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My research interests lie primarily in the intersection of combinatorics, discrete math-

ematics, and theoretical computer science.

Most of my work is related to the combinatorics of Coxeter groups, which are certain

groups generated by elements of order two. Common examples of Coxeter groups include

the dihedral group and the symmetric group (the group of permutations of n elements).

Both of these groups have geometric interpretation as the group of symmetries of a regular

polygon, and an n-dimensional simplex, respectively. My main contributions in the area

can be found in [4, 5, 6, 7, 8]. I explain this work, which is theoretical in nature, in some

detail in Section 1.

The projects in which I’ve been involved more recently have taken a more practical

approach as I looked for projects more directly related to computer science. In the last

two years, I collaborated on questions relating to the pancake problem and the multi-arm

bandit problem. I describe these projects in Section 2 and 3.

In addition, I worked on projects that will not be discussed in detail here that have con-

nections to discrete mathematics and AI. For instance, in [12] we analyze some variations

of the classical combinatorial game of Domineering. Moreover, in [1], we give an exact

formula for the bandwidth of a graph that comes from the product of paths of the same

length. Furthermore, we present some enumerative results counting Dyck paths, which

can be seen as walks from (0, 0) to (n, n) that lies strictly below the diagonal y = x,

by two statistics that we define as area and rank of the path. In addition, I have two

recent collaborations, one that will be submitted to IJCAI with David Crandall and his

Ph.D. students Zhenhua Chen and Chuhua Wang regarding the limitations of AlphaGo

to a simple combinatorial game. The second project was recently accepted to AAAI is a

project, in collaboration with Larry Moss (IU Math) and CS Ph.D student Caleb Kisby,

about a formal logic system to reason about set cardinalities and unions that is complete

and decidable in polynomial time. I also have an old project with David Crandall and

some of his former students [20] where we tested the ability of computer vision to observe

natural events in millions of geo-tagged Flickr photos.

In terms of publications, most mathematicians tend to publish in journals. For my

particular field, the Annals of Combinatorics, the Journal of Algebraic Combinatorics, the

Electronic Journal of Combinatorics, and Discrete Applied Mathematics, are all considered

tier “A” journals by a ranking of the Australian Mathematical Society1 (a ranking usually

used by some mathematicians). In terms of CS conferences, one of my collaborations

appeared in the ICML proceedings last year, and one was accepted for NeurIPS this year

and for AAAI next year.

1https://www.austms.org.au/Rankings/AustMS_final_ranked.html
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1. Coxeter groups and the complete cd-index

A Coxeter group W can be thought of as a generalization of the dihedral group, the

group of symmetries of the n-gon. A Coxeter group is generated by involutions (elements

of order two) that satisfy relations that resemble those yielding the rotations of the di-

hedral group. These groups appear in different branches of mathematics; for instance,

they are the Weyl group of semisimple Lie groups and include the symmetric group Sn,

the group of reflections of the platonic solids, and the hyperoctahedral group (group of

symmetries of an n-dimensional cube).

A reflection of W is an element of the form wsw−1, where s is a generator and w ∈ W .

A central object in my work on the area, and indeed in the study of Coxeter groups, is

the Bruhat graph B(W ) of W . This directed graph has the elements of W as vertices

and an edge (u, v) if there exists a reflection t such that ut = v and the length of u (the

minimum number of generators required to express u) is smaller than the length of v.

From this graph, we can define one of the most important partial orders in Coxeter group

theory: the Bruhat order ≤. We say that u ≤ v if there exists a u-v path in the graph

B(W ). The Bruhat graph B(u, v) corresponding to the interval [u, v] in Bruhat order is

the restriction of B(W ) to the elements in [u, v].

Dyer [15] defined a total order <T on the set of reflections of T . One can label the edges

of the Bruhat graph using <T , and this labeling can be used to prove nice combinatorial

and topological properties of a Bruhat interval [u, v]. In fact, [u, v] is the face poset of a

regular cell decomposition of a sphere, a result first established by Björner and Wachs [3].

