
6

Symmetries in Reversible Programming

From Symmetric Rig Groupoids to Reversible Programming Languages

VIKRAMAN CHOUDHURY, Indiana University, USA and University of Cambridge, UK

JACEK KARWOWSKI, University of Warsaw, Poland

AMR SABRY, Indiana University, USA

The Π family of reversible programming languages for boolean circuits is presented as a syntax of combinators
witnessing type isomorphisms of algebraic data types. In this paper, we give a denotational semantics for this
language, using weak groupoids à la Homotopy Type Theory, and show how to derive an equational theory
for it, presented by 2-combinators witnessing equivalences of type isomorphisms.

We establish a correspondence between the syntactic groupoid of the language and a formally presented
univalent subuniverse of finite types. The correspondence relates 1-combinators to 1-paths, and 2-combinators
to 2-paths in the universe, which is shown to be sound and complete for both levels, forming an equivalence
of groupoids. We use this to establish a Curry-Howard-Lambek correspondence between Reversible Logic,
Reversible Programming Languages, and Symmetric Rig Groupoids, by showing that the syntax of Π is
presented by the free symmetric rig groupoid, given by finite sets and bijections.

Using the formalisation of our results, we perform normalisation-by-evaluation, verification and synthesis
of reversible logic gates, motivated by examples from quantum computing. We also show how to reason about
and transfer theorems between different representations of reversible circuits.

CCS Concepts: • Theory of computation → Type theory; Categorical semantics; Denotational se-
mantics; • Mathematics of computing → Combinatorics; • Software and its engineering → Formal

methods; • Computing methodologies→ Symbolic and algebraic manipulation.

Additional Key Words and Phrases: reversible computing, reversible programming languages, homotopy type
theory, univalent foundations, groupoids, groups, rewriting, permutations, type isomorphisms

ACM Reference Format:

Vikraman Choudhury, Jacek Karwowski, and Amr Sabry. 2022. Symmetries in Reversible Programming: From
Symmetric Rig Groupoids to Reversible Programming Languages. Proc. ACM Program. Lang. 6, POPL, Article 6
(January 2022), 32 pages. https://doi.org/10.1145/3498667

1 INTRODUCTION

Consider two programs that implement the same permutation using different sequences of type
isomorphisms:

𝐴 + (𝐵 +𝐶) ↔ (𝐴 + 𝐵) +𝐶 ↔ 𝐶 + (𝐴 + 𝐵) ↔ 𝐶 + (𝐵 +𝐴)

𝐴 + (𝐵 +𝐶) ↔ 𝐴 + (𝐶 + 𝐵) ↔ (𝐴 +𝐶) + 𝐵 ↔ (𝐶 +𝐴) + 𝐵 ↔ 𝐶 + (𝐴 + 𝐵) ↔ 𝐶 + (𝐵 +𝐴)

Authors’ addresses: Vikraman Choudhury, Department of Computer Science, Indiana University, Bloomington, 47408,
USA, vikraman@indiana.edu, Department of Computer Science and Technology and University of Cambridge, Cambridge,
CB3 0FD, UK, vc378@cam.ac.uk; Jacek Karwowski, Faculty of Mathematics, Informatics and Mechanics, University of
Warsaw, Warsaw, 00-927, Poland, jk359713@students.mimuw.edu.pl; Amr Sabry, Department of Computer Science, Indiana
University, Bloomington, 47408, USA, sabry@indiana.edu.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/1-ART6
https://doi.org/10.1145/3498667

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-2030-8056
HTTPS://ORCID.ORG/0000-0002-8361-2912
HTTPS://ORCID.ORG/0000-0002-1025-7331
https://doi.org/10.1145/3498667
https://orcid.org/0000-0003-2030-8056
https://orcid.org/0000-0002-8361-2912
https://orcid.org/0000-0002-1025-7331
https://doi.org/10.1145/3498667

6:2 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

A
B C

assocl+
−−−−−→

A B
C

swap+
−−−−→

C
A B

id↔1
−−−−−−→

swap+ C
B A

A
B C

id↔1
−−−−−−→

swap+ A
C B

assocl+
−−−−−→

A C
B

id↔1
−−−−−→
swap+ C A

B

assocr+
−−−−−→

C
A B

id↔1
−−−−−−→

swap+ C
B A

Fig. 1. Type isomorphisms as tree transformations

A B C

ABC

(a)

A B C

ABC

(b)

A B C

ABC

(c)

Fig. 2. Type isomorphisms as braiding diagrams

These permutations are written as sequences of primitive operations: associativity, symmetry,
and composition. Can we find necessary and sufficient equations to identify all such equivalent
sequences of type isomorphisms?

Such sequences of type isomorphisms are pervasive in reversible boolean circuits, which are at the
core of quantum computing. Typically, they might be formalised as permutations {0, 1}𝑘 → {0, 1}𝑘

on bit strings of some length 𝑘 [Aaronson et al. 2017]. But from the perspective of programming
languages, permutations and reversible circuits can be more conveniently expressed as isomor-
phisms over algebraic data types, as proposed in the Π family of reversible languages [James and
Sabry 2012, 2014]. The syntax of Π is inspired by the sound and complete axiomatisation of type
isomorphisms of lambda calculi [Fiore et al. 2002], with respect to the bicartesian structure, that is,
product and sum types. Π programs correspond to type isomorphisms of finite types, and in this
paper, we make the observation that the syntax of Π is a presentation of the free symmetric rig
groupoid (on zero generators).
It is folklore that the groupoid of finite sets and bijections is the free symmetric rig groupoid

on zero generators [Baez and Dolan 2001; Kelly 1974; Laplaza 1972]. Our main result formally
establishes this correspondence by giving an equational theory for Π that includes exactly all the
necessary equations to decide equivalence of Π programs. As conjectured by Carette and Sabry
[2016], these equations correspond to the coherence conditions of symmetric rig groupoids, answering
the conjecture in the positive.

Equivalence by Example. Without going into details of proofs, let us try to answer the question
for the original pair of examples.
The first step is to realise that the use of associativity is uninteresting, and the only steps with

interesting computational content are the swaps. The swaps can be either small or big ś they can
happen between leaf nodes, or between bigger subtrees, respectively, as shown in Figure 1.

First, we normalise the types to a list-like representation 𝐴 + (𝐵 + (𝐶 + 0)), where 0 is the empty
type. In this representation, each type is identified with its index, 𝐴 has index 0, 𝐵 has index 1, and
𝐶 has index 2. Then, we compile each primitive isomorphism to a list of adjacent transpositions,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:3

which are composed by appending the lists. A small swap is trivially implemented as a single
adjacent transposition. To compile a big swap into adjacent transpositions, we traverse the subtrees
in-order and recursively swap elements from the left by transposing them across the ones in the
middle ś this generates a large number of adjacent transpositions. For the two programs, we get the
following two lists: [1, 0, 1, 1, 1] (Figure 2a) and [1, 0, 1] (Figure 2b), where the number 𝑘 encodes a
transposition of elements at indices 𝑘 and 𝑘 + 1.
Swapping is symmetric, that is, swapping two elements and immediately swapping them back

produces the same permutation. The first list contains such redundant operations, so to eliminate
these, we will normalise the lists, by setting up reduction relations and an appropriate rewriting
system. This system normalises both lists to [0, 1, 0] (Figure 2c), which is lexicographically the
smallest list that corresponds to this permutation. Since both programs have the same normal form,
they’re equivalent!
The crux of designing an equational theory for Π relies on the choice of relations we use to

design this rewriting system. First, there should be enough equations to compile programs to their
normalised forms, that is, sequences of adjacent transpositions, and second, there should be enough
equations to reduce them to a normal form, that is, the reduced list of transpositions. We will show
that these equations correspond to the coherence conditions for symmetric rig groupoids.

From the normalised list [0, 1, 0], we can recover a permutation on a list of 3 elements [𝑎, 𝑏, 𝑐] as
follows. We think of it as insertion-sorting the elements of the list. Starting from the list [𝑎, 𝑏, 𝑐], we
first insert 𝑏 at the right place ś by applying transposition 0, we get the list [𝑏, 𝑎, 𝑐]. Then, element
𝑐 is inserted in the right place by applying transpositions 1 and 0 ś as a result, we get the desired
permutation [𝑐, 𝑏, 𝑎]. Notice that we could specify a more compact way of describing this process,
since the key information was only how many shifts we needed to apply to an element. We could
describe this procedure using a code (0, 1, 2), which says how many inversions to apply to elements
𝑎, 𝑏, and 𝑐 , respectively.

Using this algorithm, we can turn a type isomorphism into a bijection of finite sets, relating the
operational semantics of Π as permutations of finite sets of bits, to our denotational semantics.
This allows us to establish full abstraction and adequacy.

Outline and Contributions. Ourmain result is a proof of the soundness and completeness ofΠ with
respect to its semantics in the weak symmetric rig groupoid of finite sets, bijections, and homotopies,
formalised in HoTT/UF. We state our result as a Curry-Howard-Lambek correspondence for
Reversible Logic [Sparks and Sabry 2014], Reversible Programming Languages [James and Sabry
2012], and Symmetric Rig Groupoids [Carette and Sabry 2016; Kelly 1974; Laplaza 1972], using
which we can build a toolbox of technical devices for reasoning about reversible circuits.

• We start in Section 2 by presenting a few reversible circuits in the popular IBM Qiskit frame-
work [Aleksandrowicz et al. 2019] to serve as running examples throughout the paper.

• In Section 3, we introduce the two-level language Π [Carette and Sabry 2016] and illustrate
how to write reversible circuits and their equivalences using 1-combinators and 2-combinators
respectively. We give a semantic account of the language by translating each level-1 program
to a bijection between finite sets, and verifying that programs identified by level-2 constructs
denote the same bijection.

• Section 4 describes the construction of UFin, the groupoid of finite sets and bijections, in Ho-
motopy Type Theory and Univalent Foundations (HoTT/UF). We define and characterise the
notion of a univalent subuniverse, and constructUFin as a univalent subuniverse which classifies
all finite types. We establish that paths in UFin are families of loops on finite sets of specified
cardinality, given by Aut(Finn), which produces the group of permutations on Finn.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:4 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

• In Section 5, we proceed to give a presentation of this group, as the symmetric group Sn with
generators and relations, and solve its word problem. In particular, we present Sn as a Coxeter
group, build a rewriting system based on Coxeter relations, and prove confluence and termination.
Using our rewriting system, we establish that normal forms for words in Sn are equivalent to
Lehmer codes [Lehmer 1960], which are a convenient and compact representation of permutations.
Finally, we show that there is an equivalence between Lehmer codes and permutations Aut(Finn)

given by the Lehmer encode-decode algorithm.
• In Section 6, we show how to interpret the language Π into the groupoidUFin, in stages. First,
we define a subset Π+ of the language which includes the additive monoidal structure, and show
how to translate Π programs to Π+ programs. Then, we further define a normalised form for this
language called Π∧, which has normalised 1-combinators and 2-combinators corresponding to
adjacent transpositions. We show that Π+ can be translated to Π∧ and back. Then, we show how
to interpret this language Π∧ into UFin ś the 1-combinators are translated into permutations via
words in Sn, and 2-combinators are interpreted as 2-paths inUFin. We further show how to quote
back a permutation in UFin into a 1-combinator using the normal forms for words in Sn. The
main result of this section is a symmetric monoidal equivalence between the syntactic groupoids
of Π+ and Π∧, withUFin. Finally, we also establish full abstraction and adequacy of this model
with respect to the operational semantics.

• In Section 7, we show applications of our results to reversible circuits, using our formalisation.
Our results are stated using HoTT/UF [Univalent Foundations Program 2013], and formalised
using the HoTT-Agda library (around 7,500 lines of code). Using the formalisation, we are
able to extract procedures for: (1) the synthesis of a reversible circuit from a permutation on a
finite set, (2) the verification that a reversible circuit realises a given permutation on finite sets,
(3) a normalisation-by-evaluation (NbE) procedure that reduces reversible circuits to canonical
normal forms, (4) a sound and complete calculus for reasoning about reversible circuits and their
equivalences, and (5) the transfer of theorems about permutations and reversible circuits from
one representation to the other.

The proofs of some of our lemmas and propositions and theorems, as well as additional material, are
given in the supplementary appendices in the extended version [Choudhury, Karwowski, and Sabry
2021b], and we refer to them in the text. Our accompanying Agda code [Choudhury, Karwowski,
and Sabry 2021a] contains the formalisation of the full syntax, and most of our proofs.

2 REVERSIBLE CIRCUITS IN QISKIT

Classical reversible boolean circuits are at the core of most quantum algorithms and hence are
supported by popular platforms for quantum computing such as IBM Qiskit [Aleksandrowicz et al.
2019]. Specifically, the Qiskit framework provides the following universal set of gates for reversible
computing: not (boolean negation, called x), cnot (conditional negation of the second input if the
first is true; called cx), and toffoli (conditional negation of the third input if both the first two inputs
are true; called ccx) gates. Additionally, Qiskit allows implicit re-shuffling of bits by allowing each
operation to specify the indices of its input bits.

For concreteness, we demonstrate two different circuits that implement the following reversible
function specification reversibleOr(ℎ,𝑏1, 𝑏2) = (ℎ ∨ (𝑏1∨𝑏2), 𝑏1, 𝑏2) where ∨ is disjunction and ∨
is exclusive-disjunction. The circuits are presented in both the textual interface qasm and the
graphical interface, in Figure 3.
There is a wealth of manual and algorithmic approaches for producing circuits such as these

two [Maslov 2003; Shende et al. 2003]. The circuit on the left was manually produced using a
standard synthesis algorithm for reversible circuits [Miller et al. 2003]. The circuit on the right

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:5

ccx q[1], q[2], q[0];

cx q[1], q[0];

cx q[2], q[0];

q0

q1

q2

cx q[1], q[0];

x q[1];

ccx q[1], q[2], q[0];

x q[1];

q0

q1

q2

Fig. 3. reversibleOr in Qiskit

was produced using an approach that analyzes the recursive structure of reversibleOr (and would
generalise to computing the disjunction of more than two inputs).
From the specification of the circuit, we expect input 011 to be mapped to 111. To gain some

intuition, we trace the evaluation of each circuit for input 011. In this context, the most significant
bit is at index 0. In the first circuit, the ccx gate negates q[0] since both q[1] and q[2] are true
producing 111; the following cx gate produces 011; finally the last cx produces the result 111. For
the second circuit, the trace of the execution on the same input value 011 goes through the stages
111, 101, 101, and finally 111.

Although rather trivial, the examples above illustrate the general idea. A more interesting
example would be the classical core of Shor’s algorithm which requires a circuit implementing
modular exponentiation 𝑓 (𝑟) = 𝑎𝑟 mod 𝑁 for fixed 𝑎 and 𝑁 . Using Toffoli’s construction [1980], a
reversible specification of this function is 𝑓 𝑅 (𝑟, ℎ) = (𝑟, 𝑓 (𝑟) ∨ ℎ) where the exclusive disjunction ∨

is applied bitwise. When ℎ = 0 the second component of the result of 𝑓 𝑅 is the result of the
original modular exponentiation 𝑓 . However, as explained in standard accounts of the algorithm
(e.g., the Qiskit implementation), producing an efficient modular exponentiation circuit from this
specification is not straightforward and is actually the bottleneck in Shor’s algorithm. Typical
derivations of the circuit start from elementary gates, build a circuit for reversible disjunction (like
the two circuits above), reversible conjunction, a circuit for a half-adder, a circuit for computing
the carry, progressing to a circuit for modular addition, which is used to build a circuit for modular
multiplication, and then finally a circuit for modular exponentiation taking care at each step to
avoid the exponential blowup (e.g., by implementing exponentiation by squaring instead of repeated
multiplication) [Beauregard 2003].

3 A REVERSIBLE PROGRAMMING LANGUAGE

The circuit model of reversible computation discussed in the previous section is a useful abstraction
close to the hardware platform. However, since its main data abstraction is a sequence of wires, it
only provides an łassembly-levelž programming abstraction (e.g., qasm). As motivated by Lafont
[2003], a mathematical model based on permutations of finite sets provides a richer algebraic
structure, using which we describe a reversible programming language in this section.

