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Abstract— Even if a socially interactive robot has perfect
information about the location, pose, and movement of humans
in the environment, it is unclear how this information should be
used to enable the initiation, maintenance, and termination of
social interactions. We review models that have been developed
to describe social engagement based on spatial relationships
and describe a system developed for use on a robotic recep-
tionist. The system uses spatial information from a laser tracker
and head pose information from a camera to classify people in
a categorical model of engagement. The robot’s behaviors are
determined by the presence of people in these different levels.
We evaluate the system using observational behavioral analysis
of recorded interactions between the robot and humans. This
analysis suggests improvements to the current system: namely,
to put a stonger emphasis on movement in the estimation
of social engagement and to vary the timing of interactive
behaviors.

I. INTRODUCTION

The ability to detect, track, and recognize the location,
identity, and behavior of human beings is an important
component of human-robot social interaction. The use of
cameras, lasers, microphones, and other simple sensors in
human-oriented perception has improved to the point that
we should expect social robots to have a reasonable un-
derstanding of where people in the environment are and,
to some extent, what they are doing. However, even if a
robot could obtain perfect perceptual information about the
location (distance and direction), pose, and movement of
human interactors, it is still unclear how this information
should be used by the robot to enable the natural initiation,
maintenance, and termination of social interactions with
humans.

One of the primary functions of nonverbal behavior is the
regulation of face-to-face social interaction, for which space
and distance are of fundamental importance [1]. Rauterberg
et al. [2] introduce the concept of “shared social space,”
characterized by visibility (expression, gesture), audibility
(voice, intonation), and social nearness (physical distance).
Our attributions of mental states to interaction partners are
strongly influenced by the spatial and temporal qualities of
physical behaviors in the shared space [3]. Having a model
of people’s attention, intention, and affect according to their
physical stance relative to us is important for selecting
behaviors and thereby steering interactions in an appropriate
direction.

A number of models have been proposed to characterize
the meaning of the spatial relationships between individuals
in social interactions. We review these frameworks and

consider their relevance and application to the development
of social robotics. We then describe a system that was
developed for and implemented on a robotic receptionist.
We conducted an observational analysis of this system from
recorded interactions. The analysis revealed limitations of
our engagement model as well as of the robot’s behaviors
toward people at different levels of engagement. We evaluate
the system and discuss suggested modifications to our model.

II. MODELS OF SOCIAL SPACE

E.T. Hall [4], [5] developed a conceptual framework
known as “proxemics” that is concerned with human per-
ception and use of space. He proposed a basic classification
of distances between individuals:

• Intimate distance (0-18in): unmistakable involvement
with another body (lover or close friend).

• Personal distance (18in-4ft): comfortable separation,
interaction with friends.

• Social distance (4-10ft): reduced involvement, interac-
tion with non-friends.

• Public distance (>10ft): outside circle of meaningful
involvement, public speaking.

Increasing distance naturally results in degraded thermal,
olfactory, visual, and aural sensations between interactors.
Voice volume increases with distance between individuals,
while intimacy of conversational content decreases to a
public nature. Hall notes, however, that these distances
were deduced from observation of American and European
subjects. Specific distance between interactors actually varies
by culture, gender, status, age, familiarity, relationship, pose,
etc. [6]. Walters et al. [7], [8] have found that these distances
are generally applicable to human-robot interaction as well.

Scheflen [9] proposes micro-territories called “spots,” “cu-
bits,” “k-spaces,” “locations,” and “modules” to characterize
units of space that generally determine common distances
in face-to-face interaction, dimensions of furniture, seating
configurations, and room layouts. The distances involved
here are highly dependent on the dimensions of the human
body, suggesting that the size of a socially interactive robot
should be taken into account when anticipating the spatial
factors that will affect its interactions.

Much of our sense of engagement with interactors also
relates to our perception of their attention. Langton et al.
[10] review various psychological and neurological models
for how humans perceive attentional cues (body, head, eyes,
gestures, verbalizations) and how these cues might mediate



Fig. 1. The Roboceptionist in its booth.

each other in the brain. The distance between interactors
determines the relative salience of these visual cues, shaping
our perception of attention and therefore of engagement.

