the bar plots to quantify the

effectiveness of the proposed phase-enhanced TFM com-

pared to conventional TFM using the phase of the mixed sig-

nal. As upper-bound, we include the outcome when clean

spectral phase is used, which delivers the achievable upper-

bound performance by a phase estimation procedure com-

bined with the spectral amplitude provided by TFM sepa-

rated signal. As a benchmark, we added two phase

enhancement methods that rely on Griffin and Lim iterative

signal reconstruction procedure (Griffin and Lim, 1984): par-

tial phase reconstruction (PPR) (Sturmel and Daudet, 2012)

and informed source separation using iterative reconstruction

(ISSIR) (Sturmel and Daudet, 2013). The two methods

incorporate the TFMs as confidence domains to guide the

iterative signal reconstruction in an iterative way.

The following observations are made:

• In terms of objective speech quality and intelligibility,

predicted by PESQ and STOI, a consistent improvement

for all SNRs in the range of �6 dB to 6 dB is achieved

when the estimated phase is used for IBM and IRM rather

than the mixed signal phase. The proposed method also

leads to a reasonable advantage in SIR and SDR, which is

obtained even for low and high SNRs. In this experiment,

the SAR results are not improved by employing the esti-

mated phase. This could be due to the fact that the proc-

essing of the noisy signal introduces new artifacts. The

SAR scores due to phase modification are still close to

those obtained for noisy phase TF enhanced signal.
• The clean spectral phase results indicate the clear positive

impact of incorporating an enhanced spectral phase when

combined with the TFM separated spectral amplitude.
• The white bars show the ideal binary and ratio mask

results, known as the upper-bounds for the achievable sep-

aration performance by a TFM. It is a crucial finding that

FIG. 3. Proof-of-concept experiment for estimated (a) IBM and (b) IRM method mixed at 0 dB shown as (top) spectrogram, (middle) group delay, and (bot-

tom) phase variance. The results for clean (first), mixture (second), estimated IBM/IRM (third) are shown for comparison.

FIG. 4. Evaluation results: Estimated (top) IRM and

(bottom) IBM in terms of quality (PESQ) and intelligi-

bility (STOI). Results for oracle phase and IBM/IRM

(mixture phase) are reported for comparison.
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the gap between the clean-phase upper-bound and the

ideal TFM-separated signal is still considerable for PESQ

and STOI, this might be due to the large gap between the

ideal and estimated TFM-separated signal.
• PPR and ISSIR results achieve relatively poor separation

performance which could be due to their sensitivity to

errors introduced by the estimated spectral amplitudes

using estimated IBM or IRM. These errors are re-

introduced within each iteration when combining the spec-

tral amplitudes with newly estimated spectral phase.

These observations demonstrate that the proposed method

is less prone to errors of the estimated spectral amplitude,

in contrast to the GL-based iterative phase recovery meth-

ods (Sturmel and Daudet, 2012, 2013).
• The remaining gap between the estimated phase and the

clean phase emphasizes on the importance of having a

reliable phase estimate in SCSS. This observation also

explains the importance of phase in SCSS, encouraging

for further studies pushing the limits in conventional

single-channel source separation methods relying on

mixed spectral amplitude modification only.
• To show that the proposed method is robust to fundamen-

tal frequency estimation errors, we also include the results

obtained for the f0-known scenario, where the f0 trajecto-

ries are ascertained from the clean signal using PEFAC.

The comparison of f0-known and proposed f0-estimated

[referred to as Robust Pitch Estimation using Frequency

Histograms (RPEFH)] scenarios reveals that the proposed

phase estimation method is not that sensitive to the errors

introduced by the pitch estimator, justified by the similar

performance in both f0 scenarios.

Finally, we conducted two-paired Kolmogorov-Smirnov

(KS) tests to assess the significance of the reported results

due to the spectral phase modification in TFM compared to

conventional TFM using mixed signal phase. For this test, in

order to provide a comprehensive analysis independent of

the applied SNR, each evaluation score was averaged over

all SNR levels. Table II, shows the comparison of the TFM-

separated signal with the proposed method, as well as the

clean spectral phase scenario. Three tests are conducted for

two TFMs, i.e., estimated BM and estimated RM, resulting

in six paired tests. Within the three tests we assess the signif-

icance of the following:

• TFM (mixture phase) versus TFM (enhanced phase) as

proposed.
• TFM (mixture phase) versus TFM (clean phase) as upper-

bound.
• TFM (enhanced phase) as proposed versus TFM (clean

phase) as upper-bound.