Because <T is a linear order, one can define the descent set of a path ∆ in B(u, v)

that keeps tracks of the positions of the descents of the labels of ∆. For example if the

path is labeled (1, 3, 2, 5, 1), then the descent set is {2, 4} as 3 > 2 and 5 > 1. Billera

and Brenti [2] defined a polynomial ψ̃u,v, called the complete cd-index, that encodes the

descent sets of u-v paths. I have studied this polynomial in [4, 5, 6]. In particular,

in [5], I describe a method of computing ψ̃u,v for some Bruhat intervals by looking at an

extension of Björner and Wachs’ labeling used in [3]. The complete cd-index provides

an alternative combinatorial description of the Kazhdan-Lusztig polynomials, which are

relevant in representation theory. I mostly focused on the structure of the shortest u-v

paths in B(u, v), which I call the shortest path poset of [u, v] and denote it by SP (u, v).

I study this poset and provide several combinatorial properties [4, 5, 6, 7]. For example,

if there is a unique path in SP (u, v) with empty descent set, then SP (u, v) behaves like

a Bruhat interval and the terms corresponding to the complete cd-index coming from

SP (u, v) form the cd-index of SP (u, v) seen as an Eulerian poset.

Two examples of Coxeter groups are the symmetric group and the group of signed per-

mutations (which can be seen as the group of symmetries of the n-dimensional cube).
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More recent projects have involved questions relating to these groups when being gen-

erated not by their Coxeter generators, but by prefix reversals. I describe this in more

detail in the next section.

2. Pancake Graphs

The pancake problem consists of finding the optimal way (in terms of number of oper-

ations) to sort a stack of pancakes, each of different size, utilizing only a “chef’s spatula”.

In other words, the only type of operation allowed is to lift pancakes from the top of the

stack, flip them using the spatula, and then put the flipped pancakes on top of the stack.

The first non-trivial bound was was given by Gates and Papadimitriou [16] (incidentally,

this is the only academic paper Bill Gates ever wrote). In general, the pancake problem

in NP-hard [14].

It is customary to represent the stack n of pancakes by a permutation on n elements.

Now a spatula flip becomes a prefix reversal, where one takes a prefix of a permutation

and reverses it. For instance, 2134, 3214, and 4321 are all the prefix reversals of the

permutation 1234. It is customary to denote the ith prefix reversal, which takes the first

i characters of a permutation and reverses them, by ri. There is a graph associated with

the pancake problem, called the pancake graph, which is defined as follows: For a fixed n,

the vertex set is the set of permutations while two permutations u and v are connected

by an edge if there is a reversal ri, with 1 ≤ i ≤ n, such that v = uri. The graph

just defined is called the pancake graph, and it is denoted by Pn. It is worth noticing

that Pn is the Cayley graph of the symmetric group generated by prefix reversals. As

such, Pn is both vertex-transitive and has a low diameter in comparison to the number

of vertices of the graph. These properties have made the pancake graph Pn a plausible

model for an interconnection scheme for parallel computers [17]. Another interesting

feature, established in [17], that makes Pn desirable for parallel computing is the property

that Pn contains all cycles of length `, with 6 ≤ ` ≤ n!. Containing all these cycles

facilitates local connections within the network.

In recent collaborations [9, 10, 11], we study the cycle structure of the burnt pancake

graph, BPn which is the Cayley graph of the group of signed permutations (permutations

w of the set [±n] := {−n,−(n − 1), . . . ,−1, 1, 2, . . . , n} where w(i−) = −w(i) for all

i ∈ [±n]). It is customary to represent a signed permutation w by its action on the set

{1, 2, . . . , n} and simply write w = w(1)w(2) · · ·w(n). In this context, a prefix reversal

takes the first i characters of w(1)w(2) · · ·w(n), reverses them and changes their sign. So

the prefix reversals of 123 are (−1)23, (−2)(−1)3, and (−3)(−2)(−1). So the vertex set

of BPn is the set of signed permutations, and two signed permutations are connected if

there is a prefix reversal transforming one into the other. We establish in [10] that BPn

has all cycles of length `, with 8 ≤ ` ≤ 2nn!, which is more surprising than Pn having a

similar property, as BPn is more sparse than Pn.
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We also provide a cycle classification for the 8- and 9-cycles of BPn in [10, 11] and

utilize the classification to count the number of stacks of pancakes that require 4 flips to

be sorted. Surprisingly, the count can be made by an elementary polynomial.