Other researchers in social robotics have developed gener-
ative models of engagement for the purposes of guiding the
behavior of embodied interactive systems. The robot Kismet
[11] implicitly used an interactor’s spatial configuration in a
set of reactive behaviors. These behaviors included seeking,
avoiding, calling, and greeting people based on the distance,
speed, and sound of interactors. Sidner et al. [12] have
developed a social robot that uses head pose, gaze, and
deictic gestures to imitate and take turns with a conversa-
tional partner. Their understanding of engagement does not
necessarily take into account relative spatial positioning and
movement.

Literature on the role of physical space in the structuring
of social interactions has come from a number of fields, such
as psychology, cognitive science, human-computer interac-
tion, and robotics. Some models come from the study of a
single factor such as distance in observed interactions, while
others are crafted for the purpose of designing an interactive
system using available technologies. There is a need to
develop a more comprehensive model of social engagement
that

• accounts for many different cues (distance, head pose,
gaze, facial expression, etc.),

• has a basis in psychological or cognitive theories of the
perception of social attention,

• holds explanatory power in describing real interactions
between people, and

• suggests how to generate naturalistic behaviors for
socially interactive systems.

We have designed a model of engagement for a robotic
receptionist. The goal of the robot is to engage visitors
so that they begin interacting with the robot and, once an
interaction has begun, to maintain their interest. We consider
the role of a receptionist to be suitable for studying principles
of initiation, maintenance, and termination of interactions
that are applicable to more general social situations.

III. THE ROBOCEPTIONIST’S MODEL OF SOCIAL
ENGAGEMENT

The Roboceptionist [13] (Fig. 1) is a robotic receptionist
situated in a booth near the entrance of the Robotics Institute
at Carnegie Mellon University. It consists of an animated
face on a flat-panel monitor that turns on a pan-tilt unit,
which is mounted on a mobile base. The robot uses a
keyboard interface for input. It can answer questions about
the weather and office locations, display building maps, and
hold conversations about its own fictional changing story
line.

A number of capabilities depend on good sensing and
modeling of people in the environment, such as polite greet-
ing, appropriate verbalizing, attentive listening, determining
how to be of service, and evaluating effectiveness. Three
design criteria, then, motivate our tracking and classification
of people: (1) the robot should correctly attend to people (by
turning its monitor and face in the direction of a person’s
face) as they approach and stand around it, (2) the robot
should recognize when people arrive and depart so as to
maintain context for ongoing interactions, and (3) the robot
should verbalize (e.g. greet visitors) in an appropriate man-
ner. For example, if the robot’s goals are only to maximize
the number and length of interactions, it might be reasonable
for it to address every passerby it perceives. However, the
role of a receptionist entails adhering to particular social
norms. Therefore, it is our approach that the robot should
selectively initiate interactions only with people who appear
interested in interacting.

The first of these design criteria calls for location infor-
mation for people in the environment, the second calls for
tracking people’s continuity of identity, and the third calls for
inference about a more abstract property of the participants
– that is, their level of engagement or their direction of
attention. For our purposes, we have designed a categorical
model of engagement:

• Present: people who are standing far from the robot.
• Attending: people who are idling closer to the robot,

perhaps observing it and likely aware of its presence.
• Engaged: people who are next to the booth and pas-

sively observing the robot’s behavior.
• Interacting: people who are actively participating in an

exchange with the robot.
While these categories and their associated distances are
loosely analagous to Hall’s social distances [4], it should be
noted that this model is neither motivated by, nor reflective
of, the psychology of human attention. Rather, it is a genera-
tive model designed for the purposes of specifying different
behaviors of the robot toward people at different levels of
engagement. For example, the robot is to acknowledge the
presence of Attending people by turning to their general
direction. It should turn to and verbally greet Engaged
people, followed by occasional nods in their direction. It
should verbally prompt Interacting people for input if they
are not typing. See [13] for a full description of the robot’s
behaviors.

A. Sensor fusion

The robot uses a video camera and a laser range scanner
to detect people. The robot is situated behind a desk in a



Fig. 2. Visualization of sensor fusion between laser and camera in tracking
people.

booth, the laser is mounted in the desk behind a slit at human
knee-level, and the camera is installed on the front and top
of the robot near human chest-height. Adjacent laser range
values that deviate from a learned background model are
clustered and tracked using a Kalman filter (see [14]). The
vision software returns a list of tracked faces with coarse
pose information (whether the face is frontal or not). Frontal
faces are detected using the method in [15] and are used
to initialize (and re-initialize) a mean shift color tracker
described in [16].

