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Abstract. Knowing the signal-to-noise ratio of a noisy speech signal
is important since it can help improve speech applications. This paper
presents a two-stage approach for estimating the long-term signal-to-
noise ratio (SNR) of speech signals that are corrupted by background
noise. The first stage produces noise residuals from a speech separation
module. The second stage then uses the residuals and a deep neural net-
work (DNN) to predict long-term SNR. Traditional SNR estimation ap-
proaches use signal processing, unsupervised learning, or computational
auditory scene analysis (CASA) techniques. We propose a deep-learning
based approach, since DNNs have outperformed other techniques in sev-
eral speech processing tasks. We evaluate our approach across a variety
of noise types and input SNR levels, using the TIMIT speech corpus and
NOISEX-92 noise database. The results show that our approach gen-
eralizes well in unseen noisy environments, and it outperforms several
existing methods.
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1 Introduction

The signal-to-noise ratio (SNR) is a strong indicator of the amount of noise
interference in a given auditory environment. Knowledge of the SNR is useful
for many speech-based applications, including hearing aids [1], automatic speech
recognition (ASR) [2] and speech enhancement [3], where it can be used to select
model parameters or optimization strategies [4]. For a given noisy speech signal,
SNR is calculated from the speech and noise components, by comparing the
energy of the speech signal to the energy of the noise. Unfortunately, in real
environments, the SNR must be estimated since access to the speech and noise
components is not possible.

There are typically two categories for SNR estimation algorithms. The first
category performs SNR estimation at the time-frequency (T-F) unit level of
a signal. This is known as instantaneous or short-time SNR [5], since SNR is
computed over smaller time segments. In [5], short-time SNR is computed from
low-energy envelope estimates of noisy speech. In [6], a Gaussian mixture model
(GMM) is used in the log-power domain to estimate the distributions of noise
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and noisy speech. The decision-directed (DD) approach estimates a priori SNR
with a weighted sum of the a priori SNR estimate of the prior frame and the
maximum likelihood SNR estimate of the current frame [7]. The accuracy of
these approaches, however, degrades when estimates are computed over long
durations.

The second category performs SNR estimation at the utterance level, re-
ferred to as global or long-term SNR. The widely used NIST SNR estimation
algorithm uses the bimodal observation of the short-time energy histogram of
noisy speech, to infer the distributions of noise and noisy speech [8]. It then
uses these distributions to calculate the peak SNR, which erroneously overes-
timates the true SNR. The waveform amplitude distribution analysis (WADA)
approach uses a gamma distribution to model the amplitudes of clean or noisy
speech using a fixed shaping parameter, and a Gaussian distribution to model
the background noise [9]. WADA estimates long-term SNR by computing the
maximum likelihood estimate for the shaping parameter, but WADA only per-
forms well when the above assumptions are met, which is not always the case.
Long-term SNR is also calculated from a noise power spectral density (PSD)
estimator [10] or a clean speech PSD estimator [11]. A computational auditory
scene analysis (CASA) based approach is proposed in [12]. The algorithm uses
a ideal binary mask (IBM) to segregate noisy speech into speech dominate and
noise dominate T-F regions. The energy within each region is aggregated and
used to compute the long-term SNR. This unsupervised approach, however, re-
lies on the ability of the estimated IBM to correctly label T-F units as speech or
noise dominate, which does not often occur at low SNR levels. This ultimately
leads to performance degradations.

The goal of our work is to improve long-term SNR estimation of noisy speech
in many complex environments, since current approaches do not always perform
well. Unlike prior approaches, we propose a data-driven framework that uses deep
learning to perform SNR estimation. Deep neural networks (DNNs) are used,
largely due to their recent success in many speech processing tasks, including
automatic speech recognition and speech separation [13–15], where they have
outperformed alternative approaches and been shown to generalize in unseen
environments. Environmental noise plays a dominant role in degrading SNR, so
our idea is to use noise distortions as an indicator of long-term SNR. Specifically,
we propose a two-stage long-term SNR estimation framework. In the first stage,
a speech separation system separates noisy speech into enhanced speech and
noise residuals. The residuals contain mostly noise energy and can be regarded
as a reasonable noise indicator for the next stage. Then the second stage uses the
residuals to estimate the long-term SNR of noisy speech in a supervised manner.
Our results reveal that this strategy outperforms similar single- or two-stage
DNN-based approaches.