Currently we are trying to extend our results to pancakes that have “more sides.”

Group theoretically, we are now considering the group that is the wreath product of a

cyclic group and a symmetric group. So if the cyclic group has one element, we recover

Pn, and if it has two elements, we recover BPn. We have been able to establish that a

similar behavior is true when considering the cyclic group of three elements. The situation

for more than two elements in the cyclic group is more complicated since then the Cayley

graphs are directed. The general behavior of the cycle length in more general cases seems

to be quite mysterious thus far.

3. Multi-arm Bandit Problem

In my time in the Computer Science department at IU, I have collaborated on machine

learning projects relating to the multi-arm bandit problem. In recent collaboration with

Yuan Zhou and graduate student Chao Tao, we have looked at variations of the classic

multi-arm bandit problem from reinforcement learning under different settings [18, 19].

The basic setup is as follows: Suppose one has a set of N slot machines (arms), each

of which gives a reward according to an unknown distribution, and one is to come up

with an algorithm that will decide which arm (or arms) to select in order to maximize

the reward obtained utilizing as few pulls as possible. Sometimes one is given a fixed

budget T where one is only allowed to pull the arms T times. Our collaboration looks

at two settings in particular: (1) a linear setting, where the reward for each arm x (seen

as a column vector) is assumed to be of the form xT θ + ε, where θ is unknown, and (2)

using T pulls, we wish to identify which arms have a mean reward higher than a given

threshold (this problem is called the thresholding bandit problem). Our algorithms from

both papers are state-of-the-art and do very well empirically. Furthermore, our ALBA

algorithm [19] has an optimal sample complexity (which measures how many pulls are

needed to identify the optimal arm with probability close to 1), and our LSA algorithm

from [18] is near optimal, up to a double logarithmic term. It is also worth remarking

that in the case of the thresholding bandit problem, the standard measure of regret is

the probability that at least one of the arms is incorrectly labeled. However, for many

applications it is reasonable to try to minimize the aggregate regret, the expected number

of errors in the classification after T pulls. Indeed, if one is to minimize the simple regret,

one could use several pulls trying to classify an arm whose mean reward is close to the

threshold and thus ambiguous. So one is better served by moving on from ambiguous

arms to correctly classify arms that are less ambiguous.
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4. Future Plans

Recently I’ve been looking at understanding the structure of what we call the generalized

pancake graph, which is the Cayley graph of the wreath product of Cm, the cyclic group

of m elements and Sn is the group of permutations of the set {1, 2, . . . , n}. This is a

very natural generalization of the pancake graph Pn and the burnt pancake graph BPn, if

m = 1 and m = 2, respectively. As discussed previously, it was established in [17] that the

pancake graph Pn has all cycles from length 6 to n! and we recently established in [10] that

BPn has all cycles from length 8 to 2nn!. We have proved that a similar property holds for

m = 3 when considering the undirected case of the graph. The directed case seems to be

a bit more idiosyncratic, and we are trying to understand its structure. Another question

that remains unanswered is the utilizing a presentation for the symmetric group and the

hyperoctahedral group in terms of prefix reversals to see if such a presentation would help

in finding a solution to questions relating to the pancake graph. We have recently found

a presentation and are trying to use computational group theory techniques to talk about

how long it will take to sort an “average” permutation using only prefix reversals.
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[7] Saúl A. Blanco. Flip posets of Bruhat intervals. Electron. J. Combin., 25(4):Paper 4.16, 16, 2018.
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[9] Saúl A. Blanco and Charles Buehrle. Some relations on prefix reversal generators of the symmetric

and hyperoctahedral group. CoRR, abs/1803.01760, 2018.
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