The information from these two sensors is fused on two
levels [17]. First, the system needs to build a model of
people’s spatial location and pose (where they are standing
on the floor plane, where their heads are located in space,
and their direction of head orientation) so that the robot can
visibly and appropriately direct its attention to people around
its desk. In order for output from the sensors to be correlated,
the location features of detected objects must be transformed
into a common reference frame. 2D polar coordinates from
the laser and 2D image-space coordinates from the camera
are transformed into 3D Cartesian coordinates, translated,
rotated to compensate for the sensors’ positions and orien-
tations relative to the robot, and matched based on nearness
(Fig. 2). The robot is therefore able to attend appropriately to
a person’s direction (from the laser scanner) and to the height
of the person’s face (from the camera). Tracking the identity
of interactors is also improved by allowing one sensor to
correct for discontinuities from failed tracking in the other.
Discontinuities result in a loss of context in an interaction,
as the robot would think that the current interactor has left
and that a new one has arrived.

Next, these multiple sources of information must be inte-
grated to estimate people’s level of engagement. Each of the
two sensory modalities is able to contribute an independent
estimate: for example, the classification can be done by laser
scanner alone, based on physical location, or by camera
alone, based on head pose estimation. This symbolic fusion
is done in a hierarchical manner inspired by work in the
cognitive study of social attention. Perrett et al. (see [10])
suggest that if only a body is visible, its position and pose
are used. If the head is clearly visible, its direction is used to
adjust the estimated attentional focus. If the eyes are clearly
visible, gaze direction is incorporated into the estimate.

In our system the robot uses spatial location as an initial
estimate of attention (Fig. 3). If a frontal face has been
associated with that location, the classification is adjusted
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Fig. 3. Spatial regions used as initial estimate of engagement.

to a higher level of engagement. If the face is no longer
frontal, or has been lost by the tracker, the classification
returns to a lower level of engagement. We are currently
developing a head pose tracker that can track the 3D rotation
of interactors’ heads. This directionality will be incorporated
into the estimate of social engagement as well as used
to guide the verbal content of interactions (if the person
is looking at an object in the booth) and the social cues
exhibited by the robot (following the interactor’s gaze).

B. System performance

The robot operated for almost two years using the laser
scanner alone. The addition of the camera and sensor fusion
system improved the robot’s attentiveness to nearby people,
as it is able to detect, focus on, and track the location
of people’s faces. It also reduced the occurrence of lost
context in interactions: in a week of operation, the sensor
fusion system achieved a 34% reduction in the number of
interactions that would have been confusingly cut short by
single-modality tracking failures.

The addition of vision also improved the classification
of social engagement from use of the laser alone. The
act of typing at the keyboard interface may be considered
“ground truth” that a person is interacting. If fused sensor
data can more accurately predict when someone is about to
interact with the robot, then verbal greetings will be more
appropriate and less annoying (for people who approach
the booth but do not intend to interact). In two weeks of
operation, the sensor fusion system decreased by 69% the
number of inappropriately greeted people from the use of
the laser scanner alone. However, the system increased the
number of people who were correctly predicted to begin
typing to the robot from 19% to only 25%.

There is clearly much room for improvement. Unnatu-
ral or uncomfortable situations can arise from perceptual
failures or misclassifications of interactors’ engagement: the
robot may address someone who is not open to interaction, or
it may ignore someone else who is. We continue to improve
the use of our sensors, but it is difficult to automatically
identify failures and determine how best to address them.
More immediately, it is necessary to evaluate the validity of
our engagement model in order to maximize the utility of
already available sensor data. To this end, we have performed
an analysis of recorded interactions with the robot to evaluate
the current model and to identify possible improvements.
These changes are motivated by the general characteristics
of human social behavior while at the same time taking into
account the constraints imposed by currently available tech-
nology. It is still difficult to obtain reliable information on



Fig. 4. Frame from coded video.

humans using machine vision, especially at longer distances.
The laser scanner, however, is quite accurate even at long
distances. We have found that the high degree of movement
through the space surrounding the Roboceptionist requires
earlier anticipation of human behaviors, in order that the
robot may begin to behave appropriately before it is too
late. Therefore, a model of engagement based on stationary
positions may be insufficient for increasing the frequency
and quality of interactions.