This paper is organized as follows. A detailed description of our approach is
given in Section 2. Experimental results and system comparisons are given in
Section 3. Section 4 concludes the discussion of the proposed system.
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Fig. 1: The architecture of the proposed long-term SNR estimation system.

2 System Description

The proposed two-stage long-term SNR estimation approach is shown in Fig. 1.
It consists of a speech separation stage and a SNR estimation stage. The goal of
speech separation is to separate the target speech from background interference.
We view speech separation as our first stage, but the focus of this study is to use
speech separation to assist in SNR estimation. Therefore, we investigate different
front-end speech separation approaches, namely, IBM estimation, ideal ratio
mask (IRM) estimation, complex ideal ratio masking (cIRM), and nonnegative
matrix factorization (NMF) based speech separation. Each of these stages are
described below.

2.1 Speech Separation Stage

Recent approaches perform speech separation by estimating masking-based train-
ing targets [14,15]. These approaches estimate T-F masks from the noisy speech
signal, and use the estimated mask to separate speech from the noise: Ŝ(k, f) =
M(k, f)∗Y (k, f), where Ŝ(k, f) denotes the short-time Fourier transform (STFT)
of the speech estimate, M(k, f) denotes the estimated T-F mask, and Y (k, f)
is the STFT of the noisy speech. k and f index the time and frequency dimen-
sions, respectively. The T-F domain speech estimate is then converted to a time-
domain estimate, ŝ(t), using overlap-add synthesis. We investigate three different
DNN-based T-F mask estimation approaches, namely IBM [16], IRM [17] and
cIRM [18] estimation, where definitions for these three mask are shown below:

IBM(k, f) =

{
1, if |S(k, f)| > |N(k, f)|,
0, otherwise

IRM(k, f) =

(
|S(k, f)|2

|S(k, f)|2 + |N(k, f)|2

)0.5

,

cIRM(k, f) =
S(k, f)

Y (k, f)
,

(1)

|S(k, f)| and |N(k, f)| respectively denote the magnitude responses of the clean
speech and noise. The cIRM involves complex division since Y (k, f) and S(k, f)
are complex-valued numbers with real and imaginary components (e.g. Y (k, f) =
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Yr(k, f) + jYi(k, f), S(k, f) = Sr(k, f) + jSi(k, f)). The IBM is a binary ma-
trix used to label T-F units of a signal as speech or noise dominant [16], and
it has been shown to improve speech intelligibility, but not perceptual speech
quality. An estimated IRM often outperforms an estimated IBM [15], since it
gives soft values between 0 and 1. Intuitively, the IRM represents the percent-
age of energy that can be attributed to speech at each T-F unit. Unlike the
IBM and IRM, the cIRM enhances the magnitude and phase response of speech,
since it is complex-valued. Estimated cIRMs outperform IRM-based separation
when evaluated with objective metrics and human evaluations [18]. Each T-F
masks impact on estimating long-term SNR, however, is not known, so we elect
to separately use each of them in our front-end speech separation module.

Separate DNNs are trained to estimate each of the above mentioned T-F
masks and subsequently used to perform speech separation. The structures of
the DNN match those described in [15,18], where we omit details since our focus
is on using speech separation to enhance long-term SNR estimation.