The Kolmogorov-Smirnov (KS) test rejects the null

hypotheses for a p-value lower than 0.05, which means that

the two compared tests are significantly different. The confi-

dence intervals and p-values as outcomes of KS tests are

also shown in the columns of the Table II. Except for STOI

(comparing the TFM enhanced phase as proposed versus the

TFM-separated using mixed signal phase), the KS test

rejects the null hypotheses for all evaluation scores, conclud-

ing the significance of the reported results in the current

section.

2. Experiment two: Speech mixture in noise

Finally, we report the results of the second experiment

averaged on the whole utterances and noise types at different

SNRs. To exemplify the effectiveness of such a challenging

scenario, Fig. 6 and Fig. 7 show the bar plots of the proposed

phase-enhanced TFM compared to the NMF algorithm pro-

posed in Virtanen et al. (2013). To justify that phase modifi-

cation is helpful for various source separation methods

known in literature, we chose NMF as model-based, and

IBM/IRM as CASA-driven methods. Similar to Mayer and

Mowlaee (2015), we also provide the phase enhanced results

for the NMF algorithm. For the sake of simplicity we aver-

aged the results for target and masker with their appropriate

SSR, to rivet on the separation performance only.

The following observations are made:

FIG. 5. Evaluation results: Estimated (top) IRM and

(bottom) IBM in terms of separation performance

(SIR), (SDR), and (SAR). Results for oracle phase and

IBM/IRM (mixture phase) are reported for comparison.
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FIG. 6. Evaluation results: Estimated

(top) IRM and (bottom) IBM com-

pared to NMF in terms of quality

(PESQ) and intelligibility (STOI).

Results for oracle phase as well as

IBM, IRM, and NMF (mixture phase)

are reported for comparison.

TABLE II. Significance test results, ascertained by computing a two-paired Kolmogorov-Smirnov test, observing the significant difference between TFM-

separated signals and signals improved by the use of a proper phase estimate. The test rejects the null hypothesis for p-values lower than 0.05, indicating that

both methods are significantly different.

PESQ STOI

Compared Methods Conf. Interval p-Value Conf. Interval p-Value

est. BM (enh. phase) vs. est. BM (mixture phase) 2.16 6 0.016 2.04 6 0.015 p< 0.05 0.792 6 0.0055 0.782 6 0.0055 0.0537

est. BM (clean phase) vs. est. BM (mixture phase) 2.42 6 0.01 2.04 6 0.0152 p< 0.05 0.825 6 0.00533 0.782 6 0.0055 p< 0.05

est. BM (clean phase) vs. est. BM (enh. phase) 2.42 6 0.0188 2.16 6 0.0165 p< 0.05 0.825 6 0.00533 0.792 6 0.00552 p< 0.05

est. RM (enh. phase) vs. est. RM (mixture phase) 2.38 6 0.0141 2.3 6 0.0126 p< 0.05 0.807 6 0.0052 0.798 6 0.0053 0.109

est. RM (clean phase) vs. est. RM (mixture phase) 2.69 6 0.0192 2.3 6 0.0126 p< 0.05 0.849 6 0.00477 0.798 6 0.00525 p< 0.05

est. RM (clean phase) vs. est. RM (enh. phase) 2.69 6 0.0192 2.38 6 0.0141 p< 0.05 0.849 6 0.00477 0.807 6 0.0052 p< 0.05