IV. OBSERVATIONAL ANALYSIS

Two video cameras in the Roboceptionist’s booth (Fig.
4) are positioned to view all people in the vicinity of the
booth (including the space in Fig. 3). Over a period of two
days, 12.51 hours of operation were recorded. The video
was coded using Noldus Observer software [18], aligned and
merged with logged data relating the robot’s internal state
and behaviors, and analyzed statistically and temporally.

A manual coding schema was created to capture the
interactive behaviors (movement, position, gesture, pose,
gaze, etc.) of humans and the robot, as well as the robot’s
internal state. The schema can be summarized as follows:

• Interaction
– Look to/away from ... (person only)
– Speak to ...
– Type (person only)

• Movement
– Pass (person only)
– Approach/walk away from ... (person only)
– Stand in front of/next to/behind ... (person only)
– Turn to/away from ...

• Internal state (robot only)
– Idle/chat/greet/interact state
– Person enters/leaves Engaged/Interacting zones

Coding of the video was done on a frame-by-frame
basis with manual entry of time-stamped codes. Each code
represents either a discrete event (e.g. the start of typing or
speaking, stepping, seeing a person enter a particular zone)
or a transition between states in each of the three behavioral
classes (e.g. approaching, standing, walking away).

Our fine-grained behavioral analysis focused on the ini-
tiation, maintenance, and termination of social interactions.
A statistical analysis was used to describe the cumulative
occurrence of events, while a lag-sequential analysis was

used to determine the co-occurrence of different events
within a small time window (e.g. 2-5 seconds).

There was at least one person interacting with the robot
(starting by approaching, looking at, or standing next to
it; interacting by typing or attending to someone who was
typing; and ending by walking away) for 4.13 hours out of
12.51 coded hours of video. The robot, meanwhile, was in
the interacting or greeting state for 4.08 hours, of which
3.15 hours overlap with the actual 4.13 hours of interaction.
Therefore, 22.8% of the robot’s interactive behavior was
directed toward people who were not interacting with the
robot, and the robot did not exhibit interactive behavior for
23.7% of the time that people were interacting with it. We
would like to reduce both of these percentages for more
targeted interactive behavior.

We first look at this difference between the robot’s per-
ception of the social state of the world and our description
of actual physical interactions; our goal is to determine
the limits of our current model of engagement and to
consider how it might be improved. Next, we look at the
temporal relationship between robot behavior and ensuing
human behavior; here, our goal is to determine the most
appropriate behaviors for the robot to perform with people at
different levels of engagement. Finally, we present a number
of observations regarding human interest in the robot and
discuss how these might be inferred automatically, in order
to determine whom the robot might be able to attract into
interacting.

A. The robot’s social view of the world

By coding people’s behaviors as well as the robot’s
internal state, we were able to compare the robot’s perception
of people’s social engagement with our observed description
of what was really happening.

The Roboceptionist saw 1500 people enter the Engaged
zone, and of those, 772 went on to enter the Interacting
zone. In our observational analysis, on the other hand, we
saw people stand next to or close to the robot (“engaged”)
174 times, and they stood in front of the robot (“interacting”)
195 times. These numbers fall in line with what the Engaged
and Interacting zones were designed for; that is, interacting
requires standing in front of the robot, and standing in the
Engaged zone implies deciding whether to interact or ob-
serving an already occurring interaction. The large difference
in the robot’s perception is a result of people moving through
these regions. 485 people passed directly next to the booth,
possibly entering the Interacting zone, and 2458 more people
passed close to the booth, some of whom may have passed
through the Engaged zone.