We alternatively use a NMF-based separation approach for our front-end
speech separation stage. NMF is a model-based approach that uses trained
speech and noise models (e.g. basis matrices) along with an activation matrix
to separate speech from noise [19, 20]. The basis matrix represents the spec-
tral features and the activation matrix linearly combines the spectral features
to approximate a nonnegative signal. We first approximate a dictionary of clean
speech signals, D, with the product of a trained basis matrix, Wtr, and a trained
activation matrix, Htr (e.g. D ≈WtrHtr). The basis and activation matrices are
computed using a standard multiplicative update rule that minimizes the gener-
alized Kullback-Leibler divergence between D and WtrHtr. To perform separa-
tion, the magnitude response of the speech estimate, |Ŝ(k, f)| is approximated
as the product of Wtr and a new activation matrix, Hnew, which is computed
using the same multiplicative update rule and the fixed training basis matrix.
Hence, |Ŝ| = WtrHnew. An estimate of the noise is computed and used along
with the speech estimate to form a T-F mask. This mask is then applied to the
noisy speech mixture to generate a speech estimate.

A noise residual is computed as r(t) = y(t)− ŝ(t), where it is then provided
as an input to the second stage of our approach.

2.2 Long-term SNR Estimation Stage

We train a DNN to estimate the long-term SNR of the noisy speech signal
from the noise residual. A depiction of this DNN is shown in Fig. 2. Comple-
mentary features [21] are extracted from the residuals and they are provided as
inputs to the DNN. These features consist of amplitude modulation spectrogram
(AMS), relative spectral transform perceptual linear prediction (RASTA-PLP),
and mel-frequency cepstral coefficients (MFCC). We also add delta (∆) features
to capture the temporal dynamics of the residual. We use the same parameter
configuration for the complementary features as described in [18,21], since they
show success in modeling noisy speech. We tried to use log magnitude spectral
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Fig. 2: Structure of the DNN that maps noise residuals to a SNR estimate.

features, Gammatone frequency (GF) features and Multi-resolution Cochlea-
gram (MRCG) features separately as inputs, but they did not perform as well
as the complementary set.

The training target is the true long-term SNR of the input noisy speech,
which is calculated by the ratio of the energy of entire speech and the energy
of corresponding noise, written as SNRglobal = 10 log10(Espeech/Enoise). SNR
estimation, however, occurs at the time frame level, so we label each time frame
with this global SNR. The DNN estimates this long-term SNR in each of the 40
ms time frames of the signal. The final estimate is generated by averaging the
estimated value in each time frame. The standard back-propagation algorithm
with mean-square error cost function is used for training the DNN.

The DNN has three hidden layers where each has 512, 256, and 128 units, re-
spectively. We experimented with different number of layers and units per layer,
but empirical results indicate that this structure performs best. The rectified
linear (ReLU) activation function is used for the hidden units, while a linear
unit is used in the output layer. After DNN training, linear regression is used to
learn a linear mapping between the DNN output and the true long-term SNR.
This is often done to produce better predictions for long-term SNRs that are
unseen during training [12,22].

3 Evaluation Results

3.1 Experimental Setup

All experiments are conducted with the TIMIT speech corpus [23] and NOISEX-
92 noise database [24]. 600 TIMIT utterances are separately mixed with four
noises: speech-shaped (SSN), cafeteria (Cafe), speech-babble (Babble) and fac-
tory floor (Factory) at 5 medium SNR levels (−6, −3, 0, 3, and 6 dB), resulting
in a total of 12000 training mixtures. Random segments from the first half of
each noise file is used in generating the training mixtures. These signals are used
for training the DNNs of two stages, and also for generating the speech and noise
models of NMF at the first stage. A separate development set is used for model
selection.
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Two test sets are created for evaluating the generalization performance. The
first test set mixes 200 different TIMIT utterances with the same matched noise
signals and at the same SNR levels as defined above. Additional mismatched
SNR signals are generated at unseen low SNRs (−15, −12, and −9 dB) and
unseen high SNRs (9, 12, and 15 dB), using the same matched noise signals. This
results in 8800 testing mixtures. Random segments from the second half of each
matched noise signal is used in generating these testing mixtures. The second
test set uses 200 different clean utterances that are mixed with six unmatched
noise types: cockpit, destroyer engine (Engine), machine gun (Machine), pink,
tank and white noise at 11 SNR levels ranging from −15 dB to 15 dB, in 3 dB
increments, producing 13200 testing mixtures.