3.1 The Π Family of Languages

In reversible boolean circuits, the number of input bits matches the number of output bits. Thus,
a key insight for a programming language of reversible circuits is to ensure that each primitive
operation preserves the number of bits, which is just a natural number. The algebraic structure of
natural numbers as the free commutative semiring (or, commutative rig), with (0, +) for addition,
and (1,×) for multiplication then provides sequential, vertical, and horizontal circuit composition.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:6 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

id↔1 : 𝐴 ↔1 𝐴 : id↔1

unite+l : 0 +𝐴 ↔1 𝐴 : uniti+l
swap+ : 𝐴 + 𝐵 ↔1 𝐵 +𝐴 : swap+
assocl+ : 𝐴 + (𝐵 +𝐶) ↔1 (𝐴 + 𝐵) +𝐶 : assocr+

unite★l : 1 ×𝐴 ↔1 𝐴 : uniti★l
swap★ : 𝐴 × 𝐵 ↔1 𝐵 ×𝐴 : swap★
assocl★ : 𝐴 × (𝐵 ×𝐶) ↔1 (𝐴 × 𝐵) ×𝐶 : assocr★

absorbr : 0 ×𝐴 ↔1 0 : factorzl
dist : (𝐴 + 𝐵) ×𝐶 ↔1 (𝐴 ×𝐶) + (𝐵 ×𝐶) : factor

⊢ 𝑐1 : 𝐴 ↔1 𝐵 ⊢ 𝑐2 : 𝐵 ↔1 𝐶

⊢ 𝑐1 ⊚ 𝑐2 : 𝐴 ↔1 𝐶

⊢ 𝑐1 : 𝐴 ↔1 𝐵 ⊢ 𝑐2 : 𝐶 ↔1 𝐷

⊢ 𝑐1 ⊕ 𝑐2 : 𝐴 +𝐶 ↔1 𝐵 + 𝐷

⊢ 𝑐1 : 𝐴 ↔1 𝐵 ⊢ 𝑐2 : 𝐶 ↔1 𝐷

⊢ 𝑐1 ⊗ 𝑐2 : 𝐴 ×𝐶 ↔1 𝐵 × 𝐷

Fig. 4. Π-terms, combinators, and their types.

These commutative rig identities can be used to design a logic for reversible programming [James
and Sabry 2012; Sparks and Sabry 2014]. To interpret natural number identities as reversible
programs, the logic needs to be equipped with values and types, and a notion of operational
semantics and contextual equivalence, giving a computational interpretation of the commutative
rig structure [James and Sabry 2012]. On the semantic side, the natural space to consider is the
groupoidification of a commutative rig, that is, a symmetric rig groupoid.

Putting these ideas together, the programming language Π , whose syntax is given below, embod-
ies the computational content of isomorphisms of finite types, or permutations.

Value types 𝐴, 𝐵,𝐶, 𝐷 ::= 0 | 1 | 𝐴 + 𝐵 | 𝐴 × 𝐵

Values 𝑣,𝑤, 𝑥,𝑦 ::= tt | inj1 𝑣 | inj2 𝑣 | (𝑣,𝑤)

Program types 𝐴 ↔1 𝐵

Programs 𝑐 ::= (See Figure 4)

The language of types is built from the empty type (0), the unit type (1) containing just one value tt,
the sum type (+) containing values of the form inj1 𝑣 and inj2 𝑣 , and the product type (×) containing
pairs of values (𝑣1, 𝑣2).

To see how this language expresses reversible circuits, we present a few examples using the Agda
embedding of the language [Choudhury et al. 2021a; Sabry et al. 2021]. First it is possible to directly
mimic the qasm-perspective by defining types that describe sequences of booleans (2𝑛). We use the
type 2 = 1 + 1 to represent booleans with inj1 tt representing true, and inj2 tt representing false.
Boolean negation (the x-gate) is straightforward to define using the primitive combinator swap+.
We can represent 𝑛-bit words using an n-ary product of boolean values, thus the type 2 × (2 × 2)

(abbreviated B 3) corresponds to a collection of wires that can transmit three bits. To express the
cx and ccx gates, we need to encode a notion of conditional expression. Such conditionals turn out
to be expressible using the distributivity and factoring identities of rigs as shown below:

cif : (c1 c2 : A ↔1 A) → (2 × A↔1 2 × A)

cif c1 c2 = dist ⊚ ((id↔1 ⊗ c1) ⊕ (id↔1 ⊗ c2)) ⊚ factor

The input value of type 2 ×𝐴 is processed by the distribute operator dist, which converts it into a
value of type (1×𝐴) + (1×𝐴). In the left branch, which corresponds to the case when the boolean
is true, the combinator 𝑐1 is applied to the value of type 𝐴. The right branch, which corresponds
to the boolean being false, passes the value of type 𝐴 through the combinator 𝑐2. The inverse of
dist, namely factor is applied to get the final result. Using this conditional operator, cx is defined

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:7

as cif x id↔1 and ccx is defined as cif cx id↔1. With these conventions, the first circuit in the
previous section is transcribed as follows:

C[BA]-[CA]B : C × (B × A) ↔1 (C × A) × B

C[BA]-[CA]B = (id↔1 ⊗ swap★) ⊚ assocl★

reversibleOr1 : B 3↔1 B 3

reversibleOr1 = A[BC]-C[BA] ⊚ ccx ⊚ (id↔1 ⊗ cx) ⊚ C[BA]-[CA]B ⊚ (cx ⊗ id↔1) ⊚ [CA]B-A[BC]

where we clearly see the sequences of the three operations ccx, cx, and cx but, instead of using
the indices in the sequence of wires to identify the relevant parameters, here we use structural
isomorphisms to re-shuffle the types. We only show one of these re-shuffling isomorphisms and
elide the others. For the second circuit, instead of transcribing it directly, we express it using cif.

reversibleOr2 : B 3↔1 B 3

reversibleOr2 = A[BC]-B[CA] ⊚ cif (x ⊗ id↔1) cx ⊚ B[CA]-A[BC]

Like the original circuit, we examine the bit at index 1 (corresponding to the component 𝐵 in a
tuple (𝐴, (𝐵,𝐶))): if the bit is true, we perform an x operation on component 𝐴, and otherwise we
perform a cx operation on (𝐶,𝐴). The two uses of x gates in the circuit are now unnecessary as
they were only needed to encode a two-way conditional expression using a sequence of one-way
conditional expressions (the only ones available in the linear circuit model).
All of this is only half the story, however. A sound semantics for Π using weak rig groupoids

was established by Carette and Sabry [2016], and conjectured to be complete. For this semantics,
coherence conditions for symmetric rig groupoids that identify different syntactic representations
of the same permutation [Laplaza 1972], were collected in a second level of Π syntax as level-2
combinators. Each level-2 combinator is of the form 𝑐1 ↔2 𝑐2 for appropriate 𝑐1 and 𝑐2 of the same
level-1 type 𝐴 ↔1 𝐵 and asserts that 𝑐1 and 𝑐2 denote the same bijection. For example, we have the
following level-2 combinators dealing with associativity:

assoc⊚l : {c1 : A ↔1 B} {c2 : B↔1 C} {c3 : C ↔1 D}→ (c1 ⊚ (c2 ⊚ c3)) ↔2 ((c1 ⊚ c2) ⊚ c3)

assoc⊚r : {c1 : A ↔1 B} {c2 : B ↔1 C} {c3 : C↔1 D}→ ((c1 ⊚ c2) ⊚ c3) ↔2 (c1 ⊚ (c2 ⊚ c3))

assocl+l : {c1 : A ↔1 B} {c2 : C ↔1 D} {c3 : E ↔1 F} → ((c1 ⊕ (c2 ⊕ c3)) ⊚ assocl+)↔2 (assocl+ ⊚ ((c1 ⊕ c2) ⊕ c3))

assocl+r : {c1 : A ↔1 B} {c2 : C ↔1 D} {c3 : E ↔1 F} → (assocl+ ⊚ ((c1 ⊕ c2) ⊕ c3))↔2 ((c1 ⊕ (c2 ⊕ c3)) ⊚ assocl+)

assocr+r : {c1 : A↔1 B} {c2 : C↔1 D} {c3 : E ↔1 F} → (((c1 ⊕ c2) ⊕ c3) ⊚ assocr+) ↔2 (assocr+ ⊚ (c1 ⊕ (c2 ⊕ c3)))

assocr+l : {c1 : A↔1 B} {c2 : C↔1 D} {c3 : E ↔1 F} → (assocr+ ⊚ (c1 ⊕ (c2 ⊕ c3)))↔2 (((c1 ⊕ c2) ⊕ c3) ⊚ assocr+)

The full set of level-2 combinators is large; the remaining combinators are listed in Appendix A.1
in the extended version [Choudhury et al. 2021b], and also in the accompanying Agda formalisa-
tion [Choudhury et al. 2021a].

3.2 Semantics

Below we present a simple denotational semantics for our language, using finite types and type
isomorphisms. Each Π type 𝐴 is mapped to a (finite) set J 𝐴 K and each combinator 𝑐 : 𝐴 ↔1 𝐵 is
mapped to a (bijective) function J𝐴 K → J 𝐵 K. We describe this semantics by writing an interpreter
in Agda. First, we state the semantics for types, where ⊥ is the empty set, ⊤ is the singleton set, ⊔
is the disjoint union of sets, and × is the cartesian product of sets.

J 0 K = ⊥

J 1 K = ⊤

J 𝐴 + 𝐵 K = J 𝐴 K ⊔ J 𝐵 K
J 𝐴 × 𝐵 K = J 𝐴 K × J 𝐵 K

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:8 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

For combinators, we show explicitly how values reduce along each combinator, similar to a
big-step operational semantics [Chen and Sabry 2021; James and Sabry 2014].

J unite+l K (inl 𝑣) = 𝑣

J uniti+l K 𝑣 = inl 𝑣

J swap+ K (inl 𝑣) = inr 𝑣

J swap+ K (inr 𝑣) = inl 𝑣

J assocl+ K (inl 𝑣) = inl (inl 𝑣)

J assocl+ K (inr (inl 𝑣)) = inl (inr 𝑣)

J assocl+ K (inr (inr 𝑣)) = inr 𝑣

J assocr+ K (inl (inl 𝑣)) = inl 𝑣

J assocr+ K (inl (inr 𝑣)) = inr (inl 𝑣)

J assocr+ K (inr 𝑣) = inr (inr 𝑣)

J unite★l K (★, 𝑣) = 𝑣

J uniti★l K 𝑣 = (★, 𝑣)

J swap★ K (𝑣1, 𝑣2) = (𝑣2, 𝑣1)

J assocl★ K (𝑣1, (𝑣2, 𝑣3)) = ((𝑣1, 𝑣2), 𝑣3)

Jassocr★K ((𝑣1, 𝑣2), 𝑣3) = (𝑣1, (𝑣2, 𝑣3))

J dist K (inl 𝑣1, 𝑣3) = inl (𝑣1, 𝑣3)

J dist K (inr 𝑣2, 𝑣3) = inr (𝑣2, 𝑣3)

J factor K (inl (𝑣1, 𝑣3)) = (inl 𝑣1, 𝑣3)

J factor K (inr (𝑣2, 𝑣3)) = (inr 𝑣2, 𝑣3)

J id↔1 K 𝑣 = 𝑣

J(𝑐1⊚𝑐2)K 𝑣 = J 𝑐2 K(J 𝑐1 K 𝑣)
J(𝑐1 ⊕ 𝑐2)K (inl 𝑣) = inl (J 𝑐1 K 𝑣)
J(𝑐1 ⊕ 𝑐2)K (inr 𝑣) = inr (J 𝑐2 K 𝑣)
J(𝑐1 ⊗ 𝑐2)K (𝑣1, 𝑣2) = (J 𝑐1 K 𝑣1, J 𝑐2 K 𝑣2)

Theorem 3.1. The semantics is sound in the following sense:

• For every level-1 combinator 𝑐 : 𝐴 ↔1 𝐵, we have a bijection J 𝑐 K between J 𝐴 K and J 𝐵 K.
• For every pair of combinators 𝑐1 and 𝑐2 of the same type 𝐴 ↔1 𝐵, if there exists a level-2

combinator 𝛼 : 𝑐1 ↔2 𝑐2, then J 𝑐1 K = J 𝑐2 K, using extensional equivalence of functions.

4 THE GROUPOID OF FINITE TYPES

In categorical language, the target for the semantics in the previous section is the category of finite
sets and functions Setfin. However, as Π only refers to bijective functions, a more precise setting is
the groupoid B = core(Setfin) of finite sets and bijections. Setfin has finite coproducts (0,⊔) and
finite products (1,×), and in B, these restrict to additive and multiplicative symmetric monoidal
structures, respectively, making B a symmetric rig groupoid ś the vertical categorification of the
commutative rig of natural numbers N [Baez et al. 2010].
The semantics interprets types of Π as objects in B, 1-combinators as isomorphisms, and for

every pair of 1-combinators related by a 2-combinator, their interpretations in B are equal. B is a
(strict) 1-groupoid where isomorphisms are identified upto extensional equality. We can evaluate
two bijections on their inputs to decide if they are equal, and there is no higher cell witnessing the
equality of two isomorphisms. To be able to establish completeness for Π , we want a witness for
this equality, so that we can quote back to the syntax and produce a 2-combinator witnessing the
equality of the corresponding 1-combinator.
We observe that the implicit equalities between the isomorphisms are pointwise equalities of

functions, that is, homotopies. We therefore weaken the groupoid B, exposing these homotopies,
by using higher invertible cells. We work in HoTT/UF as it provides a proof-relevant, constructive
metatheory to get a handle on these equalities and provides a rich internal language for describing
weak groupoids, using the łtypes are weak∞-groupoidsž correspondence.

Every type in HoTT is a weak ∞-groupoid whose points are the terms of the type, and the
(iterated) identity type gives the (higher) morphisms. The groupoid we are interested in has types
as points, type equivalences for 1-cells, and higher homotopies for higher cells. (See Appendix B for
an example on a 3-element set.) This is the groupoid structure for the universe typeU, since the
identity type on types can be characterised as type equivalences (by univalence). But, we only want
to carve out a subuniverse of finite types, still satisfying univalence, to get the groupoid structure.
In this section, we formally define univalent subuniverses, and proceed to construct the particular
instance for finite types, UFin (see Definition 4.8).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:9

4.1 The Type Theory

We use the type theory of the HoTT book [Univalent Foundations Program 2013], that is, we
use intensional Martin-Löf Type Theory, with a hierarchy of (univalent) universesU0 : U1 : . . .
(though we will just write U since we mostly use one universe), and a few Higher Inductive Types
(HITs) for truncations and quotients. We write

∏

𝑥 :𝐴 𝐵(𝑥) or simply (𝑥 : 𝐴) → 𝐵(𝑥) for dependent
function types, and

∑

𝑥 :𝐴 𝐵(𝑥) or simply (𝑥 : 𝐴) × 𝐵(𝑥) for dependent sum types. We use ≜ for
definitions, ≡ for definitional equalities, and = for the identity type.
All arguments will hold in a Cubical Type Theory [Angiuli 2019; Cohen, Coquand, Huber, and

Mörtberg 2018; Vezzosi, Mörtberg, and Abel 2019] as well. We review the basics of identity types,
homotopy types, and some HITs that we use, and refer the reader to the book for more details.