This misperception has an effect on the robot’s interactive
behaviors, which consist of turning and speaking. Both
behaviors may be used when a person enters the Engaged
zone and the robot is otherwise idle. Their purpose is to
begin an interaction or to attract someone who may be
considering interacting with the robot. The behaviors are
generally appropriately directed toward a person (moving
or stationary) but are occasionally directed elsewhere or
are performed too late. In the case of turning, this may
be because of sensor noise, software lag, or a fast-moving
person. 66% of the robot’s 816 turns toward a person were



directed at people who passed the robot, and 51% of these
occurred 3 or more seconds after the person passed the robot
and would have been unable to see the action. Overactive
turning is perhaps acceptable, as humans often turn to look
at salient events in their environment without the expectation
that this will result in some sort of interaction. In the
case of the Roboceptionist, however, the turning is often
accompanied by speaking.

It is reasonable for the robot to speak to people that
it considers “engaged” or “interacting;” however, we see
that the robot applies these labels quite liberally. Unlike
head-turning, we usually do expect speech actions to be
reciprocated, yet 54% of the robot’s directed greetings
are not followed by human interactive behavior. We have
learned, anecdotally, that people are somewhat disturbed
when the robot addresses them as they pass the booth with no
intention to interact; returning the greeting is burdensome,
and they may feel “bad” about not taking the time to do
it. This verbal overactivity, then, is a shortcoming of both
the engagement model and of our selection of behaviors
that accompany it. Motion through the regions must be
considered differently from people who are stationary in the
regions, in order to reduce the number of people classified as
Engaged. Specifically, a person’s direction of motion should
be used in addition to their static location. Using a short
history of a person’s location to estimate a motion vector,
it may be possible to infer that a person is approaching the
booth from learned (or designed) rules. This would serve as
a more discriminating estimate of initial engagement with
the robot.

B. Effects of robot behavior on human behavior

As discussed, the robot makes turning motions that may
or may not be properly directed toward people in the
environment. In the case of speaking, the robot additionally
makes periodic “phone calls” to appear active. We observed
significant differences between people’s responses to prop-
erly directed interactive behaviors and their responses to
undirected behaviors.

Out of the 816 times that the robot turned to a person, 26%
were followed within 5 seconds by an interactive action by a
person (e.g. approaching, turning to, or typing to the robot).
On the other hand, when the robot turned elsewhere while
there was a person present, they performed an interactive
behavior only 10% of the time.

Similarly, when the robot spoke to people, they were more
likely to interact with it than if it had been speaking on the
phone. Out of 741 times that the robot addressed a person,
48% were followed by an interactive behavior. When the
robot spoke on the phone and there was a person present,
they only interacted 15% of the time.

Currently, turning and speaking are both used as responses
to human arrival. People are more responsive to speaking
than to turning (48% of directed verbalizations being fol-
lowed by human interactive behavior, versus 26% of directed
turns), but excessive speaking is more costly (in terms of
human comfort, as discussed) than excessive turning. We
therefore suggest separating the robot’s turning and speaking
behaviors in such a way that the former is used liberally
and the latter is used more conservatively, and that they

are used at different times in the interaction. Motion, in the
form of turning, is appropriate for anticipation of interaction,
as it is unobtrusive to passersby and attractive to curious
potential interactors. It may be used more often as long as
it is used earlier (to avoid the delay described above), and it
should use the modified engagement model that considers a
person’s direction of movement in order to capture as many
potential interactors as possible. Audible speaking, on the
other hand, is appropriate as a response when the robot is
rather confident that a human is initiating an interaction.

C. Human interest in robot

In order to attract those people who may be considering
interacting, and to account for the delay in the robot’s behav-
iors as described above, it is necessary to anticipate people’s
level of interest earlier than we currently do. Looking for
people who are approaching in the direction of the booth is
one method, but we looked at other factors as well.

We classified passersby according to approximate distance
from the booth. Next to is within 2ft of the booth, close is
2-4ft from the booth, and far is > 4ft from the booth. We
found that passersby were slightly but significantly more
likely to look at the Roboceptionist if they were close to
the booth (33%) than if they were next to or far from
it (both 29%) (χ2(2, N = 4196) = 7.367, p = 0.0251).
This suggests that there may be a comfortable distance at
which to establish eye contact with the robot; closer is too
intimate, and further results in lower visual detail. Given the
difficulty of estimating gaze for people who are far away
(and moving), the possibility that people at a certain distance
are more likely to be paying attention to the robot is a useful
piece of information.