SDR SIR

Compared Methods Conf. Interval p-Value Conf. Interval p-Value

est. BM (enh. phase) vs. est. BM (mixture phase) 6.89 6 0.0835 6.06 6 0.0746 p< 0.05 11.7 6 0.15 9.52 6 0.129 p< 0.05

est. BM (clean phase) vs. est. BM (mixture phase) 11.7 6 0.0955 6.06 6 0.0746 p< 0.05 21.1 6 0.109 9.52 6 0.129 p< 0.05

est. BM (clean phase) vs. est. BM (enh. phase) 11.7 6 0.0955 6.89 6 0.0835 p< 0.05 21.1 6 0.109 11.7 6 0.15 p< 0.05

est. RM (enh. phase) vs. est. RM (mixture phase) 6.89 6 0.0858 6.23 6 0.08 p< 0.05 10.6 6 0.135 8.57 6 0.12 p< 0.05

est. RM (clean phase) vs. est. RM (mixture phase) 12.1 6 0.0999 6.23 6 0.08 p< 0.05 21.3 6 0.112 8.57 6 0.12 p< 0.05

est. RM (clean phase) vs. est. RM (enh. phase) 12.1 6 0.0999 6.89 6 0.0858 p< 0.05 21.3 6 0.112 10.6 6 0.135 p< 0.05

FIG. 7. Evaluation results: Estimated

(top) IRM and (bottom) IBM in terms

of separation performance (SIR),

(SDR), and (SAR). Results for oracle

phase as well as IBM, IRM, and NMF

(mixture phase) are reported for

comparison.
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• In terms of PESQ and STOI, a consistent improvement for

all SSRs is achieved when the estimated phase is used

for the estimated IBM, IRM, and NMF rather than making

use of the mixed signal phase. Similar to experiment one,

the use of a proper phase estimate leads to an improvement

of SIR and SDR. In terms of SAR the proposed algorithm

produces less artifacts compared to its mixture phase

counterpart.
• The two upper-bounds emphasize the achievable separa-

tion performance and highlight the importance of phase-

aware processing for time-frequency mask method.
• We emphasize that a proper phase estimate is capable of

removing noise outliers from the estimated IRM, albeit

the estimated IBM eliminates the misclassified T-F cells

which cannot be restored. This explains why estimated

IRM performs better than estimated IBM when combined

with phase enhancement. Nevertheless, in both time-

frequency mask schemes, the proposed phase enhance-

ment method improves the amplitude indirectly because

of the constructive overlap-add routine during signal

reconstruction.

VI. CONCLUSION

The conventional single-channel source separation

methods mostly apply the phase of the mixed signal at signal

reconstruction stage. For spectral amplitude enhancement,

time-frequency masking (TFM) is often applied in either a

binary or soft way. In the current contribution, we proposed

an estimator for the clean spectral phase to replace the phase

of the mixed signal at signal reconstruction. The enhanced

spectral phase is combined with the estimated spectral

amplitude provided by a time-frequency mask estimated in a

blind scenario. The method relies on the fundamental fre-

quency trajectory of the target source which is provided by a

proposed histogram-based pitch estimator. Given this funda-

mental frequency estimate, the linear phase part is removed

from harmonic phase to obtain an unwrapped harmonic

phase. By applying temporal smoothing an enhanced spec-

tral phase is obtained for signal reconstruction stage where

the enhanced phase is combined with the TFM estimate for

the spectral amplitude. It is important to note, that at high

harmonics (overtones), less smoothing length or no smooth-

ing is appropriate. At low harmonics, the algorithm benefits

from a larger smoothing length. Therefore, an adaptive

smoothing length should be considered for future works.

Experiments were conducted to evaluate the effective-

ness of the proposed method when applied on estimated

TFM as binary and ratio masks in a blind scenario.

Comparing the proposed method with clean phase, mixture

phase and benchmark phase enhancement methods showed

that the proposed method was capable of better retrieving

the desired harmonic structure of the target signal. Also, the

proposed method led to joint improved perceived quality and

speech intelligibility predicted by PESQ and STOI, and

source separation outcome predicted by BSS EVAL mea-

sures. For ideal mask upper-bounds considerable gap

between estimated and clean phase was observed, even if the

amplitude is ideally estimated. We further point out that this

gap motivates for further study on proposing novel phase

estimator from mixed signals to achieve a performance

closer to the clean phase reconstructed TFM upper-bound.

While the current study was dedicated to single-channel

speech separation, future work could be dedicated to apply

the developed phase estimation techniques in audio source

separation frameworks, like in Salamon et al. (2014), to

improve the estimation of the magnitude and phase spectra

of the underlying sources in the mixture.
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