4.2 Identity Types

Given two terms 𝑥 : 𝐴 and 𝑦 : 𝐴, we write 𝑥 =𝐴 𝑦, or simply 𝑥 = 𝑦, for the identity type, which is
the type of equalities or identifications between them. The identity type is generated by reflexivity
refl𝑥 : 𝑥 =𝐴 𝑥 , and the eliminator for the identity type is given by path induction or the 𝐽 -rule
(see Definition B.1 in the appendix). This construction can be iterated, giving the identity type
between two terms of an identity type, repeating ad infinitum. Using the iterated identity type for
morphisms, each type is equipped with the structure of a weak∞-groupoid, where each morphism
satisfies groupoid laws only upto a higher one.
A homotopy between functions 𝑓 , 𝑔 : 𝐴 → 𝐵, written 𝑓 ∼ 𝑔, is given by pointwise equality

between them,
∏

𝑥 :𝐴 𝑓 (𝑥) =𝐵 𝑔(𝑥). The identity type for functions is equivalent to homotopies
between them (𝑓 =𝐴→𝐵 𝑔) ≃ (𝑓 ∼ 𝑔), by funext and happly. An equivalence between types 𝐴 ≃ 𝐵

is given by a pair of functions between them which compose to the identity, 𝑓 ◦ 𝑔 ∼ id𝐵 and
𝑔 ◦ 𝑓 ∼ id𝐴 (also see Proposition 4.2), and this is equivalent to the identity type for the universe,
(𝐴 =U 𝐵) ≃ (𝐴 ≃ 𝐵), which is the univalence principle.

happly : (𝑓 = 𝑔) → (𝑓 ∼ 𝑔)

funext : (𝑓 ∼ 𝑔) → (𝑓 = 𝑔)

idtoeqv : (𝐴 = 𝐵) → (𝐴 ≃ 𝐵)

ua : (𝐴 ≃ 𝐵) → (𝐴 = 𝐵)

Functions between types are functors between groupoids. Given a function 𝑓 : 𝐴 → 𝐵, there
is a functorial action on the paths given by ap. Type families, that is, types indexed by terms, are
simply functions from a type to the universe, such as 𝐴 → U, which is an 𝐴-indexed family of
groupoids. For a type family 𝑃 : 𝐴 → U and a point 𝑥 : 𝐴, the type 𝑃 (𝑥) is the fiber over 𝑥 . The
transport operation lifts paths in the indexing type to functions between fibers.

ap𝑓 :
∏

𝑥,𝑦:𝐴 𝑥 =𝐴 𝑦 → 𝑓 (𝑥) =𝐵 𝑓 (𝑦) transport𝑃 :
∏

𝑥,𝑦:𝐴 𝑥 =𝐴 𝑦 → 𝑃 (𝑥) → 𝑃 (𝑦)

The type
∑

𝑥 :𝐴 𝑃 (𝑥) is the collection of all the fibers and is the total space of 𝑃 . The first projection
𝜋1 :

∑

𝑥 :𝐴 𝑃 (𝑥) → 𝐴 from the total space to the base space 𝐴 has the structure of a fibration, that is,
there is a lifting operation (see Figure 12 in the appendix) which lifts paths in the base space to
paths in the total space.

4.3 Univalent Fibrations

Using the groupoid structure of 𝐴, for any 𝑥,𝑦 : 𝐴 and a path 𝑝 : 𝑥 =𝐴 𝑦, transport(𝑝) and
transport(𝑝−1) form an equivalence, lifting paths in the base space to equivalences between fibers.

transport-equiv(𝑃) : (𝑥 =𝐴 𝑦) → (𝑃 (𝑥) ≃ 𝑃 (𝑦))

The type families (or fibrations) we are interested in are the ones where paths in the base space com-
pletely determine the equivalences in the fibers ś these are called univalent fibrations [Christensen
2015; Kapulkin, Lumsdaine, and Voevodsky 2012; Kapulkin and Lumsdaine 2021].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:10 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

Definition 4.1 (Univalent Fibration). 𝑃 is a univalent type family (or, 𝜋1 :
∑

𝑥 :𝐴 𝑃 (𝑥) → 𝐴 is

a univalent fibration) if transport-equiv(𝑃) is an equivalence.

Univalent fibrations were introduced by Kapulkin, Lumsdaine, and Voevodsky [2012], to build
a model of Voevodsky’s univalence principle in simplicial sets. Indeed, univalence characterises
paths in the universe as equivalences between types, which follows from the canonical fibration
id : U → U being univalent.

4.4 Higher Inductive Types

Higher Inductive Types generalise Inductive Types, by allowing path constructors besides point
constructors. While point constructors generate the elements of the type, path constructors generate
equalities between points in the type. We describe a few basic HITs that we use.

Given a type 𝐴, the propositional truncation ∥𝐴∥−1, squashes the elements of 𝐴 turning it into a
proposition. It is given by a HIT with a point constructor |−| : 𝐴 → ∥𝐴∥, and a path constructor
trunc(𝑥,𝑦) : 𝑥 =∥𝐴∥ 𝑦, which equates every pair of points in the truncation (see Definition B.2).
Another HIT that we use is the set-quotient 𝐴/𝑅 which takes a set 𝐴 and a binary relation

𝑅 : 𝐴 → 𝐴 → U. It has a mapping of points q : 𝐴 → 𝐴/𝑅, and a constructor that adds paths
between related pairs of elements q-rel : 𝑅(𝑥,𝑦) → q(𝑥) =𝐴/𝑅 q(𝑦) (see Definition B.3). We recall
that if 𝑅 is a prop-valued equivalence relation, then the quotient is effective, that is, 𝑅(𝑥,𝑦) holds iff
(𝑞(𝑥) =𝐴/𝑅 𝑞(𝑦)).

4.5 Homotopy Types

A type is contractible (a -2-type) if it has a unique element, that is, there is a center of contraction and
every other point is equal to it. A type is a proposition (-1-type) if its equality types are contractible,
that is, it has at most one inhabitant. Iterating this, we can define sets or 0-types (whose equality
types are propositions) and 1-groupoids or 1-types (whose equality types are sets), and similarly,
higher homotopy 𝑛-types.

isContr(𝐴) ≜
∑

𝑥 :𝐴
∏

𝑦:𝐴 𝑦 = 𝑥

isProp(𝐴) ≜
∏

𝑥,𝑦:𝐴 isContr(𝑥 = 𝑦)

isSet(𝐴) ≜
∏

𝑥,𝑦:𝐴 isProp(𝑥 = 𝑦)

isGpd(𝐴) ≜
∏

𝑥,𝑦:𝐴 isSet(𝑥 = 𝑦)

Given a function 𝑓 : 𝐴 → 𝐵, there is an associated fibration over 𝐵, given by its homotopy fiber.
The image of 𝑓 is defined to be the (-1)-truncation of its fiber.

fib𝑓 (𝑏) ≜
∑

𝑎:𝐴 𝑓 (𝑎) =𝐵 𝑏 im(𝑓) ≜
∑

𝑏:𝐵

fib𝑓 (𝑏)

−1

Finally, we recall a few characterisations of equivalences of homotopy types.

Proposition 4.2. The following are equivalent.

(1) 𝑓 : 𝐴 → 𝐵 is an equivalence.

(2) 𝑓 has a left and right inverse.

(3) 𝑓 has contractible fibers.

4.6 Univalent Subuniverses

Starting from a univalent universe which classifies all types, we want to define a subuniverse
which classifies only certain types, for example, types that satisfy some desired property. We use a
prop-valued type family, that is, a predicate on the universe, which picks out only those types, and
collect them into a univalent subuniverse. Being univalent ensures that the equality type of the
ambient universe is reflected in the subuniverse.

Definition 4.3 (Universe). A universe à la Tarski is given by the following pieces of data,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:11

• a code𝑈 : U,

• a decoding type family El : 𝑈 → U.

If El is univalent, we call (𝑈 , El) a univalent universe.

Proposition 4.4 (Univalent Subuniverse). A universe predicate is a type family 𝑃 : U →

U whose fibers are propositions, that is, 𝑃 (𝑋) is a proposition for every 𝑋 . Given such a pred-

icate 𝑃 , the fibration 𝜋1 :
∑

𝑋 :U 𝑃 (𝑋) → U is univalent and generates a univalent subuniverse

U𝑃 ≜ (
∑

𝑋 :U 𝑃 (𝑋), 𝜋1).

The types we are interested in are the finite types. In constructive mathematics, the notion of
finiteness is subtle [Spiwack and Coquand 2010]. We use the notion of Bishop-finiteness: a type is
finite if it is merely equivalent to a finite set (Definitions 4.5 and 4.6).

Definition 4.5 (Fin). The type family Fin : N → U is the type of finite sets indexed by their

cardinality. It is defined equivalently in two different ways,

Finn ≜
∑

𝑘 :N 𝑘 < 𝑛 or
Fin0 ≜ ⊥

FinS n ≜ ⊤ ⊔ Finn

Note that Finn is a set, and we use both definitions interchangeably.

Definition 4.6 (isFin). We say that a type is finite if it is merely equal to Finn for some 𝑛 : N.

isFin(𝑋) ≜
∑

𝑛:N ∥𝑋 =U Finn∥−1

Note that the natural number 𝑛 need not be truncated, as justified below.

Lemma 4.7. For any type 𝑋 , isFin(𝑋) is a proposition.

Since isFin is a predicate on the universe U, we easily get our univalent subuniverse UFin. This
definition of the groupoid of finite types has also been considered in [Yorgey 2014].

Definition 4.8. The univalent subuniverse of all finite types is given by UFin ≜
∑

𝑋 :U isFin(𝑋).

We write 𝐹𝑛 ≜ (Finn, 𝑛, | refl |), for the image of the inclusion of Finn.

While UFin has all the finite types, we are also interested in constructing a subuniverse of finite
types of a specified cardinality. To do so, we will start with the subuniverse BAut(𝑇), for any type
𝑇 : U. Characterisations of univalent fibrations using the BAut construction have also been studied
by Christensen [2015].

Definition 4.9 (BAut). The predicate 𝑃 (𝑋) ≜ ∥𝑋 ≃ 𝑇 ∥−1, or equivalently, ∥𝑋 = 𝑇 ∥−1, picks out

exactly those types that are merely equivalent to 𝑇 , and this generates the subuniverse

BAut(𝑇) ≜
∑

𝑋 :U ∥𝑋 =U 𝑇 ∥−1 .

We write 𝑇0 ≜ (𝑇, | refl𝑇 |) for the image of the inclusion of 𝑇 in BAut(𝑇).

Using BAut, we can talk about types that are equivalent to a finite set of specified cardinality, for
example, the subuniverse of 2-element sets is given by BAut(2). This has been used to construct
the real projective spaces in HoTT [Buchholtz and Rijke 2017], and also to give sound and complete
denotational semantics to a 1-bit fragment of Π [Carette, Chen, Choudhury, and Sabry 2018].

Definition 4.10 (UFinn). For any 𝑛 : N, we define UFinn ≜ BAut(Finn) to be the univalent

subuniverse of 𝑛-element sets. Note that,UFin can be equivalently seen as the collection of all finite

types, that is, UFin ≃
∑

𝑛:N UFinn .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:12 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

Since BAut(𝑇) is a univalent subuniverse, we can characterise its path space. The intuition is
that BAut(𝑇) only has one point or 0-cell 𝑇0, and 1-paths 𝑇0 = 𝑇0, that is, loops, and higher paths
between these loops. The type of loops on 𝑇0, that is, Ω(BAut(𝑇),𝑇0), is shown to be equivalent to
Aut(𝑇) ≜ 𝑇 ≃ 𝑇 , which is the group of automorphisms of 𝑇 .

Lemma 4.11.

(1) If 𝑇 is an 𝑛-type, BAut(𝑇) is an (𝑛 + 1)-type.
(2) For any 𝑇 : U, BAut(𝑇) is 0-connected.

(3) For any 𝑇 : U, Ω(BAut(𝑇),𝑇0) ≃ Aut(𝑇).

Theorem 4.12.

(1) UFinn is a pointed, connected, 1-groupoid for every 𝑛 : N, and Ω(UFinn , 𝐹𝑛) ≃ Aut(Finn).

(2) UFin is a 1-groupoid with connected components for every 𝑛 : N.

We have shown that loops inUFin exactly encode the automorphism group Aut(Finn) for every 𝑛.
This is a general technique called delooping, where a group can be identified with a 1-object groupoid,
that is, a 0-connected type in HoTT. This technique also allows defining higher groups [Buchholtz
et al. 2018]. The loopspace of a pointed type automatically has the structure of a group, with refl★
for the neutral element, path composition for the group multiplication, and path inverse for the
group inverse. The group axioms follow from the higher paths corresponding to groupoid laws.

4.7 Rig Structure

Similar to B, the groupoidUFin has two symmetric monoidal structures, the additive and the multi-
plicative ones, and the multiplicative tensor product distributes over the additive one. To construct
these, we first state and prove some equivalences on Fin, and some general type isomorphisms.
Then we simply lift these equivalences to UFin, by the univalence principle.

Proposition 4.13. For any 𝑛,𝑚 : N, and for any types 𝑋,𝑌, 𝑍 ,

Fin0 ≃ ⊥

Finn ⊔ Finm ≃ Finn+m

⊥ ⊔ 𝑋 ≃ 𝑋

𝑋 ⊔ ⊥ ≃ 𝑋

(𝑋 ⊔ 𝑌) ⊔ 𝑍 ≃ 𝑋 ⊔ (𝑌 ⊔ 𝑍)

𝑋 ⊔ 𝑌 ≃ 𝑌 ⊔ 𝑋

𝑋 × ⊥ ≃ ⊥

Fin1 ≃ ⊤

Finn × Finm ≃ Finn·m

⊤ × 𝑋 ≃ 𝑋

𝑋 × ⊤ ≃ 𝑋

(𝑋 × 𝑌) × 𝑍 ≃ 𝑋 × (𝑌 × 𝑍)

𝑋 × 𝑌 ≃ 𝑌 × 𝑋

𝑋 × (𝑌 ⊔ 𝑍) ≃ (𝑋 × 𝑌) ⊔ (𝑋 × 𝑍)

Theorem 4.14. UFin has two symmetric monoidal structures, the additive and multiplicative

ones, given by (𝐹0,⊔) and (𝐹1,×), with corresponding natural isomorphisms 𝜆𝑋 , 𝜌𝑋 , 𝛼𝑋,𝑌,𝑍 , and

the braiding isomorphism B𝑋,𝑌 , upto 1-paths in UFin. These isomorphisms satisfy the Mac Lane

coherence conditions for symmetric monoidal categories [MacLane 1963], that is, the triangle, pentagon,

and hexagon identities, and the symmetry of the braiding, upto 2-paths inUFin. The multiplicative

structure distributes over the additive structure and satisfies the Laplaza coherence conditions for rig

categories [Laplaza 1972].

5 THE GROUP OF PERMUTATIONS

In Section 4, we established that paths in UFin are equivalent to families of loops on Finn for every
𝑛 : N, that is, automorphisms of finite sets of size 𝑛, with the loopspace encoding the automorphism

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:13

group. This is also the finite symmetric group Sn, making UFin the horizontal categorification of Sn
for every 𝑛. In this section, we will describe this group syntactically.
In order to study syntactic descriptions of permutations, we will hit the problem of deciding

whether two descriptions refer to the same permutation ś in group theory, this is the word problem
for Sn. Putting it in this form allows us to connect it to the broader scope of computational group
theory and combinatorics ś we can borrow ideas such as Coxeter relations and Lehmer codes. The
concepts we use can be found in any standard textbook on group theory, or see the Symmetry
book [Bezem et al. 2021] for a univalent point of view.

Thus, the goal of this section is to reconcile two different approaches to defining the symmetric
group ś as an automorphism group, and as a group syntactically presented using generators and
relations [Matsumoto 1964]. The generators of the group are similar to the primitive combinators
in a (reversible) programming language ś the group structure gives the composition and inverse
operations, and the relations describe how these primitive combinators interact with each other.

First, we will define the required notions of free groups and group presentations, and state some of
their most important properties. Then, we introduce our chosen Coxeter presentation for Sn. To solve
the word problem for Sn, we will use a rewriting system, with a suitable, well behaved collection
of reduction rules corresponding to the Coxeter presentation equations. Finally, we describe the
normal forms in this rewriting system, using Lehmer codes, and prove the correspondence between
them and the type Aut(Finn) of automorphisms on a finite set. The generators and relations we use
here will be used to quote back to 1 and 2-combinators in Π (see Section 6).

5.1 Presenting the Symmetric Group

One way of thinking about presentations of Sn is via sorting algorithms, which use different
primitive operations. A sorting algorithm has to calculate a permutation of a list or a (listed) finite
set, which satisfies the invariant of being a sorted sequence, which means, the primitive operations
of a sorting algorithm are able to generate all the permutations on a given list. So, a chosen set of
reversible operations in a sorting algorithm can be a good candidate for the generators of symmetric
groups. For example, we could generate the symmetric group on Finn by using generators (primitive
operations) that:

• swap the 𝑖-th element with the (𝑖 + 1)-th element, that is, adjacent swaps, or
• swap the 𝑖-th element with the 𝑗-th element, for arbitrary 𝑖-s and 𝑗-s, or
• swap the 𝑖-th element with an element at a fixed position, or
• reverse a prefix Fink of Finn for 𝑘 ≤ 𝑛, or
• cyclically shift any subset of Finn.