The STFTs in the speech separation stage are computed using a Hanning
window length of 40 ms, a 640 point FFT and 50% overlap between adjacent
frames. Each NMF basis matrix consists of 80 basis vectors.

The accuracy of long-term SNR estimation is measured with the mean ab-
solute error (MAE) between the true SNR ti and estimated SNR t̂i of the i-th
mixture for all N testing mixtures [12].

MAE(t, t̂) =
1

N

N∑
i=1

|(ti − t̂i)| (2)

3.2 Results and Discussion

In the first stage, we separately employ and compare NMF, IBM, IRM and
cIRM-based speech separation approaches, and investigate their influence on
SNR estimation accuracy. In addition to using the residuals that result from
the above separation approaches, we separately use the true noise signal as an
input to the second DNN-stage of our approach. This assumes perfect separation
and we regard it as an ideal case, since it provides upper bound performance
capabilities.

Table 1 shows SNR estimation results in the matched noise case, but with
seen and unseen SNRs. We find that in every case the system with cIRM separa-
tion gives the best estimation especially at low SNR conditions, and its perfor-
mance is close to the ideal case. This occurs because cIRM estimation outper-
forms the other speech separation approaches, as indicated in [18]. This reveals
that improving speech separation performance can clearly improve SNR estima-
tion accuracy. Note that the average PESQ performance is 1.81 for noisy speech,
1.88 for NMF, 1.92 for IBM, 2.23 for IRM and 2.41 for cIRM separation. Al-
though not trained in the system, the MAE performance at high SNRs achieves
the lowest average error across all approaches. This occurs because separation
performance in low SNR conditions is relatively not as good as in high SNR
environments. Also notice that the performance in the unseen case is approxi-
mately the same as the seen training case on average, which indicates that the
proposed approach generalizes well in unseen SNR environments.

To further evaluate the generalization performance of our system, we test in
matched and unmatched noise conditions. The average MAE of 11 SNR levels,
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Table 1: Avg. MAE for estimating seen and unseen SNR levels of matched noise
types, when applying different separation approaches.

SNR level Ideal NMF IBM IRM cIRM

Seen Medium 1.78 4.38 4.98 3.83 1.85
Unseen High 1.42 2.77 2.33 1.96 1.64
Unseen Low 1.34 5.93 9.15 4.85 2.01

All 1.56 4.36 5.39 3.60 1.86

Table 2: Avg. MAE for SNR estimation under matched and unmatched noise
conditions. The average is across all SNRs.

Noise type NMF IBM IRM cIRM

Matched 4.36 5.39 3.60 1.86
Unmatched 4.27 4.60 4.08 3.91

All 4.31 4.92 3.89 3.09

ranging from −15 dB to 15 dB with a 3 dB step size, is reported for each
noise type, see Table 2. Not surprisingly, cIRM estimation outperforms the other
approaches across matched and unmatched noise conditions.

Our approach applies linear regression to the DNN output since this can
expand the SNR prediction range, which is initially limited by the range of
input SNRs that are used for training. Fig. 3 shows MAE results when linear
regression is and is not applied to the DNN output. Notice that the average MAE
of NMF, IRM and cIRM reduce by 0.7, 0.6 and 1.1 dB, respectively, when linear
regression is applied, which shows that linear mapping improves performance.