We expected that a person’s speed might indicate their
likelihood of interacting; that is, people who are moving
slower would be more likely to interact. Having coded
approaches as slower than, close to, or faster than average
walking speed, we found that, indeed, almost all people who
interacted with the robot approached at average or below
average speed. As the speed of passersby was not coded,
these results are still inconclusive. However, it is possible
that a simple rule incorporating speed, perhaps learned
from logged sensor data, might provide reliable information
regarding a person’s future engagement with the robot.

We expected that passersby would be more interested in
the robot (and therefore look at it more) when there was
already someone interacting with the robot, but we found
no significant difference. We did, however, find a significant
portion of interactions (46%) to consist of groups of more
than one interactor. It is often the case that a person is drawn
into interacting with the robot not by the robot itself, but
by another person. This suggests an opportunity, if multiple
people are present, for the robot to initiate interactions with
other members of a group.

V. DISCUSSION & FUTURE WORK

People who encounter the Roboceptionist may be roughly
divided into three classes: people who will approach the
robot to interact with it regardless of its initial behavior,
people who will not interact (passersby), and people who are
undecided. For people who will interact, there is currently
a delay in the robot’s behaviors. During their interactions,



especially those with groups, we also see a great deal of
movement for which a stationary model of engagement is
insufficient. For people who will not interact with the robot,
the overactive verbalizing can be jarring. For people who are
undecided, on the other hand, the robot is not active enough:
there is a missed opportunity to draw in people who are ripe
for engagement (e.g. by turning to them earlier).

The robot was designed mostly with one-on-one inter-
actions in mind. It is apparent from our observations that
interaction with groups makes up a significant portion of
the Roboceptionist’s interaction time. It is necessary to
more carefully examine the patterns of human behavior
with the robot and with each other when part of a group.
The spatial movement of group members is different from
that of individual actors, and this needs to be taken into
account when estimating social engagement. Furthermore,
the behaviors of the robot should be suitable for a number
of interactors, within our contraints that only one can be
typing to the robot at any time. It is unclear what types of
behaviors to exhibit toward a group of people, and how to
account for the fact that they often take turns typing to the
robot.

To the extent that gaze and even gestures may be used to
obtain information about engagement, we continue to apply
computer vision methods to sensing cues beyond location
and movement. However, even if we had accurate head pose
estimation, it is unclear how this information should feed an
estimate of engagement, as people frequently look around.
Unfortunately, long-distance perception of human head pose
and gaze is still impossible. Selectively attracting interested
passersby through directed interaction is therefore unlikely.

However, in the process of coding the videos, we were
often able to “guess” from a person’s early motions whether
they would eventually interact with the robot. The fact that
humans are very good at anticipating social engagement
from low-resolution video suggests to us that movement
through the social space may be as useful, if not more useful,
than finer cues such as head pose or gaze. We expect that
a more intelligent use of the laser tracker data, in which
movement and directionality over a short period of time are
considered before a person becomes stationary, can result
in earlier anticipation of social interaction (for temporally
appropriate generation of initial cues), more selective gen-
eration of verbal cues, and more effective maintenance of
ongoing interactions.

In short, we envision a modified engagement model along
these lines:

• Present: not of interest for interaction; moving quickly
or in a direction tangential to the robot’s booth.

• Interested: moving toward the robot, or moving slowly
in the vicinity. The robot should turn its head toward
Interested people.

• Engaged: mostly stationary near the booth, perhaps
with a detected face. The robot may speak to Engaged
people.

• Interacting: probably responsible for typing that has oc-
curred. Multiple people may be considered Interacting.

VI. CONCLUSION

We have reviewed a number of models of social engag-
ment that take into account the relative spatial configuration

of interaction partners. We presented the implementation of a
comparable model on a social robot. Distance, direction, and
head visibility and pose are taken into account for selecting
appropriate interactive behaviors. Observational behavioral
analysis of this system in practice has demonstrated that a
static location-based model of social engagement, such as
those described in much of the literature, is insufficient for
naturalistic regulation of social interactions. We suggest that
direction and speed of motion are more appropriate measures
of engagement than location alone, and that movement
and speech should have different roles in the regulation of
interaction.
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