Bubble sort uses the primitive operation of adjacent swaps, insertion sort and selection sort use the
primitive operation of swapping the 𝑖-th element with the 𝑗-th element, cycle sort uses cyclical
shifts of subsequences, pancake sort uses reversals of the prefixes of the list, et cetera. The choice
of generators for our presentation is important for the following reasons.

• It affects the difficulty of solving the word problem in Sn and formalising the proof of its
correctness.

• The choice of generators dictates which words become normal forms in this presentation of
Sn. These normal forms dictate the shape of the synthesised and normalised boolean circuits,
which is the application we have in mind.

• Finally, the generators have to closely match the Π combinators so that we can quote back a
permutation to a Π program, for the proof of completeness.

We will show in Section 6 that all Π combinators can be encoded using adjacent transpositions.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:14 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

5.2 Free Groups

Usually, there are many equations, besides the group axioms, that hold for the elements of a group.
For example, in the group Aut(2), or Z2, we have an equation 1 + 1 = 0, which is not a consequence
of the group axioms, but is specific to this particular group. A free group has the property that
no other equations hold except the ones directly implied by the group axioms. For example, the
additive group of integers Z is the free group on the singleton set.
A group homomorphism between groups 𝐺 and 𝐻 is a function 𝑓 : 𝐺 → 𝐻 between the

underlying sets that preserves the group structure. Giving a group homomorphism out of the free
group is equivalent to giving a function out of the generating set. This is the universal property of
free groups, stemming from the free-forgetful adjunction between the categories of groups and
sets. We say that 𝐹 (𝐴) with 𝜂𝐴 : 𝐴 → 𝐹 (𝐴) is the free group on 𝐴 if it satisfies the following.

Proposition 5.1 (Universal Property of 𝐹 (𝐴)). Given a group𝐺 and a map 𝑓 : 𝐴 → 𝐺 , there is

a unique group homomorphism 𝑓 # : Hom(𝐹 (𝐴),𝐺) such that 𝑓 # ◦ 𝜂𝐴 ∼ 𝑓 . Equivalently, composition

with 𝜂𝐴 gives an equivalence Hom(𝐹 (𝐴),𝐺) ≃ 𝐴 → 𝐺 .

Following the naive universal-algebraic definition, in HoTT, we could use a higher inductive
type to define the free group, which enforces the group axioms by adding path constructors
(see Definition C.2). Using the induction principle, we can easily verify the universal property.
However, since this definition of 𝐹 (𝐴) has lots of path constructors corresponding to each group
axiom, characterising its path space is difficult.
Instead, we will think about elements of the free group as words over an alphabet of letters

drawn from the generating set and the set of their formal inverses. If we take the disjoint union of
𝐴 with itself, that is, 𝐴 +𝐴 as the group’s underlying set, we can use inl/inr to mark the elements ś
inl𝑎 means 𝑎 and inr𝑎 means 𝑎−1. Then, we can encode the free group using the free monoid, that
is, lists of 𝐴 +𝐴. Additionally, we need to ensure that the inverse laws hold, so we have to coalesce
adjacent occurrences of 𝑎 and 𝑎−1.

Definition 5.2 (Free group). Let 𝐴 be a set, and List(−) the free monoid monad. The free group

𝐹 (𝐴) on𝐴 is the set-quotient of List(𝐴 +𝐴) by the congruence closure of the relation 𝑎 :: 𝑎−1 :: nil ∼ nil

and 𝑎−1 :: 𝑎 :: nil ∼ nil.

Proposition 5.3. 𝐹 (𝐴) ≜ List(𝐴 +𝐴)/∼∗ has a group structure, with the empty list nil for the

neutral element, multiplication given by list append ++, and inverse given by flipping inl and inr,

followed by reversing the list. Further, 𝐹 (𝐴) with 𝜂𝐴 (𝑎) ≜ inl(𝑎) :: nil satisfies the universal property
of free groups, as stated in Proposition 5.1.

5.3 Group Presentations

A presentation of a group builds it by starting from the free group 𝐹 (𝐴) and introducing additional
equations that are satisfied in the resulting group. For example, if we take 𝐹 (1) ≜ Z and add an
equation 1 + 1 = 0, the resulting group would be Z2 ≃ Aut(2). Note that not all groups have finite
(or computable) presentations, and, a group can have a number of different presentations.

Definition 5.4 (Group presentation). Let 𝐴 be a set and 𝑅 : List(𝐴 +𝐴) → List(𝐴 +𝐴) → U

a binary relation on List(𝐴 +𝐴). The group 𝐹 (⟨𝐴;𝑅⟩) presented by𝐴 and 𝑅, is given by the set-quotient

of the free group 𝐹 (𝐴) by the congruence closure of 𝑅.

The universal property of the above definition of a presented group is similar to Proposition 5.1,
except the function mapping out of the generating set also has to respect the relation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:15

=

(a) cancel

. . . = . . .

(b) swap

=

(c) braid

Fig. 5. Braiding diagrams for Coxeter relations.

Proposition 5.5 (Universal property of 𝐹 (⟨𝐴;𝑅⟩)). Given a group 𝐺 and a map 𝑓 : 𝐴 → 𝐺 ,

such that 𝑓 extended to 𝐹 (𝐴) respects𝑅, there is a unique group homomorphism 𝑓 # : Hom(𝐹 (⟨𝐴;𝑅⟩),𝐺)
such that 𝑓 # ◦ 𝜂𝐴 ∼ 𝑓 .

Before, the only way to decide the equality of two elements in a group was to evaluate and check
them on the nose, but in a group presentation, this is reduced to deciding whether one word ś a
representative of the equivalence class of the group’s elements, can be reduced to another word,
using the group’s relations. However, these relations are not directed, so it is not always possible to
construct a well-behaved rewriting system. In general, the word problem for groups is undecidable.

Coxeter Presentation. To present the group Sn, the primitive operations we use will be adjacent
swaps. When dealing with permutations on an 𝑛 + 1-element set, there are 𝑛 adjacent transpositions
ś transposition number 𝑘 swaps elements at indices 𝑘 and 𝑘 + 1. Thus, the generating set is Finn.
There are three relations that we’re going to specify for this presentation ś we visualise them as
braiding diagrams in Figure 5.

5a Swapping the same two elements twice in a row should be the same as doing nothing.
5b When swapping two distinct pairs of elements, the order in which swapping happens should

not matter, that is, we can slide the wires freely.
5c There are two equivalent ways of swapping the first and last elements in a sequence of three

elements.

This construction is called a Coxeter presentation of Sn. Writing it formally, we encode the rules
discussed above using a relation↭ on List(Finn) (Definition 5.6), and then take its congruence
closure↭

∗
(Definition C.3).

Definition 5.6 (↭: List(Finn) → List(Finn) → U).

cancel : ∀𝑛 → (𝑛 :: 𝑛 :: nil)↭ nil

swap : ∀𝑘, 𝑛 → (S𝑘 < 𝑛) → (𝑛 :: 𝑘 :: nil)↭ (𝑘 :: 𝑛 :: nil)

braid : ∀𝑛 → (S𝑛 :: 𝑛 :: S𝑛 :: nil)↭ (𝑛 :: S𝑛 :: 𝑛 :: nil)

The idea for solving the word problem for Sn is to turn these undirected relations into a rewriting
system (List(Finn),↭

∗
), so that, by repeatedly applying the reduction rules as long as possible, any

two↭
∗
-equal terms would eventually converge to the same normal form.

For this to work, we first need the system to have the termination property, meaning that there
should be no infinite reductions. We observe that, after throwing out reflexivity and symmetry, the
right-hand sides of the relations↭

∗
are strictly smaller than the left-hand sides, in terms of the

lexicographical ordering on words in Finn (which is well-founded). Thus, by directing the relation
from left to right, we would get the termination property out of the box. Second, we need the
normal forms to be unique, so that we can extract a normalisation function. This will be true if the
rewriting system is confluent ś all critical pairs, that is, terms with overlapping possible reduction
rules, have to converge. For example, in our system, the pair in Figure 6a converges. Unfortunately,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:16 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

𝜏2𝜏1𝜏2𝜏1𝜏2

𝜏1𝜏2𝜏1𝜏1𝜏2 𝜏2𝜏1𝜏1𝜏2𝜏1

𝜏1𝜏2𝜏2 𝜏2𝜏2𝜏1

𝜏1

braid braid

cancel

cancel

cancel

cancel

(a) Converging critical pair

𝜏3𝜏2𝜏3𝜏1

𝜏3𝜏2𝜏1𝜏3

𝜏2𝜏3𝜏2𝜏1

braid

swap

braidq

(b) Non-converging critical pair that converges with braidq

Fig. 6. Critical Pairs in↭
∗

this is not true for all critical pairs ś an example is in Figure 6b, where left and right endpoints are
normal with respect to the↭

∗
relation.

5.4 Rewriting via Coxeter

Because of this counter-example, the relations have to be changed. In this section, we formally
define a rewriting system (List(Finn),⇝), partially based on the Coxeter relations, and prove that
it has the desired properties of confluence and termination. We prove that the new relation defined
by this system is equivalent, in a technical sense (Proposition 5.10), to the standard Coxeter relation
↭
∗
. First, we need to define a function ↙.

Definition 5.7 (↙: (𝑛 : N) → (𝑘 : N) → List(Fink+n)).

𝑛 ↙ 0 ≜ nil

𝑛 ↙ S𝑘 ≜ (𝑘 + 𝑛) :: (𝑛 ↙ 𝑘)

The result of computing 𝑛 ↙ 𝑘 is the sequence [𝑘 + 𝑛 − 1, 𝑘 + 𝑛 − 2, 𝑘 + 𝑛 − 3, . . . , 𝑛], which is
a sequence of transpositions that moves the element at index 𝑘 + 𝑛 left by 𝑘 places, shifting all
the elements in between one place right (see Figure 7a). Then, the directed relation⇝ is defined
with the following generators (inlining the congruence closure in the relation⇝ allows arbitrary
reductions inside the list).

Definition 5.8 (⇝: List(Finn) → List(Finn) → U).

cancelq : ∀𝑛, 𝑙, 𝑟 → (𝑙 ++ 𝑛 :: 𝑛 :: 𝑟) ⇝ (𝑙 ++ 𝑟)

swapq : ∀𝑛, 𝑘, 𝑙, 𝑟 → (S𝑘 < 𝑛) → (𝑙 ++ 𝑛 :: 𝑘 :: 𝑟) ⇝ (𝑙 ++ 𝑘 :: 𝑛 ++ 𝑟)

braidq : ∀𝑛, 𝑘, 𝑙, 𝑟 → (𝑙 ++ (𝑛 ↙ 2 + 𝑘) ++ (1 + 𝑘 + 𝑛) :: 𝑟) ⇝ (𝑙 ++ (𝑘 + 𝑛) :: (𝑛 ↙ 2 + 𝑘) ++ 𝑟)

Constructors cancelq and swapq correspond directly to the appropriate constructors of↭ and
can be visualised in the same way as before. The remaining constructor braidq uses the↙ function
to exchange the order of a long sequence of transpositions and a single transposition afterwards.
For example, for 𝑛 = 0 and 𝑘 = 3, it allows for the reduction [4, 3, 2, 1, 0, 4] ⇝ [3, 4, 3, 2, 1, 0]
(see Figure 7b ś there is a distinction between wires, where numbers represent the values, and
transpositions, where numbers represent crossing wires).

Note that the previous braid rule is a special case of braidq , with 𝑘 = 0. As before, the left-hand
sides of the relation are (lexicographically) strictly larger than the right-hand sides. We define the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:17

0 1 2 3 4 5 6

56 0 1 2 3 4

(a) 0 ↙ 6

→

0 1 2 3 4 5

35 0 1 42

0 1 2 3 4 5

35 0 1 42

(b) braidq with 𝑛 = 0 and 𝑘 = 3

Fig. 7. Braiding diagrams for modified Coxeter relations.

transitive closure of⇝ to be⇝
+
(see Definition C.5 in the appendix) and its reflexive-transitive

closure to be⇝
∗
(see Definition C.4).

Despite the increased complexity of the generators, the rewriting system (List(Finn),⇝) has the
properties we desire. It satisfies local confluence, that is, the Church-Rosser (diamond) property
ś for example, using braidq , we can now show the problematic critical pair Figure 6b converges,
and, it is terminating, so by Newman’s lemma, it produces a unique normal form. We follow the
terminology of Huet [1980]; Kraus and von Raumer [2020] to state our results formally.

Theorem 5.9.

(1) ⇝ is (locally) confluent. For every span𝑤2 ⇝𝑤1 ⇝ 𝑤3, there is a matching extended cospan

𝑤2 ⇝
∗
𝑤 ⇝

∗
𝑤3.

(2) ⇝
+
is terminating. For every 𝑤 ⇝

+
𝑣 , it holds that 𝑣 < 𝑤 , where < is the (well-founded)

lexicographic ordering on List(Finn).

(3) ⇝
∗
is confluent. For every extended span𝑤2 ⇝

∗
𝑤1 ⇝

∗
𝑤3, there is a matching extended cospan

𝑤2 ⇝
∗
𝑤 ⇝

∗
𝑤3.

(4) For every𝑤 , there exists a unique normal form 𝑣 such that𝑤 ⇝
∗
𝑣 .

The modified form of the Coxeter relations are unwieldy and difficult to prove properties about by
induction. However, we can make the following observation relating it to↭

∗
.

Proposition 5.10. The relations↭
∗

and⇝
∗
are equivalent in the following sense: for every𝑤 and

𝑣 ,𝑤↭
∗

𝑣 iff there is a 𝑢 such that𝑤 ⇝
∗
𝑢 ⇝

∗
𝑣 .

By Theorem 5.9 part 4, we get a unique choice function 𝔫𝔣 : List(Finn) → List(Finn) that produces
a normal form for terms of List(Finn). We state two important properties enjoyed by 𝔫𝔣.

Proposition 5.11.

(1) For all 𝑙 : List(Finn), we have that 𝑙↭
∗

𝔫𝔣(𝑙).

(2) 𝔫𝔣 is idempotent, that is, 𝔫𝔣 ◦ 𝔫𝔣 ∼ 𝔫𝔣.

Finally, we define the type Sn as the set-quotient of List(Finn) by↭
∗
,

Definition 5.12 (Sn). Sn ≜ List(Finn)/↭
∗

Note that reductions need not be unique, hence𝑤 ↭
∗

𝑣 is not necessarily a proposition. So, the
quotient Sn is not effective, that is, q-rel : 𝑤↭

∗
𝑣 → 𝑞(𝑤) = 𝑞(𝑣) is not an equivalence. Using the

𝔫𝔣 function, we could instead define a new relation ≈ to equate those terms that have the same

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:18 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

normal form, (𝑤 ≈ 𝑣) ≜ (𝔫𝔣(𝑤) = 𝔫𝔣(𝑣)). This relation is prop-valued, and we could quotient
List(Finn) by ≈, obtaining an equivalent definition for Sn.

Proposition 5.13.

(1) 𝔫𝔣 splits into a section-retraction pair, that is, we have List(Finn)
𝑠
−→ Sn

𝑟
−→ List(Finn) such that

𝑠 ◦ 𝑟 ∼ 𝔫𝔣 and 𝑟 ◦ 𝑠 ∼ idSn .

(2) im(q) ≃ Sn ≃ im(𝔫𝔣), where q : List(Finn) → Sn is the mapping into the quotient.

Finally, we need to show that Sn is indeed a group presentation.

Proposition 5.14. There is a group structure on Sn, where the identity element is nil, multiplication

is given by list append, and inverse is given by list reversal.

Notice however, that for a group presentation, as defined in Definition 5.4, the relation needs
to be on the set of words 𝐴 + 𝐴, where the right copy corresponds to the set of formal inverses
of the generators. The following proposition lets us lift a group structure on List(𝐴) to a group
presentation, whose underlying set is List(𝐴 +𝐴).

Proposition 5.15. Given a set 𝐴 and a congruence relation 𝑅 on List(𝐴) with the group structure

given by append and reversal, there is a generated group structure 𝐹 (⟨𝐴;𝑅+⟩), where 𝑅+ is the relation

𝑅 lifted to List(𝐴 +𝐴) along the codiagonal map ∇𝐴 : 𝐴 +𝐴 → 𝐴.