We evaluate the importance of the speech separation stage by extracting
features directly from the noisy speech and then by training the SNR-estimation
DNN with the noisy speech features (e.g. no separation is performed). When this
is done, SNR estimation is much worse, as it does not follow the trend of input
SNRs as shown in Fig. 4 (left). Alternatively, we calculate SNR directly from the
speech estimate and noise residual that are produced by the speech separation
stage in order to determine how important the second stage is to long-term
SNR estimation. Hence, the SNR estimation DNN is not used. These estimation
results are severely worse than our proposed two-stage approach, see Fig. 4
(right). This occurs because the separation stage incorrectly places some speech
energy in the estimated noise signal and noise energy in the estimated speech
signal. The second SNR estimation DNN helps overcome this problem. Both
experiments indicate that DNN-based speech separation followed by a SNR-
estimation DNN is preferred.

Furthermore, we compare our system with four state-of-the-art long-term
SNR estimation methods. The first algorithm is WADA [9], which has been
proven to significantly outperform NIST [8]. The second method (e.g. Noise
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Fig. 4: Left: SNR estimation results with (e.g. residuals) and without (e.g. mix-
ture) speech separation. Right: Avg. MAE when SNR is estimated directly from
the speech and noise estimates from the speech separation stage.

PSD) estimates long-term SNR by calculating the ratio of noisy speech power
and the estimated noise PSD across all time frames and frequency bins [10].
Similarly, the third algorithm (e.g. Speech PSD) uses an MMSE estimator to
estimate the PSD of clean speech. The energy ratio of speech PSD and noisy
speech power is used to estimate SNR [11]. The last comparison approach is
a CASA-based approach that uses an estimated IBM to identify the speech-
dominate and noise-dominate T-F units in a unsupervised manner [12]. The
estimated IBM is then used to approximate speech and noise energies for SNR
calculation. Since the proposed system with cIRM separation shows advantages
over other separation approaches, it is used in the comparison and is denoted as
P -cIRM.

As shown in Table 3, P -cIRM achieves the lowest MAE under matched noise
conditions, and it is better by about 0.7 dB compared to the CASA approach.
Compared to noise PSD and speech PSD, it is better by 4 dB and 2.8 dB, re-
spectively. P -cIRM works well in unmatched noise conditions, but it is slightly
outperformed by the CASA-based approach. When evaluating by SNR, P -cIRM
shows comparative advantages over WADA, noise PSD, speech PSD, and CASA.
In low SNR levels, P -cIRM improves by 2.5 dB compared to CASA, which also
has a SNR transformation process to reduce estimation errors in low SNR con-
ditions. P -cIRM also outperforms CASA at high SNRs as well. Performance for
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Table 3: Comparison of the proposed system with other SNR estimation meth-
ods. ∗ indicates that the SNR was not seen during training.

Method Mat. Noise Unmat. Noise High∗ Medium Low∗

WADA 8.563 10.09 8.439 6.370 13.37
Noise PSD 5.866 7.274 5.911 2.581 11.28
Speech PSD 4.737 6.513 5.274 2.349 7.530
CASA 2.599 3.777 2.703 1.912 5.170

P-cIRM 1.864 3.913 2.359 2.131 2.596

the CASA-based approach depends on whether it can correctly label speech and
noise regions, which does not always occur at low SNRs. WADA leads to poor
estimation results, since its assumption on noisy speech and noise distributions
are not satisfied. Similarly, noise PSD and speech PSD assume Gaussian distri-
butions for the noise and speech. When the background noise is non-stationary
or in very low SNR levels, both noise PSD and speech PSD make relative large
estimation errors, and their results are not comparable to our best performing
systems.

4 Conclusion

We propose a two-stage DNN-based approach for estimating long-term SNR.
The first stage generates a noise residual, and the second stage uses the resid-
ual and a DNN to predict long-term SNR. The results show that our proposed
approach accurately estimates long-term SNR residuals when compared to alter-
native options and existing unsupervised approaches, even when tested in seen
and unseen testing environments.

The results further indicate that applying better separation algorithms will
obtain lower mean absolute errors. Note that our system has two independent
stages. Any state-of-the-art speech separation algorithm can be used in the first
stage, and more sophisticated deep learning networks can also be used in the
second stage to potentially produce more accurate estimation results.
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