Corollary 5.16. The group Sn is isomorphic to the group presentation given by 𝐹 (⟨Finn;↭
∗

+⟩).

To decide if two words in List(Finn) are↭
∗
-equal, we simply have to compute their normal forms

using 𝔫𝔣. They correspond to the same permutation if and only if these normal forms are equal,
which is decidable for List(Finn).

5.5 Lehmer Codes

To prove the equivalence betweenAut(Finn) and Sn, we will define functions back and forth between
the two types. The terms in Sn can be identified with equivalence classes of terms in List(Finn) with
respect to the Coxeter relation↭

∗
. The easiest way to define a function out of this presentation

is to define it on the representatives. We know that these are the unique normal forms in the
set-quotient given by q ◦ 𝔫𝔣, but now we will explicitly describe what these representatives look
like, using an encoding called Lehmer codes [Lehmer 1960].
Lehmer codes are known in Combinatorial Analysis [Bellman and Hall 1960] where they are

sometimes called "subexcedant sequences", or "factoriadics". They can be written as a decimal
number in the factorial number system, or as a tuple encoding the digits [Knuth 1997; Laisant 1888].
This gives a convenient way of representing permutations on a computer, partly because they are
bitwise-optimal [Berger et al. 2019].

Formally, we define Lehmer(𝑛) to be an 𝑛 + 1-element tuple, where the position 𝑘 ≤ 𝑛 stores an
element of Fink. Since the 0-th position is trivial, in practice it is ignored [Dubois and Giorgetti
2018; Vajnovszki 2011].

Definition 5.17 (Lehmer : N → U).

Lehmer(0) ≜ FinS 0

Lehmer(S𝑛) ≜ Lehmer(𝑛) × FinS S n

The inversion count of an element is given by the number of smaller elements that appear after
it in the permutation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:19

Definition 5.18 (Inversion count). Given a permutation 𝜎 : Aut(Finn), the inversion count of

an element 𝑖 : Finn is given by

inv𝜎 (𝑖) ≜ # { 𝑗 < 𝑖 | 𝜎 (𝑗) > 𝜎 (𝑖) } .

Knowing the inversion counts for all the elements, one can reconstruct the starting permutation.
Also, observe that inv𝜎 (𝑖) < 𝑖 , thus fitting in the 𝑖-th place of a Lehmer code tuple. As an example,
consider the following tabulated presentation of a permutation of Fin5.

𝜎 ≜

(

0 1 2 3 4
2 1 4 0 3

)

The Lehmer code for the permutation 𝜎 is then the 5-tuple

𝑙 ≡ (inv𝜎 (0), inv𝜎 (1), inv𝜎 (2), inv𝜎 (3), inv𝜎 (4)) ≡ (0, 1, 2, 0, 2)

To decode the permutation back from this Lehmer code, we perform an algorithm similar to insertion
sort. The element of the Lehmer code being currently processed is highlighted in the left column of
the table below. Starting from a sorted list, the element at index 𝑘 has to be given 𝑙 [𝑘] inversions.
Because of the invariant that all the elements before newly processed one are smaller than it, the
proper number of inversions is created by simply shifting the element 𝑙 [𝑘] places left.

(0, 1, 2, 0, 2) [0, 1, 2, 3, 4]

(0, 1, 2, 0, 2) [1, 0, 2, 3, 4]

(0, 1, 2, 0, 2) [2, 1, 0, 3, 4]

(0, 1, 2, 0, 2) [2, 1, 0, 3, 4]

(0, 1, 2, 0, 2) [2, 1, 4, 0, 3]

Writing formally, to turn a Lehmer code into a word in Sn, we define a function 𝔢𝔪. As described
above, the number 𝑟 at position 𝑘 in the tuple describes how many inversions the element k has.
Thus, we need to perform 𝑟 many adjacent transpositions to get to the desired position, which is
given by (S𝑛 − 𝑟) ↙ 𝑟 .

Definition 5.19 (𝔢𝔪 : (𝑛 : N) → Lehmer(𝑛) → List(FinS n)).

𝔢𝔪0 (0) ≜ nil

𝔢𝔪S𝑛 ((𝑟, 𝑙)) ≜ 𝔢𝔪𝑛 (𝑙) ++ ((S𝑛 − 𝑟) ↙ 𝑟)

We can show that the function 𝔢𝔪𝑛 gives an equivalence between Lehmer(𝑛) and im(𝔫𝔣).

Theorem 5.20.

(1) For any Lehmer code 𝑐 , 𝔢𝔪𝑛 (𝑐) is a normal form with respect to⇝
∗
, that is, 𝔢𝔪𝑛 (𝑐) is in im(𝔫𝔣).

(2) Any element of im(𝔫𝔣) can be constructed from a unique Lehmer code by 𝔢𝔪, that is, the fibers

of 𝔢𝔪𝑛 : Lehmer(𝑛) → im(𝔫𝔣) are contractible.

Therefore, there is an equivalence between Lehmer(𝑛) and im(𝔫𝔣) (see Proposition 4.2).

Corollary 5.21. For all 𝑛 : N, Sn ≃ im(𝔫𝔣) ≃ Lehmer(𝑛).

5.6 Running Lehmer Codes

Finally, it is time to complete our goal of characterising the symmetric group. Having produced a
Lehmer code by normalising words in Sn, we need to run it to produce a concrete bijection of finite
sets, and, given a bijection between finite sets, we need to encode it as a Lehmer code. We will
prove that these maps construct an equivalence between the types Lehmer(𝑛) and Aut(FinS n)

1.
The idea for this proof is borrowed from Molzer [2021].
1Note that the indices for the type of permutations are off-by-one, because we chose Finn to represent generators for
permutations on FinS n.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:20 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

Definition 5.22 (Fin-n : Finn → U). For 𝑛 : N, the type family Fin-n picks out all elements in Finn

except the one in the argument.

Fin-n (𝑖) ≜
∑

𝑗 :Finn 𝑖 ≠ 𝑗

Note that Fin-n (𝑖) for 𝑖 : Finn is a subtype of Finn and is hence a set. We state and prove a few
auxiliary lemmas about how Fin-n interacts with Fin ś these are obtained by counting arguments
using the fact that Finn and Fin-n both have decidable equality.

Lemma 5.23.

(1) For any 𝑘 : FinS n, we have Fin
-
S n(𝑘) ≃ Finn.

(2) For any 𝑛 : N, we have Aut(FinS n) ≃
∑

𝑘 :FinS n (Fin
-
S n(𝑛) ≃ Fin-S n(𝑛 − 𝑘)).

Using these facts, we can now prove the main result of this section.

Theorem 5.24. For all 𝑛 : N, Lehmer(𝑛) ≃ Aut(FinS n).

Proof. For 𝑛 = 0, note that Lehmer(0) is contractible, and so is Aut(FinS 0), hence we have that
Lehmer(0) ≃ 1 ≃ Aut(FinS 0). For 𝑛 = S𝑚, we compute the following chain of equivalences.

Lehmer(S𝑚)

≃ FinS Sm × Lehmer(𝑚) by definition

≃ FinS Sm × Aut(FinSm) induction hypothesis

≃
∑

𝑘 :FinS Sm FinSm ≃ FinSm Σ over a constant family

≃
∑

𝑘 :FinS Sm Fin-S Sm (𝑚) ≃ FinSm by Lemma 5.23 part 1

≃
∑

𝑘 :FinS Sm Fin-S Sm (𝑚) ≃ Fin-S Sm (𝑚 − 𝑘) by Lemma 5.23 part 1

≃ Aut(FinS Sm) by Lemma 5.23 part 2

□

By composing Theorem 5.24 and Corollary 5.21, we obtain the final equivalence.

Corollary 5.25. For all 𝑛 : N, Sn ≃ Lehmer(𝑛) ≃ Aut(FinS n).

6 CORRESPONDENCE BETWEEN Π AND UFin

In this section, we first translate Π to its additive fragment Π+. This is the language that we
interpret to UFin and back, using the tools developed in the previous sections. Further, we go
through an intermediate step of the language Π∧, which is a simplified variant of Π+ that uses
adjacent transpositions for combinators, while preserving all the required structure.

Π Π+ Π∧ UFin
eval

eval+ eval∧

quote+ quote∧

We present the types and 1-combinators of Π+ and Π∧ in Figures 8 and 9 respectively, eliding
the 2-combinators for brevity. We enforce that there is a unique 2-combinator between compatible
1-combinators, by relating them with a truncation. These can be found in Appendix A.1 and in the
accompanying Agda code.
The translations between the languages are defined separately on types, 1-combinators, and

2-combinators. Following the terminology of Normalisation by Evaluation (NbE), the translations

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:21

id↔1 : 𝐴 ↔+ 𝐴 : id↔1

unite+l : 0 +𝐴 ↔+ 𝐴 : uniti+l
swap+ : 𝐴 + 𝐵 ↔+ 𝐵 +𝐴 : swap+
assocl+ : 𝐴 + (𝐵 +𝐶) ↔+ (𝐴 + 𝐵) +𝐶 : assocr+

⊢ 𝑐1 : 𝐴 ↔+ 𝐵 ⊢ 𝑐2 : 𝐵 ↔+ 𝐶

⊢ 𝑐1 ⊚ 𝑐2 : 𝐴 ↔+ 𝐶

⊢ 𝑐1 : 𝐴 ↔+ 𝐵 ⊢ 𝑐2 : 𝐶 ↔+ 𝐷

⊢ 𝑐1 ⊕ 𝑐2 : 𝐴 +𝐶 ↔+ 𝐵 + 𝐷

Fig. 8. Π+ syntax

from the left to the right, going from the syntax towards the semantics, are called eval and the
translations the other way are called quote.
To state our results formally, we organise the syntax for each language using its syntactic

category. We define them formally in the appendix, and only state our results here. For each of the
Π , Π+ and Π∧ languages, their syntactic categories, respectively Πcat, Π+

cat and Π
∧
cat, have 0-cells

for types (𝑈 , U +, and N), 1-cells for 1-combinators (↔,↔+, and↔∧), and 2-cells for 2-combinators
(⇔,⇔+, and⇔∧). These syntactic categories here are actually (2, 0)-categories, since all the 1-cells
and 2-cells are invertible. They are also locally-strict, or locally-posetal, because there is at most
one 2-cell between compatible 1-cells.

We use the eval/quote translation maps to construct functors between these categories. We only
name the maps on the 0, 1, and 2-cells ś the coherences hold by definition or by calculation, which
is shown in our accompanying Agda code. We use these functors to state our results establishing
the equivalences between the languages.

6.1 Π to Π+

First, we show how to translate Π programs to Π+, which is the additive fragment of Π . The syntax
for 1-combinators is given in Figure 8.
Π has two 0-ary type constructors, and two binary type constructors ś the additive tensor

product and the multiplicative one. Π+ has all the type constructors of Π except multiplication.
However, we will show how to recover the multiplicative structure, by defining multiplication as
repeated addition. We encode × in terms of + as follows.

Definition 6.1 (× : U + → U + → U +).

0 × 𝑌 ≜ 0

1 × 𝑌 ≜ 𝑌

(𝑋1 + 𝑋2) × 𝑌 ≜ 𝑋1 × 𝑌 + 𝑋2 × 𝑌

Lemma 6.2. There are two symmetric monoidal structures on Π
+
cat, given by (0, +) and (1,×), with

× distributing over +, giving it a rig structure.

Using this rig structure, we translate Π to Π+, constructing a rig equivalence from Πcat to Π
+
cat.

Definition 6.3 (eval).

eval0 : 𝑈 → U +

eval1 : (𝑐 : 𝑋 ↔ 𝑌) → eval0 (𝑋) ↔ eval0 (𝑌)

eval2 : (𝛼 : 𝑝 ⇔ 𝑞) → eval1 (𝑝) ⇔ eval1 (𝑞)

Theorem 6.4. eval gives a rig equivalence between Πcat and Π
+
cat.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:22 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

id↔1 : 𝑛 ↔∧ 𝑛 : id↔1

swap : S S𝑛 ↔∧ S S𝑛 : swap

⊢ 𝑐1 : 𝑛 ↔∧ 𝑚 ⊢ 𝑐2 :𝑚 ↔∧ 𝑜

⊢ 𝑐1 ⊚ 𝑐2 : 𝑛 ↔∧ 𝑜

⊢ 𝑐 : 𝑛 ↔∧ 𝑚

⊢ ⊕(𝑐) : S𝑛 ↔∧ S𝑚

Fig. 9. Π∧ syntax

1 n
m

−→
1

n m

−→
n m

1
−→

m n
1
−→

m
n 1

−→
m

1 n

Fig. 10. Braiding from transpositions, recursive case

1
1 X

assocl+
−−−−−→

1 1
X

id↔1
−−−−−−→
swap+ 1 1

X

assocr+
−−−−−→

1
1 X

Fig. 11. Transpositions from braiding

6.2 Π+ to Π∧

Next, we show how to translate Π+ programs to Π∧ and back. Π∧ is a simplified variant of Π+,
with (unary) natural numbers for 0-cells, 1-combinators generated by adjacent transpositions, and
an appropriate set of 2-combinators. We give the syntax, again omitting 2-combinators, in Figure 9.

As described, Π∧ doesn’t have a tensor product, but we can build it simply by adding up natural
numbers, and, we need to verify that this indeed equips Π∧

cat with a symmetric monoidal structure.
Since each object is a natural number, this makes Π∧

cat a PROP, that is, a products and permutations
category.

To produce a braiding 𝑛 +𝑚 ↔∧ 𝑚 + 𝑛 from adjacent transpositions, we recursively traverse the
left subexpression, swapping each element using adjacent transpositions along the elements on
the right, placing it in the correct position. The computational content of this translation can be
visualised using tree transformations, for the recursive case in Figure 10. The challenging part is
showing that these moves are coherent with respect to 2-combinators.

Lemma 6.5. Π∧
cat has a symmetric monoidal structure, with the unit given by 0 and the tensor

product given by natural number addition.

Using this symmetric monoidal structure, we translate from Π+ to Π∧.

Definition 6.6 (eval+).

eval+0 : U + → N

eval+1 : (𝑐 : 𝑡1 ↔
+ 𝑡2) → eval+0 (𝑡1) ↔

∧ eval+0 (𝑡2)

eval+2 : (𝛼 : 𝑐1 ⇔
+ 𝑐2) → eval+1 (𝑐1) ⇔

∧ eval+1 (𝑐2)

To go back from Π∧ to Π+, we turn a natural number into a Π+ type, using right-biased addition,
that is, the natural number 𝑛 gets mapped to the type 1 + (1 + (1 + . . . + 0)). Since the types are
already right-biased, an adjacent transposition in Π∧ is easily encoded by using the braiding in Π+,
as shown in Figure 11. Again, these are shown to be coherent.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:23

Definition 6.7 (quote+).

quote+0 : N → U +

quote+1 : (𝑝 : 𝑋1 ↔
∧ 𝑋2) → quote+0 (𝑋1) ↔ quote+0 (𝑋2)

quote+2 : (𝛼 : 𝑝1 ⇔
∧ 𝑝2) → quote+1 (𝑝1) ⇔ quote+1 (𝑝2)

Theorem 6.8. eval+/quote+ give a symmetric monoidal equivalence between Π
+
cat and Π

∧
cat.

6.3 Π∧ toUFin

Finally, we show how to interpretΠ∧ toUFin, and back fromUFin toΠ∧. Types inΠ∧ are interpreted
as 0-cells in UFin, that is, a natural number 𝑛 is mapped to Finn. The 1-combinators in Π∧ are
mapped to 1-paths in UFin, that is, 1-loops in each connected component, equivalent to Aut(Finn).
In Π∧, the 1-combinators are generated by adjacent transpositions, so these can be mapped to
words in Sn and then to automorphisms using Corollary 5.25. Finally, 2-combinators are mapped to
2-paths between loops in UFin.

Definition 6.9 (eval∧).

eval∧0 : N → UFin

eval∧1 : (𝑐 : 𝑡1 ↔
∧ 𝑡2) → eval∧0 (𝑡1) = eval∧0 (𝑡2)

eval∧2 : (𝛼 : 𝑐1 ⇔
∧ 𝑐2) → eval∧1 (𝑐1) = eval∧1 (𝑐2)

0-cells in UFin are mapped to their cardinalities in Π∧, 1-loops are decoded to words in Sn to
generate a sequence of adjacent transpositions, producing a 1-combinator in Π∧. Finally, 2-paths
are quoted back to 2-combinators in Π∧.

Definition 6.10 (quote∧).

quote∧0 : UFin → N

quote∧1 : (𝑝 : 𝑋1 = 𝑋2) → quote∧0 (𝑋1) ↔
∧ quote∧0 (𝑋2)

quote∧2 : (𝛼 : 𝑝1 = 𝑝2) → quote∧1 (𝑝1) ⇔
∧ quote1 (𝑝2)

Theorem 6.11. eval∧/quote∧ give a symmetric monoidal equivalence between Π
∧
cat andUFin.

The semantics that we presented here takes a different route to constructing the permutation
from a Π combinator, compared to the direct interpretation given using the big-step interpreter
in Section 3.2. We verify that the two semantics agree, establishing that the semantics is adequate
and fully abstract.

Definition 6.12 (L − M).

L − M0 : 𝑈 → UFin

L − M0 ≜ eval∧0 ◦ eval+0 ◦ eval0

L − M1 : (𝑐 : 𝑋 ↔ 𝑌) → L 𝑋 M0 =UFin
L 𝑌 M0

L − M1 ≜ eval∧1 ◦ eval+1 ◦ eval1

Theorem 6.13 (Full Abstraction and Adeqacy). For any 𝑐1, 𝑐2 : 𝑋 ↔ 𝑌 , we have that

J 𝑐1 K = J 𝑐2 K if and only if L 𝑐1 M1 = L 𝑐2 M1

7 APPLICATIONS TO REVERSIBLE CIRCUITS

Using our semantics, we can normalise, synthesise, prove equivalence, and reason aboutΠ programs.
We describe a few applications in this section, and a more comprehensive list of applications and
examples along with their formalisation is available in our artifact [Choudhury et al. 2021a].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:24 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

7.1 Normalisation

Normalisation happens by evaluating a combinator to a permutation and then reifying it back. The
evaluation step goes from Π to Π+ reducing × to + and translating the corresponding combinators,
then from Π+ to Π∧ reducing them to natural numbers and adjacent transpositions, then finally to
UFin through words in Sn and Lehmer codes. Finally, the quotation step goes all the way back until
Π+. We define this composite norm function below using our previous evaluation function L − M.

Definition 7.1 (Normalisation of Π programs).

norm0 : 𝑈 → U +

norm0 = quote+0 ◦ quote∧0 ◦ L − M0

norm1 : (𝑐 : 𝑋 ↔ 𝑌) → norm0 (𝑋) ↔+ norm0 (𝑌)

norm1 = quote+1 ◦ quote∧1 ◦ L − M1

As an example, consider the reversibleOr1 circuit introduced in Section 3. After applying norm1,
the type B 3 normalises to 8+ ≡ 1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + 0))))))), and the circuit
reduces to the following normal form:

reversibleOrNorm : 8+ ↔1+ 8+

reversibleOrNorm = (id↔1 ⊕ id↔1 ⊕ assocl+ ⊚ (swap+ ⊕ id↔1) ⊚ assocr+) ⊚

(id↔1 ⊕ assocl+ ⊚ (swap+ ⊕ id↔1) ⊚ assocr+) ⊚

(assocl+ ⊚ (swap+ ⊕ id↔1) ⊚ assocr+) ⊚

– elided

7.2 Equivalence

By normalisation, we also get a decision procedure for program equivalence ś two circuits are
equivalent iff they represent the same permutation, or equivalently, they have the same normal
form. Recall that in Section 2 we introduced two different ways of computing reversible disjunction
using two Qiskit circuit implementations, and then in Section 3 showed the corresponding Π

definitions: reversibleOr1 and reversibleOr2.
After applying norm1 to each circuit, we can verify that they both reduce to the same normal

form reversibleOrNorm, and there exist 2-combinators between each of them and the normal
form. More general, user-guided, reasoning can be done using the sound and complete level-2
combinators to rewrite Π programs.

7.3 Synthesis and Verification

Instead of manually writing Π programs to implement the reversible disjunction specification, it is
possible to simply write down the permutation directly and then quote it, synthesising a Π program.
We show this below, using a function lookup to write tabulated permutations for readability.

reversibleOrPerm : Aut (Fin 8)

reversibleOrPerm = equiv f f f-f f-f

where f : Fin 8→ Fin 8

f = lookup (0 :: 5 :: 6 :: 7 :: 4 :: 1 :: 2 :: 3 :: nil)

f-f : (x : Fin 8)→ f (f x) == x

– elided

The permutation uses the canonical encoding of sequences of bits as natural numbers, e.g.,
(false, true, true) is encoded as 011 or 3. The second entry in the lookup table maps index 1
(= 001) to the value 5 (= 101), following the reversible disjunction specification (recall the def-
inition reversibleOr(ℎ,𝑏1, 𝑏2) = (ℎ ∨ (𝑏1 ∨ 𝑏2), 𝑏1, 𝑏2) where ∨ is disjunction and ∨ is exclusive-
disjunction). Quoting this permutation generates the same normalised program reversibleOrNorm,
matching the desired structured type of a 1-combinator on 8+.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:25

Similarly, we can also verify whether a circuit is correctly implemented ś by running the
equivalence described above in the other direction, we can evaluate the circuit to a bijection and
compare it extensionally with the intended one.

7.4 Reasoning and Transfer of Theorems

In our development, we described a number of different representations of permutations: Π , Π+

and Π∧ programs, lists of transpositions, Lehmer codes, and automorphisms of finite sets. The
equivalences between these representations allow us to transfer theorems about permutations
ś we prove them on the most suitable representation, and then transport them to a different
representation łfor freež.
As an example, consider the following problem. The Toffoli gate on 3 bits can be extended to a

reversible gate on 4 bits, by inserting a wire in four possible positions. This gate performs identity
on the newly inserted bit, and controlled-controlled not on the three remaining ones. We show
how to write these gates using cif.

toffoli3
1 toffoli3

2 toffoli3
3 toffoli3

4 : B 4↔1 B 4

toffoli3
1 = cif (cif (swap+ ⊗ id↔1) (id↔1 ⊗ id↔1)) (id↔1 ⊗ (id↔1 ⊗ id↔1))

toffoli3
2 = cif (cif (id↔1 ⊗ swap+) (id↔1 ⊗ id↔1)) (id↔1 ⊗ (id↔1 ⊗ id↔1))

toffoli3
3 = cif (cif (id↔1 ⊗ id↔1) (swap+ ⊗ id↔1)) (id↔1 ⊗ (id↔1 ⊗ id↔1))

toffoli3
4 = cif (cif (id↔1 ⊗ id↔1) (id↔1 ⊗ swap+)) (id↔1 ⊗ (id↔1 ⊗ id↔1))

On the other hand, it is possible to construct a proper 4-bit toffoli gate.

toffoli4 : B 4 ↔1 B 4

toffoli4 = controlled (controlled (controlled not))

Now, we can ask: is it possible to implement toffoli4 gate using only toffoli3 gates?

Solving this problem in the circuit representation is difficult. However, we can observe that all
toffoli3 gates implement even permutations, that is, permutations that contain an even number of
transpositions. On the other hand, toffoli4 implements an odd permutation. It can be easily proved
that any composition of even permutations always produces an even permutation, which answers
the question to the negative. Thus, we formulate the theorem using the representation of lists of
transpositions, and transfer it to circuits using the equivalences proven in the previous sections.
We define a function parity : (𝑋 ↔ 𝑌) → 2 to compute the parity of a permutation defined

by a combinator 𝑐 , by first transforming a Π program into a list of transpositions (using eval∧1
from Definition 6.9), and then computing the parity of this representation, which amounts to a
simple checking of the parity of the length of the list.

Proposition 7.2. For two Π circuits 𝑐1, 𝑐2, if 𝑐1 ⇔ 𝑐2, then parity(𝑐1) = parity(𝑐2).

Using Proposition 7.2, we complete the proof by computing the parity of toffoli4, and all combina-
tions of the toffoli3 gates.

8 DISCUSSION & RELATED WORK

The main theme of our work is the semantic foundation of reversible languages. We prove that a pro-
gramming language presentation of reversible computing based on algebraic types matches exactly
the categorified group-theoretic semantics, thereby closing the circle on a complete Curry-Howard-
Lambek correspondence for reversible languages. Historically, the first such correspondence related
the 𝜆-calculus, intuitionistic logic, and cartesian-closed categories [Curry et al. 1980]. For reversible
languages, the Curry-Howard correspondence was suggested by Sparks and Sabry [2014], and the
Lambek correspondence was suggested by Carette and Sabry [2016] and Carette, James, and Sabry

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:26 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

Table 1. Summary of the established correspondences

Π
⊔

𝑛 BSn B UFin

Types Natural numbers Finite sets 0-cells
1-combinators Generators of Sn Bijections 1-paths
2-combinators Relations of Sn Homotopies 2-paths

[2021]. For a 1-bit fragment of Π , this was established by Carette, Chen, Choudhury, and Sabry
[2018]. In this work, we have completely established this correspondence, as summarised in Table 1.
In the remainder of this section, we discuss some broader related work.

Coherence and Rewriting. Higher-order term-rewriting systems and word problems have a long
history of being formalised in proof assistants like homotopy.io, Agda, Coq and Lean. As part of
the proof of our main result, we developed a rewriting system for the Coxeter relations for Sn to
solve its word problem. Hiver [2021] describes an explicit algorithm for producing normal forms,
which could provide an alternative to our rewriting system. Other encodings of permutations as
listed vectors, matrices, inductively generated trees (Motzkin trees), Young diagrams, or string
diagrams, proved either difficult to formalise in type theory or difficult to relate directly to the
primitive type isomorphisms of Π . The automatic Knuth and Bendix [1970] completion produced
too many equations making proving correctness and termination intractable.
Coherence theorems are famous problems in category theory, and Mac Lane’s coherence theo-

rem [Gurski and Osorno 2013; Joyal and Street 1993; MacLane 1963] for monoidal categories is a
particular one. The use of rewriting and proof assistants to prove coherence theorems for higher
categorical structures has a long history, see [Beylin and Dybjer 1996; Forest and Mimram 2018].

Computing with Univalence. In HoTT, univalence characterises the path type in the universe as
equivalences of types. The map idtoeqv : 𝐴 =U 𝐵 → 𝐴 ≃ 𝐵 is constructed using path induction.
The term ua : 𝐴 ≃ 𝐵 → 𝐴 =U 𝐵, its computation rule ua𝛽 : (𝑒 : 𝐴 ≃ 𝐵) → idtoeqv(ua(𝑒)) = 𝑒 , and
its extensionality rule ua𝜂 : (𝑝 : 𝐴 =U 𝐵) → 𝑝 = ua(idtoeqv(p)) are generally added as postulates
when formalising in Agda. Together, ua and ua𝛽 give the full univalence axiom (𝐴 ≃ 𝐵) ≃ (𝐴 =U 𝐵)

[Orton and Pitts 2018, Theorem 3.5]. By giving a computable presentation for a univalent subuni-
verse, we are able to describe its path space syntactically via a complete equational axiomatisation
of the equivalences between types in the subuniverse. Univalent typoids [Petrakis 2019] are another
way of axiomatising univalent subuniverses.

In the subuniverse of finite types, idtoeqv corresponds to giving a denotation for a program
(1-combinator), which is easily done by induction. The ua map corresponds to synthesising a
program from an equivalence (which, in general, is of course undecidable [Krogmeier et al. 2020]).
In case of reversible boolean circuits, it is decidable, as we have shown, but still far from trivial,
which matches the need to assert the existence of ua without giving a constructive argument. Then,
the computation rule ua𝛽 expresses the fact that program synthesis is sound, while ua𝜂 corresponds
to the soundness of the equational theory (Π 2-combinators). Thus, our results suggest a new
way of thinking about computing using the univalence principle, which provides an intuition on
why certain constructions are hard (or impossible in the general case). There are other, different
approaches to computing with univalence, in [Angiuli et al. 2021; Tabareau et al. 2021], and in
Cubical Type Theory[Angiuli 2019; Vezzosi et al. 2019].

Algebraic Theories. In universal algebra, algebraic theories are used to describe structures such as
groups or rings. A specific group or ring is a model of the appropriate algebraic theory. Algebraic

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

Symmetries in Reversible Programming 6:27

theories are usually presented in terms of logical syntax, that is, as first-order theories whose
signatures allow only functional symbols, and whose axioms are universally quantified equations.
In his seminal thesis, Lawvere [1963] defined a presentation-free categorical notion of universal
algebraic structure, called a Lawvere theory. Programming Languages, such as the 𝜆-calculus,
can be viewed as algebraic structures with variable-binding operators, which can be formalised
using second-order algebraic theories [Fiore and Mahmoud 2010], or algebraic theories with closed
structure [Hyland 2017], called 𝜆-theories, making the 𝜆-calculus the presentation of the initial
𝜆-theory Λ. Our family of reversible languages Π have been presented as first-order algebraic 2-
theories [Beke 2011; Cohen 2009; Yanofsky 2000], which are a categorification of algebraic theories.
The types 0 and 1 are nullary function symbols, the type formers + and × are binary function
symbols, the 1-combinators are invertible reduction rules, and the 2-combinators are equations
or coherence diagrams of compositions of reduction rules. Just like models of Lawvere theories
are given by algebras of (finitary) monads on Set, models of 2-theories are given by algebras of
2-monads on Cat. Our development is related to the free symmetric monoidal completion 2-monad.

Free Symmetric Monoidal Category. The free symmetric monoidal category has been used to study
concurrency [Hyland and Power 2004], Petri nets [Baez et al. 2021], combinatorial structures [Fiore
et al. 2008], quantum mechanics [Abramsky 2005a], and bicategorical models of (differential) linear
logic [Melliès 2019]. The forgetful functor from SymMonCat, the 2-category of (small) symmetric
monoidal categories, strong symmetric monoidal functors, and monoidal natural transformations,
to the 2-category Cat, has a left adjoint giving the free symmetric monoidal category FSM (C) on a
category C. This is a 2-monad on Cat [Blackwell et al. 1989], whose algebras are (strict) symmetric
monoidal categories. A construction of FSM is given by Abramsky [2005a]. Concretely, the objects of
FSM (C) are given by lists of objects of C, that is, a pair (𝑛 : N, 𝐴 : [𝑛] → C0); morphisms between
(𝑛,𝐴) and (𝑛, 𝐵) are pairs (𝜋, 𝜆) where 𝜋 is a permutation of [𝑛], and 𝜆𝑖 : 𝐴𝑖 → 𝐵𝜋 (𝑖) for 1 ≤ 𝑖 ≤ 𝑛.
Abstractly, this is given by the Grothendieck construction

∫

𝐹 of the functor 𝐹 : B → Cat from the
groupoid of finite sets and bijections to Cat, assigning each natural number 𝑛 to the 𝑛-power 𝐶𝑛 of
𝐶 , and each permutation on [𝑛] inducing an endofunctor on 𝐶𝑛 by action. The groupoid B is the
free symmetric monoidal category (groupoid) on one generator, FSM (1).

Coherence and normalisation problems for monoids in constructive type theory using coherence
for monoidal categories were studied by Beylin and Dybjer [1996]. In HoTT, coherence for the free
monoidal groupoid over a groupoid and the proof of its universal property has been considered
by Piceghello [2020]. Free commutative monoids in type theory have been studied by Gylterud
[2020], and in HoTT by Choudhury and Fiore [2019, 2021]. The free symmetric monoidal groupoid
FSM (𝐴) over a groupoid 𝐴 can be given by

∑

𝑋 :UFin
𝐴𝑋 , or it can be presented as an algebraic 2-

theory using 1-HITs. These HITs and the proof of their universal property have been considered
by Choudhury and Fiore [2019]; Piceghello [2019]. The proof of the universal property of FSM is
asserted by appealing to Mac Lane’s coherence theorem for symmetric monoidal categories, and
using the fact that the finite symmetric group Sn encodes the group of permutations on a finite set.
The existence of the proof is folklore. We have produced a proof and formalised it in constructive
type theory. A stronger universal property that B is biinitial in RigCat, is in [Elgueta 2021].

Reversible Programming Languages. The practice of programming languages is replete with ad

hoc instances of reversible computations: database transactions, mechanisms for data provenance,
checkpoints, stack and exception traces, logs, backups, rollback recoveries, version control systems,
reverse engineering, software transactional memories, continuations, backtracking search, and
multiple-level undo features in commercial applications. In the early nineties, Baker [1992a,b]
argued for a systematic, first-class, treatment of reversibility. But intensive research in full-fledged

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

6:28 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

reversible models of computations and reversible programming languages was only sparked by
the discovery of deep connections between physics and computation [Bennett and Landauer 1985;
Frank 1999; Fredkin and Toffoli 1982; Hey 1999; Landauer 1961; Peres 1985; Toffoli 1980], and by the
potential for efficient quantum computation [Feynman 1982]. The early developments of reversible
programming languages started with a conventional programming language, e.g., an extended
𝜆-calculus, and either (i) extended the language with a history mechanism [Danos and Krivine 2004;
Huelsbergen 1996; Kluge 2000; van Tonder 2004], or (ii) imposed constraints on the control flow
constructs to make them reversible [Yokoyama and Glück 2007]. More modern approaches recognize
that reversible programming languages require a fresh approach and should be designed from first
principles without the detour via conventional irreversible languages [Abramsky 2005b; Di Pierro
et al. 2006; Mu et al. 2004; Yokoyama et al. 2008]. The version of Π studied in this paper is restricted
to finite types and terminating total computations. It would be interesting to understand which
versions of free monoidal structures correspond to extensions of Π with recursive types [Bowman
et al. 2011; James and Sabry 2012], or negative and fractional types [Chen, Choudhury, Carette, and
Sabry 2020; Chen and Sabry 2021].

Permutations. Finding formal systems for expressing various flavors of computable functions has
been a major focus of logic and computer science since its inception. Permutations, being at the
core of reversible computing, are an interesting class of functions, for which there are few formal
systems. The system we have developed brings in all the associated benefits of syntactic calculi,
notably, their calculational flavor. Instead of comparing two reversible programs by extensional
equality of the underlying bijective functions, a calculus offers more nuanced techniques that can
enforce additional intensional constraints on the desired equality relation.

DATA AVAILABILITY STATEMENT

The accompanying Agda formalisation for the paper including the full syntax and proofs is avail-
able at the following GitHub repository: https://github.com/vikraman/popl22-symmetries-artifact
[Choudhury, Karwowski, and Sabry 2021a].

ACKNOWLEDGMENTS

The authors would like to thank Jacques Carette and Chao-Hong Chen for numerous discussions,
ideas, and contributions. Robert Rose and Siva Somayyajula contributed to a previous version
of this work. The first author is grateful to Marcelo Fiore for various discussions about the free
symmetric monoidal groupoid, and Thorsten Alteknirch, Andrew Pitts, Jamie Vicary, Eric Finster,
Nathanael Arkor, and Younesse Kaddar, for related discussions. The authors would also like to
thank the anonymous referees for their valuable comments and helpful suggestions. This paper is
dedicated to the memory of Socrates, the demure cat.

REFERENCES

Scott Aaronson, Daniel Grier, and Luke Schaeffer. 2017. The Classification of Reversible Bit Operations. In 8th Innovations in

Theoretical Computer Science Conference (ITCS 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 67),
Christos H. Papadimitriou (Ed.). Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 23:1ś23:34.
https://doi.org/10.4230/LIPIcs.ITCS.2017.23

Samson Abramsky. 2005a. Abstract Scalars, Loops, and Free Traced and Strongly Compact Closed Categories. In Algebra and

Coalgebra in Computer Science (Lecture Notes in Computer Science), José Luiz Fiadeiro, Neil Harman, Markus Roggenbach,
and Jan Rutten (Eds.). Springer, Berlin, Heidelberg, 1ś29. https://doi.org/10.1007/11548133_1

Samson Abramsky. 2005b. A Structural Approach to Reversible Computation. Theoretical Computer Science 347, 3 (Dec.
2005), 441ś464. https://doi.org/10.1016/j.tcs.2005.07.002

Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose
Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

https://github.com/vikraman/popl22-symmetries-artifact
https://doi.org/10.4230/LIPIcs.ITCS.2017.23
https://doi.org/10.1007/11548133_1
https://doi.org/10.1016/j.tcs.2005.07.002

Symmetries in Reversible Programming 6:29

Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La Torre,
Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas
Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek,
Joe Hellmers, Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki
Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose
Martín-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda
Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna
Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Putra Rudy,
Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi,
Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour,
Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica
Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal.
2019. Qiskit: An Open-Source Framework for Quantum Computing. Zenodo. https://doi.org/10.5281/ZENODO.2562110

Carlo Angiuli. 2019. Computational Semantics of CartesianCubical Type Theory. Ph. D. Dissertation. Carnegie Mellon
University, Pittsburgh, PA. https://www.cs.cmu.edu/~cangiuli/thesis/thesis.pdf

Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. 2021. Internalizing Representation Independence with
Univalence. Proceedings of the ACM on Programming Languages 5, POPL (Jan. 2021), 12:1ś12:30. https://doi.org/10.1145/
3434293

John C. Baez and James Dolan. 2001. From Finite Sets to Feynman Diagrams. In Mathematics Unlimited Ð 2001 and Beyond,
Björn Engquist and Wilfried Schmid (Eds.). Springer, Berlin, Heidelberg, 29ś50. https://doi.org/10.1007/978-3-642-
56478-9_3

John C. Baez, Fabrizio Genovese, Jade Master, and Michael Shulman. 2021. Categories of Nets. arXiv:2101.04238 [cs, math]

(April 2021). arXiv:2101.04238 [cs, math] http://arxiv.org/abs/2101.04238
John C Baez, Alexander E Hoffnung, and Christopher D Walker. 2010. HIGHER DIMENSIONAL ALGEBRA VII: GROUPOID-

IFICATION. Theory and Applications of Categories 24 (2010), 66. http://www.tac.mta.ca/tac/volumes/24/18/24-18abs.html
Henry G. Baker. 1992a. Lively Linear Lisp: łLook Ma, No Garbage!ž. ACM SIGPLAN Notices 27, 8 (Aug. 1992), 89ś98.

https://doi.org/10.1145/142137.142162
Henry G. Baker. 1992b. NREVERSAL of Fortune Ð The Thermodynamics of Garbage Collection. In Memory Management

(Lecture Notes in Computer Science), Yves Bekkers and Jacques Cohen (Eds.). Springer, Berlin, Heidelberg, 507ś524.
https://doi.org/10.1007/BFb0017210

Stephane Beauregard. 2003. Circuit for Shor’s Algorithm Using 2n+3 Qubits. Quantum Information & Computation 3, 2
(March 2003), 175ś185.

Tibor Beke. 2011. Categorification, Term Rewriting and the KnuthśBendix Procedure. Journal of Pure and Applied Algebra
215, 5 (May 2011), 728ś740. https://doi.org/10.1016/j.jpaa.2010.06.019

Richard Bellman and Marshall Hall. 1960. Combinatorial Analysis. Proceedings of Symposia in Applied Mathematics, Vol. 10.
American Mathematical Society. https://doi.org/10.1090/psapm/010

Charles H. Bennett and Rolf Landauer. 1985. The Fundamental Physical Limits of Computation. Scientific American 253, 1
(1985), 48ś57. https://www.jstor.org/stable/24967723

Sebastian Berger, Andrii Kravtsiv, Gerhard Schneider, and Denis Jordan. 2019. Teaching Ordinal Patterns to a Computer:
Efficient Encoding Algorithms Based on the Lehmer Code. Entropy 21, 10 (Oct. 2019), 1023. https://doi.org/10.3390/
e21101023

Ilya Beylin and Peter Dybjer. 1996. Extracting a Proof of Coherence for Monoidal Categories from a Proof of Normalization
for Monoids. In Types for Proofs and Programs, Gerhard Goos, Juris Hartmanis, Jan Leeuwen, Stefano Berardi, and Mario
Coppo (Eds.). Vol. 1158. Springer Berlin Heidelberg, Berlin, Heidelberg, 47ś61. https://doi.org/10.1007/3-540-61780-9_61

Marc Bezem, Ulrik Buchholtz, Pierre Cagne, Bjùrn Ian Dundas, and Daniel R. Grayson. 2021. Symmetry. https://github.
com/UniMath/SymmetryBook

R. Blackwell, G. M. Kelly, and A. J. Power. 1989. Two-Dimensional Monad Theory. Journal of Pure and Applied Algebra 59, 1
(July 1989), 1ś41. https://doi.org/10.1016/0022-4049(89)90160-6

William J. Bowman, Roshan P. James, and Amr Sabry. 2011. Dagger Traced Symmetric Monoidal Categories and Reversible
Programming. In Workshop on Reversible Computation.

Ulrik Buchholtz and Egbert Rijke. 2017. The Real Projective Spaces in Homotopy Type Theory. In Proceedings of the 32nd

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’17). IEEE Press, Reykjavík, Iceland, 1ś8.
Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. 2018. Higher Groups in Homotopy Type Theory. In Proceedings of

the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, Oxford United Kingdom, 205ś214. https:
//doi.org/10.1145/3209108.3209150

Jacques Carette, Chao-Hong Chen, Vikraman Choudhury, and Amr Sabry. 2018. From Reversible Programs to Univalent
Universes and Back. Electronic Notes in Theoretical Computer Science 336 (April 2018), 5ś25. https://doi.org/10.1016/j.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

https://doi.org/10.5281/ZENODO.2562110
https://www.cs.cmu.edu/~cangiuli/thesis/thesis.pdf
https://doi.org/10.1145/3434293
https://doi.org/10.1145/3434293
https://doi.org/10.1007/978-3-642-56478-9_3
https://doi.org/10.1007/978-3-642-56478-9_3
https://arxiv.org/abs/2101.04238
http://arxiv.org/abs/2101.04238
http://www.tac.mta.ca/tac/volumes/24/18/24-18abs.html
https://doi.org/10.1145/142137.142162
https://doi.org/10.1007/BFb0017210
https://doi.org/10.1016/j.jpaa.2010.06.019
https://doi.org/10.1090/psapm/010
https://www.jstor.org/stable/24967723
https://doi.org/10.3390/e21101023
https://doi.org/10.3390/e21101023
https://doi.org/10.1007/3-540-61780-9_61
https://github.com/UniMath/SymmetryBook
https://github.com/UniMath/SymmetryBook
https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/10.1145/3209108.3209150
https://doi.org/10.1145/3209108.3209150
https://doi.org/10.1016/j.entcs.2018.03.013
https://doi.org/10.1016/j.entcs.2018.03.013

6:30 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

entcs.2018.03.013
Jacques Carette, Roshan P. James, and Amr Sabry. 2021. Embracing the Laws of Physics: Three Reversible Models of

Computation. Advances in Computers 126 (2021). http://arxiv.org/abs/1811.03678
Jacques Carette and Amr Sabry. 2016. Computing with Semirings and Weak Rig Groupoids. In Programming Languages and

Systems, Peter Thiemann (Ed.). Vol. 9632. Springer Berlin Heidelberg, Berlin, Heidelberg, 123ś148. https://doi.org/10.
1007/978-3-662-49498-1_6

Chao-Hong Chen, Vikraman Choudhury, Jacques Carette, and Amr Sabry. 2020. Fractional Types. In Reversible Computation.
Springer, Cham, 169ś186. https://doi.org/10.1007/978-3-030-52482-1_10

Chao-Hong Chen and Amr Sabry. 2021. A Computational Interpretation of Compact Closed Categories: Reversible
Programming with Negative and Fractional Types. Proceedings of the ACM on Programming Languages 5, POPL (Jan.
2021), 9:1ś9:29. https://doi.org/10.1145/3434290

Vikraman Choudhury and Marcelo Fiore. 2019. The Finite-Multiset Construction in HoTT. (Aug. 2019), 40. https:
//hott.github.io/HoTT-2019/conf-slides/Choudhury.pdf

Vikraman Choudhury and Marcelo Fiore. 2021. Free Commutative Monoids in Homotopy Type Theory. (Oct. 2021).
https://arxiv.org/abs/2110.05412v1

Vikraman Choudhury, Jacek Karwowski, and Amr Sabry. 2021a. Artifact for Symmetries in Reversible Programming.
Zenodo. https://doi.org/10.5281/zenodo.5671746

Vikraman Choudhury, Jacek Karwowski, and Amr Sabry. 2021b. Symmetries in Reversible Programming: From Symmetric
Rig Groupoids to Reversible Programming Languages. (Oct. 2021). https://arxiv.org/abs/2110.05404v1

Dan Christensen. 2015. A Characterization of Univalent Fibrations. (June 2015), 53. http://sweet.ua.pt/dirk/ct2015/slides/
Christensen.pdf

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018. Cubical Type Theory: A Constructive Interpreta-
tion of the Univalence Axiom. (2018), 34 pages. https://doi.org/10.4230/LIPICS.TYPES.2015.5

Jonathan Asher Cohen. 2009. Coherence for Rewriting 2-Theories. arXiv:0904.0125 [cs, math] (April 2009). arXiv:0904.0125 [cs,
math] http://arxiv.org/abs/0904.0125

Haskell B. Curry, J. Roger Hindley, and J. P. Seldin (Eds.). 1980. To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus,

and Formalism. Academic Press, London ; New York.
Vincent Danos and Jean Krivine. 2004. Reversible Communicating Systems. In CONCUR 2004 - Concurrency Theory

(Lecture Notes in Computer Science), Philippa Gardner and Nobuko Yoshida (Eds.). Springer, Berlin, Heidelberg, 292ś307.
https://doi.org/10.1007/978-3-540-28644-8_19

Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. 2006. Reversible Combinatory Logic. Mathematical Structures in

Computer Science 16, 4 (Aug. 2006), 621ś637. https://doi.org/10.1017/S0960129506005391
Catherine Dubois and Alain Giorgetti. 2018. Tests and Proofs for Custom Data Generators. Formal Aspects of Computing 30,

6 (Nov. 2018), 659ś684. https://doi.org/10.1007/s00165-018-0459-1
Josep Elgueta. 2021. The Groupoid of Finite Sets Is Biinitial in the 2-Category of Rig Categories. Journal of Pure and Applied

Algebra 225, 11 (Nov. 2021), 106738. https://doi.org/10.1016/j.jpaa.2021.106738
Richard P. Feynman. 1982. Simulating Physics with Computers. International Journal of Theoretical Physics 21, 6 (June 1982),

467ś488. https://doi.org/10.1007/BF02650179
M. Fiore, N. Gambino, M. Hyland, and G. Winskel. 2008. The Cartesian Closed Bicategory of Generalised Species of

Structures. Journal of the London Mathematical Society 77, 1 (Feb. 2008), 203ś220. https://doi.org/10.1112/jlms/jdm096
Marcelo Fiore and Ola Mahmoud. 2010. Second-Order Algebraic Theories. In Mathematical Foundations of Computer Science

2010 (Lecture Notes in Computer Science), Petr Hliněný and Antonín Kučera (Eds.). Springer, Berlin, Heidelberg, 368ś380.
https://doi.org/10.1007/978-3-642-15155-2_33

Marcelo P. Fiore, Roberto Di Cosmo, and Vincent Balat. 2002. Remarks on Isomorphisms in Typed Lambda Calculi with
Empty and Sum Types. In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS ’02). IEEE
Computer Society, USA, 147.

Simon Forest and Samuel Mimram. 2018. Coherence of Gray Categories via Rewriting. (2018), 16 pages. https://doi.org/10.
4230/LIPICS.FSCD.2018.15

Michael P. Frank. 1999. Reversibility for Efficient Computing. Ph. D. Dissertation. Massachusetts Institute of Technology,
USA.

Edward Fredkin and Tommaso Toffoli. 1982. Conservative Logic. International Journal of Theoretical Physics 21, 3 (April
1982), 219ś253. https://doi.org/10.1007/BF01857727

Nick Gurski and Angélica M. Osorno. 2013. Infinite Loop Spaces, and Coherence for Symmetric Monoidal Bicategories.
Advances in Mathematics 246 (Oct. 2013), 1ś32. https://doi.org/10.1016/j.aim.2013.06.028

Håkon Robbestad Gylterud. 2020. Multisets in Type Theory. Mathematical Proceedings of the Cambridge Philosophical

Society 169, 1 (July 2020), 1ś18. https://doi.org/10.1017/S0305004119000045
Anthony J. G. Hey (Ed.). 1999. Feynman and Computation: Exploring the Limits of Computers. Perseus Books, USA.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

https://doi.org/10.1016/j.entcs.2018.03.013
https://doi.org/10.1016/j.entcs.2018.03.013
https://doi.org/10.1016/j.entcs.2018.03.013
http://arxiv.org/abs/1811.03678
https://doi.org/10.1007/978-3-662-49498-1_6
https://doi.org/10.1007/978-3-662-49498-1_6
https://doi.org/10.1007/978-3-030-52482-1_10
https://doi.org/10.1145/3434290
https://hott.github.io/HoTT-2019/conf-slides/Choudhury.pdf
https://hott.github.io/HoTT-2019/conf-slides/Choudhury.pdf
https://arxiv.org/abs/2110.05412v1
https://doi.org/10.5281/zenodo.5671746
https://arxiv.org/abs/2110.05404v1
http://sweet.ua.pt/dirk/ct2015/slides/Christensen.pdf
http://sweet.ua.pt/dirk/ct2015/slides/Christensen.pdf
https://doi.org/10.4230/LIPICS.TYPES.2015.5
https://arxiv.org/abs/0904.0125
http://arxiv.org/abs/0904.0125
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1017/S0960129506005391
https://doi.org/10.1007/s00165-018-0459-1
https://doi.org/10.1016/j.jpaa.2021.106738
https://doi.org/10.1007/BF02650179
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.4230/LIPICS.FSCD.2018.15
https://doi.org/10.4230/LIPICS.FSCD.2018.15
https://doi.org/10.1007/BF01857727
https://doi.org/10.1016/j.aim.2013.06.028
https://doi.org/10.1017/S0305004119000045

Symmetries in Reversible Programming 6:31

Florent Hiver. 2021. Coq-Combi: The Coxeter Presentation of the Symmetric Group. Mathematical Com-
ponents. https://github.com/math-comp/Coq-Combi/blob/1ba924ecc1a1c7714a9b3a2dbb23d91af2a1193a/theories/
SymGroup/presentSn.v

Lorenz Huelsbergen. 1996. A Logically Reversible Evaluator for the Call-by-Name Lambda Calculus. InterJournal Complex

Systems 46 (1996).
Gérard Huet. 1980. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems: Abstract

Properties and Applications to Term Rewriting Systems. J. ACM 27, 4 (Oct. 1980), 797ś821. https://doi.org/10.1145/
322217.322230

J. M. E. Hyland. 2017. Classical Lambda Calculus in Modern Dress. Mathematical Structures in Computer Science 27, 5 (June
2017), 762ś781. https://doi.org/10.1017/S0960129515000377

Martin Hyland and John Power. 2004. Symmetric Monoidal Sketches and Categories of Wirings. Electronic Notes in

Theoretical Computer Science 100 (Oct. 2004), 31ś46. https://doi.org/10.1016/j.entcs.2004.09.004
Roshan P. James and Amr Sabry. 2012. Information Effects. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’12). Association for Computing Machinery, New York, NY,
USA, 73ś84. https://doi.org/10.1145/2103656.2103667

Roshan P. James and Amr Sabry. 2014. Theseus: A High-Level Language for Reversible Computation. In Reversible

Computation.
A. Joyal and R. Street. 1993. Braided Tensor Categories. Advances in Mathematics 102, 1 (Nov. 1993), 20ś78. https:

//doi.org/10.1006/aima.1993.1055
Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. 2012. Univalence in Simplicial Sets. (March 2012).

https://arxiv.org/abs/1203.2553v1
Krzysztof Kapulkin and Peter LeFanu Lumsdaine. 2021. The Simplicial Model of Univalent Foundations (after Voevodsky).

Journal of the European Mathematical Society 23, 6 (March 2021), 2071ś2126. https://doi.org/10.4171/JEMS/1050
G. M. Kelly. 1974. Coherence Theorems for Lax Algebras and for Distributive Laws. In Category Seminar (Lecture Notes in

Mathematics), Gregory M. Kelly (Ed.). Springer, Berlin, Heidelberg, 281ś375. https://doi.org/10.1007/BFb0063106
Werner Kluge. 2000. A Reversible SE(M)CD Machine. In Implementation of Functional Languages (Lecture Notes in Computer

Science), Pieter Koopman and Chris Clack (Eds.). Springer, Berlin, Heidelberg, 95ś113. https://doi.org/10.1007/10722298_6
Donald Ervin Knuth. 1997. The Art of Computer Programming (3rd ed ed.). Addison-Wesley, Reading, Mass.
DONALD E. Knuth and PETER B. Bendix. 1970. Simple Word Problems in Universal Algebras22The Work Reported in This

Paper Was Supported in Part by the U.S. Office of Naval Research. In Computational Problems in Abstract Algebra, JOHN
Leech (Ed.). Pergamon, 263ś297. https://doi.org/10.1016/B978-0-08-012975-4.50028-X

Nicolai Kraus and Jakob von Raumer. 2020. Coherence via Well-Foundedness: Taming Set-Quotients in Homotopy Type
Theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, Saarbrücken
Germany, 662ś675. https://doi.org/10.1145/3373718.3394800

Paul Krogmeier, Umang Mathur, Adithya Murali, P. Madhusudan, and Mahesh Viswanathan. 2020. Decidable Synthesis of
Programs with Uninterpreted Functions. In Computer Aided Verification (Lecture Notes in Computer Science), Shuvendu K.
Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham, 634ś657. https://doi.org/10.1007/978-3-030-
53291-8_32

Yves Lafont. 2003. Towards an Algebraic Theory of Boolean Circuits. Journal of Pure and Applied Algebra 184, 2 (Nov. 2003),
257ś310. https://doi.org/10.1016/S0022-4049(03)00069-0

C.-A. Laisant. 1888. Sur la numération factorielle, application aux permutations. Bulletin de la Société Mathématique de

France 2 (1888), 176ś183. https://doi.org/10.24033/bsmf.378
R. Landauer. 1961. Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development

5, 3 (July 1961), 183ś191. https://doi.org/10.1147/rd.53.0183
Miguel L. Laplaza. 1972. Coherence for Distributivity. In Coherence in Categories (Lecture Notes in Mathematics), G. M.

Kelly, M. Laplaza, G. Lewis, and Saunders Mac Lane (Eds.). Springer, Berlin, Heidelberg, 29ś65. https://doi.org/10.1007/
BFb0059555

F. William Lawvere. 1963. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. Proceedings of the National Academy of

Sciences 50, 5 (Nov. 1963), 869ś872. https://doi.org/10.1073/pnas.50.5.869
D. H. Lehmer. 1960. Teaching Combinatorial Tricks to a Computer. In Proceedings of Symposia in Applied Mathematics,

Richard Bellman and Marshall Hall (Eds.). Vol. 10. American Mathematical Society, Providence, Rhode Island, 179ś193.
https://doi.org/10.1090/psapm/010/0113289

Saunders MacLane. 1963. Natural Associativity and Commutativity. Rice Institute Pamphlet - Rice University Studies 49, 4
(Oct. 1963). https://scholarship.rice.edu/handle/1911/62865

Dmitri Maslov. 2003. Reversible Logic Synthesis. Technical Report.
Hideya Matsumoto. 1964. Générateurs et Relations Des Groupes deWeyl Généralisés. COMPTES RENDUS HEBDOMADAIRES

DES SEANCES DE L ACADEMIE DES SCIENCES 258, 13 (1964), 3419.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

https://github.com/math-comp/Coq-Combi/blob/1ba924ecc1a1c7714a9b3a2dbb23d91af2a1193a/theories/SymGroup/presentSn.v
https://github.com/math-comp/Coq-Combi/blob/1ba924ecc1a1c7714a9b3a2dbb23d91af2a1193a/theories/SymGroup/presentSn.v
https://doi.org/10.1145/322217.322230
https://doi.org/10.1145/322217.322230
https://doi.org/10.1017/S0960129515000377
https://doi.org/10.1016/j.entcs.2004.09.004
https://doi.org/10.1145/2103656.2103667
https://doi.org/10.1006/aima.1993.1055
https://doi.org/10.1006/aima.1993.1055
https://arxiv.org/abs/1203.2553v1
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.1007/BFb0063106
https://doi.org/10.1007/10722298_6
https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://doi.org/10.1145/3373718.3394800
https://doi.org/10.1007/978-3-030-53291-8_32
https://doi.org/10.1007/978-3-030-53291-8_32
https://doi.org/10.1016/S0022-4049(03)00069-0
https://doi.org/10.24033/bsmf.378
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/BFb0059555
https://doi.org/10.1007/BFb0059555
https://doi.org/10.1073/pnas.50.5.869
https://doi.org/10.1090/psapm/010/0113289
https://scholarship.rice.edu/handle/1911/62865

6:32 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry

Paul-André Melliès. 2019. Template Games and Differential Linear Logic. In 2019 34th Annual ACM/IEEE Symposium on

Logic in Computer Science (LICS). 1ś13. https://doi.org/10.1109/LICS.2019.8785830
D.M. Miller, D. Maslov, and G.W. Dueck. 2003. A Transformation Based Algorithm for Reversible Logic Synthesis. In

Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451). 318ś323. https://doi.org/10.1145/775832.775915
Martin Molzer. 2021. Cubical Agda: Simple Application of Fin: Lehmer Codes. Agda Github Community. https://github.

com/agda/cubical/blob/a1d2bb38c0794f3cb00610cd6061cf9b5410518d/Cubical/Data/Fin/LehmerCode.agda
Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. 2004. An Injective Language for Reversible Computation. In Mathe-

matics of Program Construction (Lecture Notes in Computer Science), Dexter Kozen (Ed.). Springer, Berlin, Heidelberg,
289ś313. https://doi.org/10.1007/978-3-540-27764-4_16

Ian Orton and Andrew M. Pitts. 2018. Decomposing the Univalence Axiom. In 23rd International Conference on Types

for Proofs and Programs (TYPES 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 104), Andreas Abel,
Fredrik Nordvall Forsberg, and Ambrus Kaposi (Eds.). Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 6:1ś6:19. https://doi.org/10.4230/LIPIcs.TYPES.2017.6

Asher Peres. 1985. Reversible Logic and Quantum Computers. Physical Review A 32, 6 (Dec. 1985), 3266ś3276. https:
//doi.org/10.1103/PhysRevA.32.3266

I. Petrakis. 2019. Univalent Typoids. (2019). https://www.math.lmu.de/~petrakis/Typoids.pdf
Stefano Piceghello. 2019. Coherence for Symmetric Monoidal Groupoids in HoTT/UF. (2019), 2. http://www.ii.uib.no/

~bezem/abstracts/TYPES_2019_paper_10
Stefano Piceghello. 2020. Coherence for Monoidal Groupoids in HoTT. In 25th International Conference on Types for

Proofs and Programs (TYPES 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 175), Marc Bezem
and Assia Mahboubi (Eds.). Schloss DagstuhlśLeibniz-Zentrum für Informatik, Dagstuhl, Germany, 8:1ś8:20. https:
//doi.org/10.4230/LIPIcs.TYPES.2019.8

Amr Sabry, Jacques Carette, zsparks, Chao-Hong Chen, Vikraman Choudhury, Roshan James, and movieverse. 2021.
JacquesCarette/Pi-Dual: Second Alpha Release. Zenodo. https://doi.org/10.5281/zenodo.5620828

V.V. Shende, A.K. Prasad, I.L. Markov, and J.P. Hayes. 2003. Synthesis of Reversible Logic Circuits. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 22, 6 (June 2003), 710ś722. https://doi.org/10.1109/TCAD.2003.
811448

Zachary Sparks and Amr Sabry. 2014. Superstructural Reversible Logic. (2014), 12. https://legacy.cs.indiana.edu/~sabry/
papers/reversible-logic.pdf

Arnaud Spiwack and Thierry Coquand. 2010. Constructively Finite? Universidad de La Rioja. 217 pages. https://hal.inria.fr/
inria-00503917

Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2021. The Marriage of Univalence and Parametricity. J. ACM 68, 1 (Jan.
2021), 5:1ś5:44. https://doi.org/10.1145/3429979

Tommaso Toffoli. 1980. Reversible Computing. In Automata, Languages and Programming (Lecture Notes in Computer

Science), Jaco de Bakker and Jan van Leeuwen (Eds.). Springer, Berlin, Heidelberg, 632ś644. https://doi.org/10.1007/3-
540-10003-2_104

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Univalent
Foundations Program, Institute for Advanced Study. https://homotopytypetheory.org/book

Vincent Vajnovszki. 2011. A New EulerśMahonian Constructive Bijection. Discrete Applied Mathematics 159, 14 (Aug. 2011),
1453ś1459. https://doi.org/10.1016/j.dam.2011.05.012

André van Tonder. 2004. A Lambda Calculus for Quantum Computation. SIAM J. Comput. 33, 5 (Jan. 2004), 1109ś1135.
https://doi.org/10.1137/S0097539703432165

Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical Agda: A Dependently Typed Programming Language
with Univalence and Higher Inductive Types. Proceedings of the ACM on Programming Languages 3, ICFP (July 2019),
87:1ś87:29. https://doi.org/10.1145/3341691

Noson S. Yanofsky. 2000. The syntax of coherence. Cahiers de Topologie et Géométrie Différentielle Catégoriques 41, 4 (2000),
255ś304. http://www.numdam.org/item/?id=CTGDC_2000__41_4_255_0

Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. 2008. Principles of a Reversible Programming Language. In
Proceedings of the 5th Conference on Computing Frontiers (CF ’08). Association for Computing Machinery, New York, NY,
USA, 43ś54. https://doi.org/10.1145/1366230.1366239

Tetsuo Yokoyama and Robert Glück. 2007. A Reversible Programming Language and Its Invertible Self-Interpreter. In
Proceedings of the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based ProgramManipulation (PEPM

’07). Association for Computing Machinery, New York, NY, USA, 144ś153. https://doi.org/10.1145/1244381.1244404
Brent Abraham Yorgey. 2014. Combinatorial Species and Labelled Structures. Dissertations available from ProQuest (Jan.

2014), 1ś206. https://repository.upenn.edu/dissertations/AAI3668177

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 6. Publication date: January 2022.

https://doi.org/10.1109/LICS.2019.8785830
https://doi.org/10.1145/775832.775915
https://github.com/agda/cubical/blob/a1d2bb38c0794f3cb00610cd6061cf9b5410518d/Cubical/Data/Fin/LehmerCode.agda
https://github.com/agda/cubical/blob/a1d2bb38c0794f3cb00610cd6061cf9b5410518d/Cubical/Data/Fin/LehmerCode.agda
https://doi.org/10.1007/978-3-540-27764-4_16
https://doi.org/10.4230/LIPIcs.TYPES.2017.6
https://doi.org/10.1103/PhysRevA.32.3266
https://doi.org/10.1103/PhysRevA.32.3266
https://www.math.lmu.de/~petrakis/Typoids.pdf
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_10
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_10
https://doi.org/10.4230/LIPIcs.TYPES.2019.8
https://doi.org/10.4230/LIPIcs.TYPES.2019.8
https://doi.org/10.5281/zenodo.5620828
https://doi.org/10.1109/TCAD.2003.811448
https://doi.org/10.1109/TCAD.2003.811448
https://legacy.cs.indiana.edu/~sabry/papers/reversible-logic.pdf
https://legacy.cs.indiana.edu/~sabry/papers/reversible-logic.pdf
https://hal.inria.fr/inria-00503917
https://hal.inria.fr/inria-00503917
https://doi.org/10.1145/3429979
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://homotopytypetheory.org/book
https://doi.org/10.1016/j.dam.2011.05.012
https://doi.org/10.1137/S0097539703432165
https://doi.org/10.1145/3341691
http://www.numdam.org/item/?id=CTGDC_2000__41_4_255_0
https://doi.org/10.1145/1366230.1366239
https://doi.org/10.1145/1244381.1244404
https://repository.upenn.edu/dissertations/AAI3668177

